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Probit models� Regression parameter estimation

using the ML principle despite misspeci�cation of

the correlation structure

Martin Spiess�� Willi Nagly and Alfred Hamerle�

Abstract

In this paper it is shown that using the maximum likelihood �ML� prin�

ciple for the estimation of multivariate probit models leads to consistent

and normally distributed pseudo maximum likelihood regression parame�

ter estimators �PML estimators� even if the �true� correlation structure of

the responses is misspeci�ed� As a consequence	 e�g� the PML estimator

of the random e
ects probit model may be used to estimate the regression
parameters of a model with any �true� correlation structure� This result is

independent of the kind of covariates included in the model� The results

of a Monte Carlo experiment show that the PML estimator of the inde�

pendent binary probit model is ine�cient relative to the PML estimator

of the random e
ects binary panel probit model and two alternative esti�

mators using the �generalized estimating equations� approach proposed by

Liang and Zeger ��
���	 if the �true� correlations are high� If the �true�

correlations are low	 the di
erences between the estimators are small in

�nite samples and for the models used� Generally	 the PML estimator of

the random e
ects probit panel model is very e�cient relative to the GEE

estimators� Therefore	 if correlations between binary responses cannot be
ruled out and the �true� structure of association is unknown or infeasi�

ble to estimate	 the PML estimator of the random e
ects probit model is

recommended�
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� Introduction

The use of panel data for the estimation of regression models has become in�
creasingly popular in econometric� biometric and psychometric applications� One
important advantage using panel data sets compared to using cross section or sin�
gle time�series data sets is the possibility to estimate more realistic behavioral
models �see e�g� Hsiao� ����	� If the correlated response variables are continuous�
then e
cient estimation of the parameters in regression models generally poses
no problems� In contrast� e
cient estimation of categorical response probit mod�
els� which are the focus of the present paper� generally is quite expensive if at all
possible�

There are� however� some special cases where maximum likelihood �ML	 es�
timation is feasible� For example� Fitzmaurice and Laird �����	 proposed the
ML based estimation of mixed parameter models for binary data� where the
association of the observable responses is modelled in terms of conditional log
odds�ratios� The regression parameter estimator can then be shown to be consis�
tent even if the association structure is misspeci�ed� In this case� the so�called

sandwich� estimate of the covariance matrix of the regression parameter estima�
tor has to be used� If� however� a threshold model� i�e� a latent variable model�
is assumed� then generally not the association structure of the observable re�
sponses but of the latent errors is modelled� Furthermore� the interpretation of
the association parameters based upon log odds�ratios is at least unusual if e�g�
a probit link function is used� Another drawback is that these mixed parameter
models are not appropriate for the analysis of models with an unequal number of
observations within each block or cluster� In applications� calculation of the ML
estimates is only feasible for less than �ve or six observations within each block�

As an example of a model for which ML estimation is feasible� consider the
random e�ects probit models� where unobservable random e�ects � often termed
heterogeneity � which are assumed to be independently distributed from the co�
variates are introduced in the model� A well known and often used model is the
random e�ects probit model with binary responses which can be estimated using
Gauss�Hermite quadrature �see e�g� Bock and Aitkin� ����� Bock and Lieber�
mann� ����� Butler and Mo
t� ����� Heckman� ����� Maddala� ����	� However�
the formulation of the random e�ects probit model implies the assumption of
a certain correlation structure� As a consequence of this restrictive assumption
three research topics are of special interest�

The �rst topic is the research on simulation methods for the approximative
calculation of the ML estimator in general probit models �e�g� Lerman and Man�
ski� ����� McFadden� ����	� Although promising progress is made within this
approach �e�g� B�orsch�Supan and Hajivassiliou� ����� Hajivassiliou� McFadden
and Ruud� ����	� not much is known about the required computing time and the
�nite sample properties of the estimators using these methods compared to the
ML estimators even in the simple case of the binary random e�ects probit model

�



with a correctly speci�ed correlation structure�

The second important direction of research is the work on derivation of non�
ML estimators for probit models with any correlation structure which are consis�
tent and asymptotically normal� Starting with the implicite or explicite premise
that the ML regression parameter estimator of a multivariate probit model gener�
ally is not robust with respect to misspeci�cation of the true correlation structure�
this second topic is addressed e�g� by Avery� Hansen and Hotz �����	 or Liang
and Zeger �����	� Both approaches allow the estimation of probit models with
general serial correlations� however� at the cost of lower e
ciency relative to the
ML estimator even if the assumed equicorrelation structure is correct �Maddala�
����� Spiess and Hamerle� ����	�

The third topic concerns the question whether ML regression parameter esti�
mators are still consistent and normally distributed even if the correlation struc�
ture is misspeci�ed� Within the more general framework of research on estima�
tion in models where e�g� the link function or error distribution is misspeci�ed
�e�g� Fahrmeir� ����� Gourieroux� Montfort and Trognon� ����a� ����b� Huber�
����� Li and Duan� ����� Robinson� ����� Ruud� ����� ����� White� ����� ����	�
Gourieroux� Montfort and Trognon �����a	 �see also Robinson� ����	 showed that
the ML estimator of the independent probit model with binary responses remains
consistent � although ine
cient �Maddala� ����	 � even if the responses are
not independent� Under certain conditions concerning the covariates it can be
shown that the use of the ML principle still leads to consistent estimators even
if the distributional assumptions are violated �Li and Duan� ����� Ruud� �����
����	� However� it is not clear whether the ML regression parameter estima�
tor of the general probit model is still consistent in the presence of any kind of
covariates if the correlation structure is misspeci�ed� In particular� within the
proposed approaches on estimation of misspeci�ed models� the ML estimator of
the random e�ects binary probit model cannot be shown to be consistent in this
case�

This paper is organized as follows� In section � the general model is described
and in section � it is shown that the ML regression parameter estimator of a probit
model is consistent without any assumption on the distribution of the covariates
even if the correlation structure is misspeci�ed� In section � as a special case of
the general probit model the binary model for panel data is considered� Section
��� presents the statistical speci�cation of the ML estimator of the random e�ects
binary probit model and section ��� shortly describes as an alternative approach
for the estimation of binary models with correlated responses the 
generalized
estimating equations� approach suggested by Liang and Zeger �����	� The format
and results of a Monte Carlo experiment designed to evaluate the e
ciency of the
above estimators in �nite samples are presented in section � and �� respectively�
Conclusions can be found in section ��
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� Model and Notation

For the models considered we have N blocks �n � �� � � � � N	 and T observations
�t � �� � � � � T 	 in every block �generally individuals	� Although not considered�
the results discussed in this paper may be generalized allowing the number of
time�series observations� Tn� to vary between blocks� Only for simplicity� we
assume T� � � � � � TN � Let yn � �yn�� � � � � ynT 	

� denote the �T � �	 vector of
observable responses for the nth block� Furthermore� let xnt � �xnt�� � � � � xntP 	

�

denote the �P � �	 vector of covariates associated with the ntth observation� Xn

the �T�P 	 matrix of covariates associated with the nth block andX the �NT�P 	
matrix having full column rank associated with all NT observations� Since the
essential arguments that follow do not change whether the covariates are known
constants or considered as random� no assumption will be made concerning the
kind of covariates� However� using panel data sets both kinds of covariates are
plausible� for example modelling time points often leads to a design matrix with
known constants whereas e�g� the expense for certain goods at di�erent time
points may be considered as a realization of a random variable�

Throughout we assume a latent linear regression model

y�n � Xn� � �n� ��	

where y�n is the latent� generally not observable� �T � �	 response variable and
�n is a not observable �T � �	 random error distributed independently of Xn as
N����	� where � is any positive de�nite covariance matrix� � is an unknown
�P � �	 parameter vector which for simplicity is assumed to be identical for all
t� t � �� � � � � T �

The observable �T � �	 vector of responses yn is a known transformation of
the latent y�n�

yn � ��y�n	 � ����y
�
n�	� � � � � �T �y

�
nT 		

�� ��	

where the transformations �t��	 are functions from R� onto R�� Observations
from di�erent blocks are assumed to be independent�

For example� in multivariate binary probit models� �t�y
�
nt	 � ��y�nt � c	 �t�

where ���	 is the indicator function and is one if the argument is true and zero
otherwise� Note that the formulation ��	 and ��	 also includes the representation
of models with continuous� ordinal or multinomial responses as well as models
with mixed continuous and discrete responses�

For the arguments that follow� de�ne � � A� b� IT �e�g� Stern� ����	� where
A is positive �semi�	 de�nite� IT is the �T �T 	 identity matrix� and L is a �T �T 	
matrix which satis�es A � LL�� Note� that there always exists a b� � � and a
matrix A positive �semi�	 de�nite for � � A� b� IT to hold �see Appendix	� The
error �n may then be written as �n � L�n� b 	n� where �n and 	n are both unob�
servable �T � �	 random variables� �n � ��n� � � � � � �nT 	

� and 	n � �	n�� � � � � 	nT 	
��

�



Let �n � N��� IT 	� 	n � N��� IT 	 and E��n� 	n	 � �� then L�n � b 	n has covari�
ance matrix Cov�L�n � b 	n	 � Cov��n	 � � and is normally distributed with
expectation E�L�n� � b 	n	 � ��

Therefore ��	 may also be written as

y�n � Xn� � L�n � b 	n ��	

and the complete general model� i�e� ��	 and ��	� may be written as

yn � ��h�Xn� � L�n� b 	n		� �n � N��� IT 	� 	n � N��� IT 	� ��	

where � is again a function which relates the elements of yn to the elements of
y�n� Note that although Cov�	n	 � IT � this does not restrict model ��	 to the
homoscedastic case� heteroscedasticity may be absorbed into matrix A�

� Consistent regression parameter estimation

In this section it will be shown that maximum likelihood estimation of a probit
model yields estimators which are consistent for the identi�able regression param�
eters regardless of the true correlation structure of the error terms and without
imposing any restriction on the distribution of the covariates�

The log likelihood function for the maximum likelihood estimation of the
general model ��	 is

lN �
X
n

ln
Z �

��
� � �
Z �

��
g�Xn� � L�n� yn	
�L�n	 jLj d�n

�
X
n

lnEL�n�g�Xn� � L�n� yn		� ��	

where g��� �	 is the joint probability density function �pdf	 or joint probability of
yn givenXn� and L�n� 
��	 denotes the density function of the normal distribution
and A � LL� is positive de�nite� Note that generally L is not unique�

Let A� � L�L
�
� be an unknown 
true� positive de�nite matrix satisfying �� �

A� � b�� IT � where �� is the 
true� covariance matrix and b� is the 
true� scalar
parameter value� The structure of the 
true� matrix L� may not coincide with
the assumed structure of L used for estimation� Let �� be the 
true� vector which
includes �� and possibly one or more parameters characterizing the distribution
of L��n and b� 	n� Note that often �� is identi�able only up to a multiplicative
scalar�

Now the assumption �n � N��� IT 	 implies E�L�njL��n	 � ML��n� where M
is a �T � T 	 matrix� and since L� is of rank T � Cov�L�njL��n	 � �� i�e� L�n �
ML��n with probability �� Therefore� Jensens inequality becomes an equality
and we have� where conditioning in taking the expectation will be denoted by a

�



superscript over the expectation sign E�

EL�n�g�Xn� � L�n� ��h�Xn� � L��n� b 	n				

� EL��nE
L��n
L�n �g�Xn� � L�n� ��h�Xn� � L��n� b 	n				

� EL��n�g�Xn� �ML��n� yn		

and

lN �
X
n

lnEL�n�g�Xn� � L�n� ��h�Xn� � L��n� b 	n				

�
X
n

lnEL��n�g�Xn� �ML��n� yn		�

The same arguments hold if A is positive semi�de�nite� In this case� the expec�
tation EL�n��	 has to be taken with respect to a singular density �see Appendix	�

Let lN �
PN

n�� ln be the log likelihood function ��	� then under standard reg�
ularity conditions �e�g�� Amemiya� ����	� and the assumption that E�ln	 has a
unique maximizer in �� N��lN

a�s��� E�ln	 as N ��� where convergence is uni�
form� and ��

a�s��� �� asN ��� where �� is the unique solution to max��� E�ln��		

�ln��	 � ln	� Maximizing ��	 with respect to � then leads to estimators �� which
are consistent for ��� Using again standard assumptions� asymptotic normality
and the asymptotic covariance matrix of �� can be derived� where the asymptotic
covariance matrix may be estimated using the robust covariance matrix estimator
�e�g� Li and Duan� ����	�

Note that no assumption was necessary concerning the kind of covariates �
beside the standard assumptions needed to derive the asymptotic properties of a
ML estimator�

A special binary model for which the rank of L is T follows from the assump�
tion LL� � l� IT � which leads to an independent model for estimation� In this case
L � l IT and the results from above apply� The consistency of the identi�able
regression parameter estimator regardless of the 
true� association structure using
this model is a well known result� already shown by Gourieroux� Montfort and
Trognon �����a	 or Robinson �����	�

As another interesting special case� consider the random e�ects binary probit
model� leading to a covariance matrix � having identical o��diagonal elements�
To see that this model is a special case of the general model ��	� let L � ������
where � is the diagonal matrix of eigenvalues of the positive semide�nite matrix
A � �T�

�
T�

�
�� �T be a �T ��	 vector with all elements equal to unity� and � be an

orthogonal matrix whose columns are the corresponding standardized eigenvec�
tors� Since for A � �T�

�
T�

�
� there is only one eigenvalue greater than zero� which

is 
 � T���� and the corresponding standardized eigenvector is T�����T � we have
L � ����T �T��T���	� where �T��T��� is a �T � �T � �		 matrix whose elements
are all equal to zero� and L�n � ���T�n�� De�ning  �n � �n� we may write

yn � ��h�Xn� � ���T  �n� b 	n		�  �n � N��� �	� 	n � N��� IT 	� ��	
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The expectation EL�n�g�Xn� � L�n� yn		 then has to be taken with respect to a
singular density �see Appendix	 and the log likelihood function ��	 reduces to the
log likelihood function for the estimation of the random e�ects model ��	�

lN �
X
n

ln
Z �

��
g�Xn� � ���T  �n� ��h�Xn� � L��n� 	n			
� �n	d �

�
X
n

lnE��n�g�Xn� � ���T  �n� ��h�Xn� � L��n� 	n				

�
X
n

lnEL��n�g�Xn� �ML��n� yn		�

where � � ��b
�� is identi�able up to sign� Again� the estimator �� is consistent for

the identi�able regression parameter� regardless of the 
true� covariance matrix
��� Note that the above representation is not unique� For example using L �
�������� the symmetric square root of A � ����T�

�
T � would lead to an equivalent

random e�ects model�
Since the regression parameter estimators of both� the independent binary

probit model and the random e�ects binary probit model are consistent� it seems
to be worthwhile to compare these estimators� henceforth called pseudo maximum
likelihood �PML	 estimators �cf� Gourieroux� Montfort and Trognon� ����a	� with
each other and with an alternative non�ML estimator with respect to e
ciency�
Therefore� in the next section the estimation models and the approaches used are
described� The question of relative e
ciency of the di�erent estimators in �nite
samples will be addressed in section � via a Monte Carlo experiment�

� Estimation of the binary probit model

��� Maximum Likelihood

The log likelihood function of the independent binary probit model is

lN �
NX
n��

TX
t��

ln!��nt	�

where !��	 denotes the standard normal cumulative distribution function� �nt �
��ynt � �	x�nt�� � � ���� ��� and �� is a regression parameter vector which is not
identi�able� Only the parameter � � � is identi�ed in this model� The asymp�
totic covariance matrix of �� is estimated using the robust estimator dVar���	 �bA�� bB bA��

� where bA ist the matrix of second derivatives evaluated at �� and bB is
the matrix of the sum over n � �� � � � � N outer products of �rst derivatives of
individual log likelihoods evaluated at ��� The estimator �� will be denoted as
PMLI estimator�

The log likelihood function of the random e�ects binary probit model is

lN �
NX
n��

ln
Z �

��

TY
t��

!��nt	
� �n	 d �n�
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where �nt � ��ynt � �	�x�nt�A �  �n�A	� �A � ���	 ��� �A � ���	 �� and �� and ��
are not identi�able parameters� Only the parameter �A � ���A �A	

� is identi�ed�
This log�likelihood function and their derivatives can approximately be calcu�

lated using Gauss�Hermite quadrature �Bock and Lieberman� ����� Butler and
Mo
t� ����	� Let  �n �

p
�m and therefore d �n �

p
� dm� we have

lN ��A	 � lnLN ��A	 	 �N
�
ln� �

NX
n��

ln
KX
k��

exp

�
TX
t��

ln!��nt�mk		

�
wk�

where K is the number of evaluation points mk �k � �� � � � � K	� wk is the weight
given to the kth evaluation point and �nt�mk	 � ��ynt � �	�x�nt�A �

p
�mk�A	 is

evaluated at the kth point� Evaluation points and corresponding weights can be
found in Stroud and Secrest �����	�

For the estimates of the di�erent models to be comparable� we compute
�� � ��� �	� � ��� ���A	

������A for the estimates of the random e�ects binary probit
model� The estimated covariance matrix calculated using again the robust co�
variance matrix estimator has to be transformed correspondingly� Provided that
enough evaluation points are used �see e�g� Butler� ����	 this estimator� hence�
forth denoted as PMLE estimator� is consistent and asymptotically normal� To
avoid the bias in the parameter and variance estimates caused by the use of too
few evaluation points �see e�g� Guilkey and Murphy� ����� Spiess and Hamerle�
����	� we calculated the estimates over all s replications at a time� successively
increasing the number of evalution points by one until the results remained stable�

To compute the PML estimate in both models� the Newton�Raphson method
was used� Furthermore� a line search method for global convergence �Dennis and
Schnabel� ����	 was added for the estimation of the the random e�ects binary
probit model�

��� GEE approach

The generalized estimation equations �Liang and Zeger� ����	 for the estima�
tion of the regression parameter � � � � ���� �� using the binary probit model
considered above are

NX
n��

X �
nDn"

��
n �yn � !�Xn�		 � �

where Dn � diag�
�x�n��	� � � � � 
�x
�
nT �		 is a diagonal matrix and !�Xn�	 �

�!�x�n��	� � � � �!�x
�
nT �		

� is a �T � �	 vector� Furthermore� "n � A���
n R��	A���

n

and An � diag�Var�yn�	� � � � �Var�ynT 		 where Var�ynt	 � !�x�nt�	�� � !�x�nt�		�
R��	 is a 
working correlation matrix� whose structure re#ects the assumed cor�
relation structure in the observable response variables and � is a vector that fully
characterizes this structure� If R��	 is the 
true� correlation matrix and � � ���

�



the 
true� value� then "n will be equal to the 
true� correlation matrix of the
observable response variables�

The estimator ��� denoted as GEE estimator� is consistent and asymptotically
normally distributed �Liang and Zeger� ����	� The asymptotic covariance matrix

can consistently be estimated by N�� bG��cW bG��
� where

bG � �N��
NX
n��

�
X �

nDn"
��
n DnXn

�

�	
� ��	�

�

cW � N��
NX
n��

�
X �

nDn"
��
n
dCOV�yn	"

��
n DnXn

�

�	
� ��	�

and

dCOV�yn	 � �yn � !�Xn
��		�yn � !�Xn

��		��

The above properties do not depend on the assumed correlation structure� that
is� they hold � beside some regularity conditions � as long as �� is consistent
�Liang and Zeger� ����	�

Following Liang and Zeger �����	 �� � �� is iteratively computed switching
between a modi�ed Fisher scoring for �� and the estimation of ��� Given current
estimates ��j and ��j �j � �� �� � � �	� ��j
� is calculated by

��j
� � ��j � �
NX
n��

X �
nDn"

��
n DnXn	

��
NX
n��

X �
nDn"

��
n �yn � !�Xn�		�

Unlike e�g� Liang and Zeger �����	 we estimate �� starting with the Pearson
correlation matrix of the residuals �y�!�X ��		� denoted as bR� which is � under
the usual assumptions � guaranteed to be positive de�nite�

The o��diagonal elements of the matrix bR are then Z�transformed �Fisher�
����	 to get unbiased estimates ��� If all o��digonal elements are restricted to
the same value �i�e� � is ��� �	� � � j�j � � and � 
� ����T � �		� the resulting
correlation structure is an equicorrelation structure in the observable response
variables� In this case �� is calculated as �� � �exp��$z	� �	��exp��$z	��	 where $z
is the arithmetic mean of the Z�transformed o��diagonal elements of the matrixbR� The corresponding GEE estimator will be denoted GEEE estimator�

Another speci�cation leads to an estimator which will be denoted GEEAE

estimator� For the calculation of this estimator we estimate �� � ���� ��	�� the
parameter of a mixed AR��	� and equicorrelation structure in the observable
response variables� where the correlation between the observations at t and t� is
rt�t� � �� � �� � ��	�jt�t

�j� j�j � � and �� � �� In this case the estimator �� is
iteratively calculated using the Newton�Raphson method �for details see Spiess�
����	�
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� Simulation Study� Description

The main program and the modules for simulation and estimation were written
in SAS%IML �SAS Institute Inc�� ����	� Random numbers were generated using
the random number generators RANNOR� RANUNI and RANGAM provided by
the SAS system �SAS Institute Inc�� ����	�

In generating the datasets the following factors were varied� ��	 the sample
size� i�e� the number of blocks �N � ��� N � ���� N � ��� and N � ����	�
��	 the number of observations within each block �T � � and T � ��	� ��	 the
structure of the correlation matrix of the error terms in the latent model� i�e�
�i	 AR��	 with correlations �t�t� � �jt�t

�j �j�j � �	 and � � �� and � � ��� �ii	
a 
free� correlation structure with correlations varying between ��� and ��� and
�iii	 a Toeplitz correlation matrix with correlations ranging from �� to ��� ��	
the kind of covariates �discrete� i�e� dichotomous and trichotomous variates� and
continuous variates from an uniform as well as two skewed distributions	 and ��	
the values of the parameter vector �� Other factors such as the starting value of
the random number generators or number of replications were also variied� but
had only marginal e�ects on the results�

The values of the error term �n were independently drawn from the standard
normal distribution using RANNOR� The di�erent correlation structures were
simulated multiplying these errors by the Cholesky root of the corresponding
correlation matrix� As 
free� correlation matrix we used

Corr��n	 �

�BBBBBB�
� ��� ��� ��� ���
��� � ��� ��� ���
��� ��� � ��� ���
��� ��� ��� �� ���
��� ��� ��� ��� �

�CCCCCCA
and as Toeplitz correlation matrix a matrix with entries �t�t�� � ��� �t�t�� � ���
�t�t�� � �� and �t�t�� � ���

The dichotomous� trichotomous and the uniformly distributed variates were
generated using the uniformly distributed random number generator RANUNI�
The uniformly distributed covariate� weighted by the parameter �u� has expected
value zero and will be denoted as xu� The dichotomous covariates were generated
to have value � with probability �� ��� or ��	 and will be denoted as xd� � xd� and
xd� � respectively� with corresponding parameters �d� � �d� and �d� � The trichoto�
mous variate �xt	 was generated to have value �� with probability �� and � with
probability ��� The parameter which weights this variate will be denoted as �t�
As one of the continuous variates from a skewed distribution we generated an
exponentially distributed variate �xe	� weighted by the parameter �e� using the
RANGAM function with shape parameter � � � and scale parameter � � ���
We also generated a variate from a gamma distribution with shape parameter
� � �� and scale parameter � � �� This variate was then standardized �xs	�
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The corresponding regression parameter will be denoted as �s� The parameter
weighting the constant term will be denoted as �c�

As starting values for the calculation of the GEE estimates the 
true� param�
eter values of � were used� Calculating the GEEAE estimates� a starting value
for � is needed within each iteration step for the estimation of �� This value was
calculated using arithmetic means of the Z�transformed o��diagonal elements of
the matrix bR� Since the log likelihood function of the random e�ects probit model
is not globally concave �see Spiess and Hamerle� ����	� the ML estimates of the
independent probit model were used as starting values for the regression param�
eter �� As starting value for � we used values which led to converging sequences
of estimates f��jg� where j � �� �� � � � denotes the jth iteration� However� starting
with di�erent values we found for some randomly choosen datasets all sequences
f��jg to converge � if they converged � to the same values using the ML as well
as the GEE approach�

The iterations stopped in all cases if all elements of the vector of �rst deriva�
tives or estimation equations and all elements of the vector of increments of the
last iteration were smaller in absolute value than ���
�

� Simulation Study� Results

To compare the estimation results� the mean �m	 and the standard deviation �sd	
of the estimates over s replications or data generations� the root mean squared

error� de�ned as rmse �
�
s��

Ps
j�����lj � �l�	

�
����

� where ��lj is the lth element
of �� in the jth simulated sample� were calculated� For the PML estimators we
calculated the 
robust� estimated standard deviation of the estimates� de�ned ascsd �

�
s��

Ps
j��

dVar���lj	����� where dVar���ln	 is the diagonal entry of the 
robust�

covariance matrix estimate as described e�g� in Li and Duan �����	� For the GEE

estimates csd denotes the corresponding estimated standard deviation calculated
as described above for the PML estimates and using the diagonal entries of the
estimated covariance matrices as described in Section ���� To compare the four
di�erent estimators ��� datasets were generated according to every model used
to calculate the di�erent estimates� However� the di�erent estimates did not
converge in all datasets�

The distributions of the estimates ��l were graphically displayed using the
procedure CHART and a test of normality �Shapiro�Wilk test	 was performed
using the procedure UNIVARIATE �SAS Institute Inc�� ����b	� For the latter
test the �& level of signi�cance will be used throughout�

The number of evaluation points for the PMLE estimates was de�ned to be
su
cient if the measures m� sd and csd did not change in the �rst four non�zero
digits� Using this strategy up to �� evaluation points were needed�

Because of the limited space� not all simulation results can be presented�
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However� the results reported in this section are consistent with the �ndings
using di�erent models�

Another point that should be mentioned is the use of the GEEAE estimator
when in fact the correlation structure of the latent error term is AR��	� This is
because the correlation structure in the observable response variables which is no
more an AR��	 structure especially for high values of � is better modelled by the
GEEAE estimator than by a GEE estimator modelling an AR��	 structure in the
correlation matrix of the observable response variables �Spiess� ����	�

Although the results of Section � are independent of the type of covariates
included into the model� it is well known that the properties of estimators are
a�ected by the type of covariates used �e�g� Li and Duan� ����� Mancl and Leroux�
����� McDonald� ����� Spiess and Hamerle� ����	� Therefore� in a �rst step
datasets according to six models with only one of the following covariates at a
time were generated� xd�� xd�� xd� and xt� The covariates were weighted by the

true� slope parameter value �� � ��� Two di�erent sample sizes �N � �� and
N � ����	� 
true� value ��c � ��� T � � and an AR��	 structure with 
true� value
�� � �� were used� The estimation results for the slope parameter in terms of the
mean� root mean squared error� the standard deviation and estimated standard
deviation can be found in Table ��

As can be seen from the results in Table �� there are no systematic or sig�
ni�cant deviations of the means from the 
true� value� As expected� the root
mean squared errors are larger in the small sample cases than in the large sample
cases� Although the di�erences between root mean squared errors and standard
deviations are larger for N � �� than for N � ����� root mean squared errors
are essentially standard deviations for all four estimators� A comparison of rmse
and csd reveals that the root mean squared errors are generally underestimated if
N � �� for all models with but one exception� whereas they are slightly overes�
timated if N � �����

In terms of smallest values rmse� sd and csd� the most ine
cient estimator is the
PMLI estimator� On the other hand� the di�erences between the PMLE� GEEE

and GEEAE estimators are not large� However� for almost all models considered
in this �rst step� the PMLE� and the GEEAE estimator are both slightly more
e
cient than the GEEE estimator in terms of smaller rmse� sd and csd� The
di�erences in rmse� sd and csd between the PMLE estimator and the GEEAE

estimator depend upon sample size and the covariate included into the model�
For N � �� the GEEAE estimator is slightly more e
cient in three of the four
models than the PMLE estimator� On the other hand� for N � ���� the relative
e
ciency of the two estimators clearly depend upon the type of covariate used�
Generally� the PMLE estimator is very e
cient relative to the GEEAE estimator
although using the latter it is possible to model the structure of dependence more
properly�

The distributions of the estimates �� deviated only in three cases signi�cantly
from the normal distribution� i�e� using the PMLI and the GEEAE estimator
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Table �� Mean �m	� root mean squared error �rmse	� standard deviation �sd	 and

estimated standard deviation �csd	 of �� for four models with covariate xd�� xd��
xd� or xt� T � �� ��c � ��� �� � �� and an AR��� correlation structure with
�� � �� over s � ��� replications

Model with covariate

xd� xd� xd� xt

m�rmse� N � ��

PMLI �����
 ������� ������ ���
��� ������ ������� ������ �������

PMLE ������ ������� ������ ����
�� ������ ������� ������ ����
��

GEEE ������ ������� ������ ������� ������ ������� ������ �������

GEEAE ������ ������� ������ ������� ������ �����
� ������ �������

sd�csd�
PMLI ����� ���
��� ��
�� ���
�
� ����
 ������� ����� �������

PMLE ����� ������� ���
� ������� ����� ������� ����� �������

GEEE ����� ������� ����� ����
�� ����� ������� ����� �������

GEEAE ����� ������� ����� ������� ����
 ������� ����� �������

m�rmse� N � ����

PMLI ������ ������� ������ ������� ������ ������� ������ �������

PMLE ���


 ������� ���


 ������� ���


 ������� ������ �������

GEEE ������ �����
� ������ ������� ������ ������� ������ �������

GEEAE ������ ������� ������ �����
� ������ ������� ������ �����
�

sd�csd�
PMLI ����� ������� ����� ������� ����� �����
� ����� �������

PMLE ����� ������� ����� �����
� ����� ������� ����� ����
��

GEEE ����� ����
�� ����� ������� ����� ������� ����� �������

GEEAE ����� �����
� ����
 ������� ����� ������� ����
 ����

�

to estimate the model with covariate xd� and N � �� and using the GEEAE

estimator to estimate the model with covariate xt and N � ��� In all these cases�
the distributions are negatively skewed�

If the PMLE estimator is used� one also gets an estimate of ��� For N � ���
the mean of the estimates �� for the di�erent models ranged from m���	 � �����
to m���	 � ������ For N � ���� they ranged from m���	 � ����� to m���	 �
������ Comparing these values with the square root of the mean of the 
true�
correlations� it seems as if �� is an estimator for something like the square root
of the average 
true� correlation� which is ������ The distributions of �� are all
normal for N � ����� For N � �� all the distributions are negatively skewed�
However� this is not surprising because of the large variances of the estimates on
one hand and the restriction �� � � on the other�

We also considered two more models with the same correlation structure but
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Table �� Mean �m	� root mean squared error �rmse	� standard deviation �sd	

and estimated standard deviation �csd	 of ��s for a model with T � �� ��c � ����
��d� � ��� ��s � �� and ��t � ��� and an AR��� correlation structure with �� � ��

m�rmse� N � �� N � ��� N � ��� N � ����

PMLI ������ ���
��� ������ ������� ������ ������� ������ �������

PMLE ������ �������a ������ �����
� ������ ������� ������ �������

GEEE �����
 �������b ������ ������� ������ ������� ������ �������

GEEAE ������ �������b ������ ������� ������ �����
� ������ �������

sd�csd�
PMLI ���
� ������� ����� ����
�� ����� �����
� ����� �������

PMLE ����� ����

�a ����� ������� ����� ����
�� ����� �������

GEEE ����� �������b ����� ������� ����� ������� ����� �������

GEEAE ����� �������b ����� �����
� ����
 ������� ����� �������

Note� If not otherwise stated� all results are based upon s � �		 replications�
aResults are based upon s � 
�� replications�
bResults are based upon s � 
�� replications�

covariates xu or xs� Furthermore� instead of an AR��	 correlation structure a
correlation structure according to the Toeplitz correlation matrix described in
Section � was simulated for all the above models� However� the basic results
remained unchanged�

In a second step four di�erent sample sizes �N � ��� N � ���� N � ���
and N � ����	 were used to compare the di�erent estimators for a model with
covariates xd�� xs and xt� 
true� regression parameter values ��c � ���� ��d� � ���
��s � ��� ��t � ���� T � � and an AR��	 correlation structure with �� � ��� The
estimation results for one of the regression parameters ���s	 in terms of the above
described measures can be found in Table ��

The results reported in Table � are generally based upon s � ��� replications�
However� in the small sample case only the results for the PMLI estimator are
based upon s � ��� replications� For N � ��� the PMLE estimator converged
only in s � ���� the GEEE and the GEEAE estimators only in s � ��� cases�

Again� the di�erences between the mean of the estimates over simulations and
the 
true� value are small� As above� the PMLI estimator is the most ine
cient
estimator in terms of rmse� sd and csd� Although the di�erences in rmse� sd andcsd between the PMLE� the GEEE and the GEEAE estimator are small� the PMLE

estimator tends to be the most e
cient estimator followed by the GEEAE and by
the GEEE estimator�

For large sample sizes the di�erences between rmse and sd are negligible and
the di�erences between rmse and csd are small� These di�erences become larger
if the sample sizes are reduced� For small sample sizes there is a tendency to
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underestimate the rmse�
With but few exceptions� the distributions of the estimates are not signi��

cantly di�erent from the normal distribution� Furthermore� there is no system�
atic pattern in the deviations from normality� If the estimation results for the
other regression parameters are consiederd �not shown	� the general results re�
main unchanged�

The distributions of the estimates �� are signi�cantly di�erent from normality�
i�e� negatively skewed� only if N � ��� which again ist not surprising because of
the large variances and the restriction �� � �� The means of the estimates ��
ranged from m���	 � ����� �N � ����	 to m���	 � ����� �N � ��	�

The same model was also estimated using the Toeplitz correlation structure�
Again� the basic results remain unchanged� Using this correlation matrix� the
square root of the mean of the 
true� correlations is ������ The means of the
estimates �� for that model ranged from ����� �N � ���	 to ����� �N � ��	�

From these results it may be concluded that the PMLE� GEEE and GEEAE

estimators are more e
cient than the PMLI estimator and that the PMLE esti�
mator is very e
cient relative to the GEEAE estimator� which in turn tends to be
more e
cient than the GEEE estimator for the regression parameters and in the
models considered� Furthermore� in general there are no systematic deviations of
the distributions of the estimates from normality� Only the distributions of the
estimates �� tend to be negatively skewed for small samples�

To see whether the results are still the same if a di�erent correlation structure
and di�erent covariates are used� a model with T � �� covariates xd�� xt� xd��
�� � ���� �� � � ���	� but with a 
free� correlation structure was simulated using
N � �� and N � ���� �see Table �	�

The question whether the general results found above are also valid if the 
true�
correlation is rather low� a model with T � �� xd�� xt� xd�� �� � ���� �� � � ���	��
an AR��	 structure with �� � ��� N � �� and N � ���� was simulated� Since
�� using the PMLE estimator converged for N � �� in �� datasets to zero� the
results in Table � for the PMLE estimator are based on s � ��� simulated datasets
only� However� if the results based upon all s � ��� replications are used� the
general results concerning the regression parameters are the same� Only the
results concerning the estimation of �� change �m���	 � ����� for s � ���	�

Table � contains the results of the estimation of a model with more extreme

true� values of the regression parameters� i�e� �� � ���� ��� �	�� xd�� xu� T � ���
an AR��	 structure with �� � ��� N � �� and N � �����

From the results in Table � to Table � it may be concluded that the PMLI

estimator generally is the most ine
cient estimator in terms of largest values
rmse� sd and csd� The di�erences between the PMLI estimator on one hand and
the PMLE� GEEE and GEEAE estimators on the other is larger for higher 
true�
correlations �Table � and Table �	 and smaller for lower 
true� correlations �Table
�	�

The di�erences between the PMLE� GEEE and GEEAE estimator are not as
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Table �� Mean �m	� root mean squared error �rmse	� standard deviation �sd	

and estimated standard deviation �csd	 for a model with N � �� and N � �����
T � �� ��c � ���� ��d� � ��� ��t � �� and ��d� � ��� and a �free� correlation
structure �see text�

m

rmse N � �� N � ����

sd PMLI PMLE GEEE GEEAE PMLI PMLE GEEE GEEAEcsd
���
�� ���
�
a ���
�
b ������c ���

� ���
�� ������ ������

��
�� ����� ��
�
 ��
�
 ����� ����� ���
� ���
���c
��
�� ����� ��
�
 ��
�
 ����� ����� ���
� ���



����� ����
 ����� ����� ���
� ����� ����� �����

����� ����a ����
b �����c ��
�� ��
�� ��
�� ��
��

����� ��
�� ����� ����� ����� ����� ����� �������d�
����� ���
� ��
�� ��
�� ����� ����� ����� �����
���

 ����
 ����� ����� ����� ���
� ����� �����

������ ������a �����
b ������c ������ ��

�� ������ ������

����
 ����� ����� ����� ����� ����� ����� �������t
����
 ����� ����
 ����
 ����� ����
 ����� �����
���
� ����� ���

 ���
� ����� ����� ����� �����

����� �����a �����b �����c ����� ���
� ����� �����

����� ����� ����� ����� ����� ����� ����� �������d�
���
� ����� ����� ����� ����� ����� ����� �����

����� ����� ����
 ����� ����� ����� ����� �����

�����a ���
�

�� ��

��
����
 �����

���
� �����

Note� If not otherwise stated� all results are based upon s � �		 replications�
aResults are based upon s � 
�� replications�
bResults are based upon s � 
�� replications�
cResults are based upon s � 
�� replications�

large� If the 
free� correlation structure is used� the PMLE estimator is the most
e
cient estimator in terms of these statistics� followed by the GEE estimators �see
Table �	� This result shows that the PMLE estimator may even be more e
cient
than a GEE estimator if the correlation structure is not modelled correctly by the
PMLE as well as the GEE estimator� For lower 
true� correlations �AR��	 with
�� � ��	� the di�erences between the PMLE� GEEE and the GEEAE estimator are
small �see Table �	� The results of the estimation of a model with T � ��� xd�� xu�
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Table �� Mean �m	� root mean squared error �rmse	� standard deviation �sd	 and

estimated standard deviation �csd	 for a model with N � �� and N � ����� T � ��
��c � ���� ��d� � ��� ��t � �� and ��d� � ��� and an AR��� structure with �� � ��

m

rmse N � �� N � ����

sd PMLI PMLE GEEE GEEAE PMLI PMLE GEEE GEEAEcsd
����� ������a ������ ������ ���
�� ���
�� ���
�� ���
��
����� ����� ����� ����� ����� ����� ����� �������c
����� ����� ����� ����� ����� ����� ����� �����

����� ����� ����� ����
 ����� ����� ����� �����

����� �����a ���
� ���
� ��
�� ��
�� ��
�� ��
��

����� ���
� ���
� ���
� ����� ����� ����� �������d�
����
 ����
 ����� ����� ����� ����� ����� �����

���
� ����� ����� ����� ����� ����� ����� �����

������ �����
a ������ ������ ��


� ��


� ��


� ��


�

���
� ����� ����
 ����� ����� ����� ����� �������t
����� ����� ����� ����� ����� ����� ����� �����

����� ����� ����� ����� ����
 ����� ����� �����

����� �����a ����
 ����
 ���

 ���

 ���

 ���
�

����� ����
 ����� ����� ����� ����
 ����� �������d�
����
 ����� ����� ����� ����� ����
 ����� �����

����� ���
� ����� ����� ����� ����� ����� �����

�����a ���
�

�� ��

��
����� �����

����� �����

Note� If not otherwise stated� all results are based upon s � �		 replications�
aResults are based upon s � 
�� replications�

�� � ���� ��� �	�� N � �� and N � ���� show that� again� for an AR��	 structure
and high 
true� correlations the di�erences between the PMLE� the GEEE and
the GEEAE estimator concerning the e
ciency are small� As above� however�
the PMLE and the GEEAE estimators tend to be more e
cient than the GEEE

estimator �see Table �	�

Following the general results found in Table � and Table �� again� there are
no systematic and signi�cant deviations of the distributions of the regression
parameter estimates from normality� Only the distributions of the estimates ��
are negatively skewed for N � �� in all cases�

If the sample sizes are large� root mean squared errors are essentially standard
deviations and the di�erences between rmse and csd are rather small� For N � ���
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Table �� Mean �m	� root mean squared error �rmse	� standard deviation �sd	

and estimated standard deviation �csd	 for a model with N � �� and N � �����
T � ��� ��c � ���� ��d� � ��� and ��u � � and an AR��� structure with � � ��
over s � ��� replications

m

rmse N � �� N � ����

sd PMLI PMLE GEEE GEEAE PMLI PMLE GEEE GEEAEcsd
������ ������ ������ ������ ������ ������ ������ ������

����� ����
 ����� ����� ����� ���
� ����� �������c
����� ����
 ����� ����� ����� ���
� ����� �����

����� ����� ����
 ����� ����� ���
� ����� �����

����� ����� ����� ����� ����� ����� ����� �����

����� ����� ���

 ����� ����� ����� ���
� �������d�
����� ����� ����� ����� ����� ����� ���
� �����

����� ����� ����� ����� ����
 ����� ����� �����

����� ����� ����� ����� ����� ��

� ����� �����

���
� ����� ���
� ����� ���
� ����� ����� �������u
����� ����� ����� ���
� ���
� ����� ����� �����

����� ����� ����� ����� ����� ����
 ����� �����

��
�� ��

�

�� ��

��
����� �����
����� �����

the small sample cases� the root mean squared errors are generally underestimated
with but a few exceptions �see Table �	 and the di�erences between root mean
squared errors and standard deviations are larger�

The mean of the 
true� correlations using the 
free� correlation matrix is ������
using T � � and an AR��	 structure with �� � �� the mean is ����� and using
T � �� and an AR��	 structure with �� � �� the mean is ������ Comparing the
means of the estimates �� with these values� the results again suggest that �� is an
estimator of the averaged 
true� correlations�

� Discussion

In this paper it is shown that the ML regression parameter estimator using a
multivariate probit model remains consistent and normally distributed even if
the 
true� correlation structure is misspeci�ed� This result holds regardless of the
kind of covariates included in the model� As special but often used estimators in

��



applications� the ML estimator of the random e�ects panel probit model as well
as the ML estimator of the probit model assuming independent responses are
considered� Both estimators are consistent even if the responses are correlated or
the correlation structure of the responses is misspeci�ed�

A Monte Carlo experiment designed to compare the two ML regression param�
eter estimators �denoted as PMLI and PMLE estimator� respectively	 and two
GEE estimators �GEEE and GEEAE estimator� respectively	 showed the PMLI

estimator to be the most ine
cient estimator for high 
true� correlations� If the

true� correlations are low� there is not much di�erence between the four esti�
mators in terms of root mean squared errors� standard deviations and estimated
standard deviations� In applications� therefore� if possible dependencies between
the responses can assumed to be low� the estimator of the independent probit
model may be used without loss of too much e
cieny�

If no reasonable assumption concerning the 
true� correlation structure can be
made and the dependencies must assumed to be stronger� then the estimator of
the random e�ects probit model may be used� The PMLE estimator was found
to be at least as e
cient as the GEEE estimator in the models used and as very
e
cient relative to the GEEAE estimator which allowed the modelling of the

true� correlation structure more properly in most of the models considered�

For small samples� generally� the root mean squared errors were found to
be underestimated by the estimated standard deviations� However� with larger
sample sizes there was no systematic over� or underestimation of the root mean
squared errors�

Although no systematic deviations of the distributions of the regression pa�
rameter estimates was found� in small samples the distributions of �� using the
PMLE estimator were negatively skewed� This is not surprising� since the esti�
mates �� are restricted to be below one and the variance of the estimates is large
in small samples� The above restriction� however� was necessary to make the dif�
ferent estimators comparable� In practice the restriction �� � � could be replaced
by the restriction ��
 � � �see Section ���	 to avoid a skewed distribution of the
estimator� A look at the means of the estimates �� using the PMLE estimator
suggest that the estimator �� is an estimator of something like the averaged 
true�
correlations�

As the results show that the PMLE estimator is very e
cient relative to the
GEE estimators in applications� the PMLE estimator implemented in some sta�
tistical software packages may be calculated if no reasonable assumption about
the 
true� correlation can be made and the main interest lies on the estimation
of regression parameters� Furthermore� a possible superiority of alternative es�
timators of multivariate probit models concerning their e
ciency relative to the
PMLI and PMLE estimators should be checked� e�g� in �nite samples by running
Monte Carlo experiments�

��



Appendix

Lemma � Let � be a positive de�nite covariance matrix� A be a positive �semi	�
de�nite matrix and I the identity matrix
 Then there always exists a b� � �� such
that

� � A� b� I� �A��	

Proof� Since A is symmetric� there always exists an orthogonal matrix P such
that P �AP � D� where D is a diagonal matrix with diagonal elements being the
eigenvalues of A� Multiplying �A��	 with P � and P leads to

P ��P � D � b� I�

Since P is a non�singular matrix both matrices� � and D � b� I� are similar and
have the same set of eigenvalues� The eigenvalues of D � b� I are dii � b�� where
dii are the diagonal entries of D� For A positive semi�de�nite there is at least one
dii � �� Therefore� b� � �� If A is positive de�nite� then dii � � �i� However� we
may always choose a b� � � and a matrix A such that A has positive eigenvalues�

Lemma � Let A � LL� be a symmetric �T � T 	 matrix of rank K �K � T 	
and �n � N��� IT 	
 Then the expectation EL�n�g�Xn� � L�n� yn		 reduces to an
expectation with respect to a K	variate normal density


Proof� De�ne un � L�n and write � � �B C	� where B is a �T � K	 matrix
of orthonormal column vectors belonging to the linear space spanned by A and
C is a �T � �T �K		 matrix of rank T � K� satisfying the conditions C �A � �
and C �C � I�T�K�� It can then be shown �see Rao� ����� pp� ���'���	� that the
distribution of un is speci�ed by

���	�K��

�
�� � � � � 
K	��� exp
	
��

�
u�nA

�un



� �A��	

and C �un � � with probability �� where 
�� � � � � 
K is the product of the nonzero
eigenvalues of A and A� is a generalized inverse of A� Thus� un lies on the
hyperplane C �un � � and the result follows�

Remark� For a random e�ects binary probit model let un � L�n� where L �
����T �T��T���	� B � T�����T and C as de�ned above� De�ne zn � �zn� z

�
n�	

��
where zn� � B�un is a scalar and zn� � C �un is a �T � �	 column vector� Then
zn� � N��� T���	 with density ���T���	

���� expf��� u�nA�ung� where u�nA
�un �

z�n��T�
�
�	
��� Now� let  �n � T�������� zn� � then f� �n	 � ���	���� expf���  ��ng and

 �n � T�������� B�un � �n�� Therefore�

EL�n�g�Xn� � L�n� yn		 � E��n�g�Xn� � ���T  �n� yn		�
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