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Summary: Dynamic generalized linear mixed models for longitudinal data combine the generalized
linear mixed model and the dynamic generalized linear model dealing with the case that both
unit— and time-specific parameters are allowed. We base statistical inference on posterior mode
estimation thus avoiding numerical integrations in high dimensions or Monte Carlo simulations
which are necessary for posterior mean estimation in a fully Bayesian analysis. This results in a
Fisher scoring algorithm with backfitting steps in each scoring iteration, since estimating equations
of the unobserved effects mutually contain each other effect. Algorithms for estimation of random
effects and dynamic effects can be used in each backfitting step due to the additive definition of the
model. Estimation of unknown hyperparameters is done by an EM—type algorithm where posterior
modes and curvatures resulting from the Fisher scoring algorithm are substituted for posterior

means and covariances. We apply the model to multicategorical business test data.

Keywords: backfitting algorithm; dynamic effects; EM algorithm; Fisher scoring algorithm; pos-

terior mode estimation; random effects.

1 Introduction

Longitudinal data consist of observations (yit, i) for a population of i = 1,...,n units
observed across t = 1,...,T time periods, where y;; denotes the response variate and z;; a
vector of covariates. To deal with nonnormal responses, generalized linear models (Nelder
and Wedderburn, 1972, or McCullagh and Nelder, 1989) are a well known regression tool.
Here it is assumed that the conditional mean p;; = E(yi|zi;) of the response given the
covariates is related to the linear predictor n; = X, by a response function h, i.e.,
it = h(n;it), where a denotes the vector of unknown regression parameters independent of
time ¢ and unit 4. The design matrix X;; is formed out of the covariates x;;.

To consider unobserved heterogeneity among units, that often can not be measured
completely by the observed covariates, the generalized linear mixed model (GLMM or
random effects model, see Breslow and Clayton, 1993) extends the generalized linear model

by introducing random effects ; varying independently over units.

*This work was supported by a grant from the German National Science Foundation, Sonderforschungs-
bereich 386.



Another extension of the generalized linear model is the dynamic generalized linear
model (DGLM, see Fahrmeir, 1992) dealing with the assumption, that covariate effects
may vary over time, typically following a Markovian transition model.

If we want to model time—varying effects but also take into account unobserved het-
erogeneity among the units, a combination of the GLMM and the DGLM is attractive.
For normal data such models already exist, see e.g. Hsiao (1986) or Rosenberg (1973),
whereas in the generalized setting of exponential families little research has been done up
to now. Fahrmeir, Kaufmann and Morawitz (1989) used an information matrix filter for
a model with parameters varying across time and units. Knorr-Held (1995) considered
the “dynamic generalized linear mixed model” (DGLMM) by adding the random effect
term of the GLMM to the linear predictor of the DGLM. Estimation of this model was
done by Markov Chain Monte Carlo methods. A somewhat related approach, the “gen-
eralized additive mixed model”, was proposed by Lin and Zhang (1999). Here covariate
effects were modelled by additive nonparametric functions, while additive random effects
were used to account for heterogeneity. To avoid numerical integrations double penalized
quasi—likelihood was considered to make approximate inference.

In this paper we consider an extended version of the DGLMM by additionally adding
the fixed covariate effect a to the linear predictor of Knorr-Held (1995), thus getting

nie = X+ UpBi + Ziyy,s (1)

with random effects §; and time—varying dynamic effects ;. A direct approach based on
the posterior density of the unknown parameters would involve computationally intractable
high-dimensional integrations. Bayesian techniques like the Markov Chain Monte Carlo
methods used in Knorr-Held (1995) avoid numerical integrations by taking repeated sam-
ples from the posterior distribution. However, the choice of computationally efficient sam-
pling schemes and questions about convergence of the sampling process to equilibrium are
drawbacks of these methods. Therefore we use posterior mode estimation, a conceptually
simpler approach, that may be used to check the convergence behaviour of the simulation—
based Markov Chain Monte Carlo methods. To avoid numerical integrations here we maxi-
mize the posterior density of the unknown parameters. This results in Fisher scoring steps,
where the estimating equations of each of the unknown parameters mutually contain the
other unknown parameters. We solve this problem by using the iterative backfitting or
Gauss—Seidel algorithm at each Fisher scoring step. In the derivation of the algorithm, the
results of posterior mode estimation of the GLMM and the DGLM can be applied to the
DGLMM. An overview of these models is given in Fahrmeir and Tutz (1997).

After introducing the DGLMM in Section 2, the algorithm for estimating the unknown
effects is derived in Section 3. The estimating equation of the dynamic effect «; in the
backfitting algorithm contains the inverse of a block tridiagonal matrix. In the DGLM
the generalized extended Kalman filter and smoother presented by Fahrmeir (1992) is
used for approximative posterior mode estimation of the dynamic effects, whereby the
computation of the mentioned inverse matrix is avoided. But in combination with the

backfitting algorithm in the DGLMM this method showed numerical problems leading to



singular covariance matrices. Fahrmeir and Kaufmann (1991) considered a Fisher scoring
algorithm with better approximation qualities to the posterior mode based on the so—called
LDL' factorization of the block tridiagonal matrix. Section 4 describes a modified version
of this algorithm, that shows no numerical problems in connection with backfitting. For
the above mentioned algorithms we assume that all hyperparameters of the model, i.e., the
parameters of the prior specifications of the varying effects, are known. But in practice these
hyperparameters are only known in special cases, so techniques are required to estimate
the model parameters and hyperparameters simultaneously. Section 5 illustrates such a
technique, a modification of the iterative EM algorithm of Dempster, Laird and Rubin
(1977). In Section 6 the DGLMM is applied to multicategorical business test data. A brief

summary is given in Section 7.

2 The dynamic generalized linear mixed model

Consider longitudinal data as defined in Section 1. Response y; may be univariate in
the case of count data or binomial data, or a vector y;y = (yit1,---,%in) in the case of
categorical data with & = [ 4+ 1 (unordered or ordered) categories. Here we consider the
more general case of the [-dimensional response vector.

For notational convenience, observations at time ¢ are collected in panel waves y; =
(Yipy -y uby)s o = (2}, .., 20,), and histories of responses and covariates up to time ¢
are denoted by y; = (yi,...,y}), zf = («},...,z})".

The DGLMM is defined by an observation model and a parameter model. The observa-
tion model assumes that the distribution of y;; belongs to a simple exponential family with
density p(yi|y; 1, 2f, o, Bi,v) and mean py = E(yi|ly; 1, x7, o, Bi,v) = h(nit), defined in
dependence of the covariates with response function h and linear predictor (1). The design
matrices X, Uy and Z;; are built from the covariates z; and have dimensions (s x [),
(p x 1) and (g x ), respectively. Z; may contain past observations (y;_;,z;_;). As pointed
out in Section 1, we include the following unknown parameters: the s—dimensional fixed
effect «, the p—dimensional random effect f;, varying independently over the units ¢, and
the g—dimensional dynamic parameter v, varying over time £.

The parameter model specifies prior information for the unknown parameters. As usual
in the GLMM (see, e.g., Stiratelli, Laird and Ware, 1984, or Breslow and Clayton, 1993),
the unit—specific parameters [3; are supposed to be independent and identical normally
distributed with mean zero and covariance matrix H, i.e., §; ~ N(0,H) fori = 1,...,n.
Since the estimating procedure in Section 3 is based on the joint posterior density of the
unknown parameters, a flat prior density with covariance matrix I' — oo is assigned to the
parameter . The composed parameter vector b = (', ') with 8 = (81, ...,0},) therefore
has the limiting prior density p(b; H,T") o« p(8; H) (as T~ — 0).

As in Fahrmeir (1992), with 79 = ag + vo the sequence of dynamic effects -y, is defined

by the linear Markovian transition equations

Ye=Tyye—1 +v, t=1,2,.... (2)



The initial value ag and transition matrices 77,75, ... are assumed to be known, the error
terms v; are supposed to be normally distributed with mean zero and covariance matrices
Q. Furthermore, the v; are independent of past error terms v;_1,...,vo, of past response
values y; | and of covariates zf. Histories of dynamic effects up to time ¢ are again denoted
by v = (v, 71 ---,7) s t =0,1,...,T, and we define v = .. Independence is assumed
between time—varying parameters v and the composed parameter b.

For a complete model specification, the following additional independence assumptions
are required: conditional on 7y, b and y;_;, both the current observation y; is independent
of v;_;, and the individual responses y;; within y; are independent; conditional on y; ; and
z;_, the covariates z; are independent of v;_; and b.

As a combination of the GLMM and the DGLM, model (1) comprises two further
submodels, the first one consisting only of a and 7, the other of 5; and 7;. The estimating
procedures of these submodels result in a straightforward way from the procedure for model

(1) in Sections 3 and 5 and therefore are omitted.

3 Posterior mode estimation

In this section we propose an algorithm for estimating the unknown parameters ¢ =
(o, 5',79") of the DGLMM. In the derivation of the algorithm we refer to results of posterior
mode estimation in the GLMM and the DGLM, see Chapters 7 and 8 in Fahrmeir and Tutz
(1997). All hyperparameters of the model, i.e., the covariance matrix H of (;, the initial
values ag, Qo and the covariance matrices @Q; of transition equations (2), are assumed to
be known. This assumption is dropped in Section 5, where we introduce an algorithm for
the simultaneous estimation of parameters and hyperparameters.

Estimation of the parameters ¢ is based on the posterior density p(y|y}, z7) given the
observations (y7, 7). A fully Bayesian analysis would require numerical integration in high
dimensions. To avoid this, we estimate parameters by maximizing this density. Repeated
application of Bayes’ law and using the independence assumptions of Section 2 yields

T n

T
plelyr, zp) o< [T TT p(witlvi—i, 25,76, 0) T] p(velve—1)p(v0)p(B).
t=1:=1 t=1

Taking logarithms and neglecting constant terms, we obtain the penalized log-likelihood

PL(p) = () + a(ep) (3)

where I(0) = 3%, ST 1i1(p) + lo(¢p) is the sum of the individual log-likelihoods I () =
Inp(yit|ly;_q, 7, e, b) and the log-prior lp(¢) = —%(’)’0 —ag),Qal(’)’g —ayp) of 9. The penalty
term a(p) = —14'P~ — 14'LB includes prior information on the unknown varying effects.

The block diagonal matrix L is given by L = diag(H !,..., H '), while the penalty matrix

Py Poy 0
Pr_ir
0 PYI‘—I,T Prr
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is block tridiagonal with blocks Py = T/Q; ‘T, Pr_1y = —T}Q; ' for t = 1,...,T, Py =
Q'+ T/ Q Ty for t =1,..., T — 1 and Ppr = Q7' (see Fahrmeir and Tutz, 1997,
Section 8.1.2).

To derive estimates of ¢, we need the score function s(yp) = (s(a),s(B8),s(v)") =
OPL(p)/0p and the expected information matrix F(p) = E(—=0?PL(p)/0pd¢').

As for the random effects model in Fahrmeir and Tutz (1997), Section 7.3.3, the first
two components of the score function (with s(8) = OPL(¢)/08 = (s(B1),...,s(Bn)") )

result in

n T
s(a) = OPL(p)/0a = Z Z XitDitZ;tl(yit — [it)
i=1t=1
T
s(Bi)) = OPL(p)/0B;i =Y UuDuSy (yix —par) —H 'i, i=1,....n,
t=1

with Dy = 0h(nit)/Onit, Tit = cov(yitlp) and piz = h(ni). Defining matrices X| =
(Xila---aXiT)a X’ = (X{,...,X;l), Uz, = (Uila---anT)a U = diag(Ul,...,Un), Y =

Wirs i)y y = W eovn)'s i = (ins s mir)'s o= (s i)'y Di = diag(Dan,
. ,DiT), D= diag(Dl, ces ,Dn), Ez = diag(Eil, ceay ZiT)a = diag(El, ceay En) we obtain

the functions
s@ = X'DT ly-p)
s(8) = U'DZ 'y —p)—Lp.

The elements of s(y) = OPL(y)/0y = 0l(p)/0v + da(p) /0y are given by

Al(p)/ov = Qy'(ao—0)

n
ol(p) /Oy = Z Zu DX (yir — pir), t=1,...,T
i=1

dalp)/0y = —Pr.

If we introduce matrices Z; = diag(Z;1, ..., Zir), Z' = (Z1,...,2]), Z = diag(l, Z), D =
diag(I, D), ¥ = diag(Qo, %), y = (ag,y")’, p = (v, '), the third component of the score

function has the form

Q5" (a0 —0) sl
s = — P~y = ZDX — ) — P
(7) ( 208y — ) gl (y —p)— P~y

For a unified representation we additionally define matrices X' = (0’, X'), U’ = (O',U")
and K = diag(O, L, P) (with O in each case a matrix of zeros of appropriate dimension)

yielding the score function

o= (1)) = xuzrpsy - - K o)



The expected information matrix is

_( F) Fly | _ /
F(p) = ( J—— ) = (X,U,Z) W (X,U,Z) + K (6)

with weight matrix W = DX ~'D’, components

. Faa Faﬁ . Fa . ’ .
F(b) = ( o Foy ) F(b,y) = ( Fﬁ: > =F(v,b)  F(y)=F,

and Fp, = X'WX, F,3 = X'WU = Féa, Foy = X'WZ = Fl., Fgp = U'WU + L,
F3, =UWZ= F,’yﬁ, F,., =Z'WZ+P.
The estimate @ of ¢ is computed as the solution of the likelihood equation s(¢) = 0,

which is in general nonlinear and has to be solved iteratively. We use Fisher scoring
P =) + P (eM)s(@™), k=0,12,...,

starting with an initial estimate $(®). Direct computation of the Fisher scoring steps will
lead to problems if dimensions are to high. Using the partitioning of the score function (5)

and the information matrix (6), therefore these steps are transformed to

( FO®)  FHW,450) ) ( Bk+1) k) ) ( s(bk)) )
FEW. W) FGHW) FE =40 ) s(3®) )

Equation (7) can be transformed to

Fo(zléz) Fo(j;) ( (d(k+1) _ d(k)) ) _ ( S*(Oé) )

F R (Bk+1) _ plk)y #(8) )
defining 5*(a) = s(a®) + FE (30 —564D) and 5*(8) = s(AF) + FLD (5#) — 4(k+1),
Some more transformations yield the following sequential equations to obtain first

-1
a0 =60 4 (FQ = o (Fg) ' Faa) (+°(0) — g (F5)7'"(8) - (9)

[e7e%

and then
BUAD = B0 4 (FIE) (5(8) — FP @+ — ). (10)

From (8) we get the estimating equation for +,

with the working observation yz(f) = Xa® + Uk 4 25k 4 (D(k)l)_l(y — p®)). In all

equations above M) means evaluation of the respective matrix M at ¢ = @),



Each Fisher scoring step consists of computation of equations (9), (10) and (11). But
this form still allows no direct solution of the problem, since the estimating equations of
a*+1) and AE+D include 41D (in s*(«) and s*(8)) and vice versa. But the equations
can be solved by applying the backfitting or Gauss—Seidel algorithm, used by Hastie and
Tibshirani (1990) to solve generalized additive models, in each Fisher scoring step. Starting
with an initial value for 4*+1 first &%) and 1) are estimated following equations (9)
and (10). a**tD and S*+D are now initial values to compute 4*+1 following equation
(11). This is again a starting value to compute &kt and B(k“). We repeat this procedure
until some termination criterion is reached.

This procedure yields the following Fisher scoring algorithm with backfitting in each
scoring step to solve the unknown parameters «, 8 and v of the DGLMM:

Starting values : a0 = 0, B(O) =0, ;),(0) =0

Fisher scoring steps for k =0,1,2,...:

Solve the Fisher scoring step by the inner backfitting loop: Set 4*+1) = 4()

k+1)

and repeat computation of &**+1D, F+1) and 4! using equations (9), (10)

and (11) until convergence of each of the three parameters.

Stop if some termination criterion is reached.

The dimensions in the estimating equations (9), (10) and (11) are still high. A further
reduction is necessary to avoid problems. Due to the block diagonal structure of Fpg
equation (9) can be represented with summations over submatrices of FOE?, Flg? and Fﬁ(z),
similarly to Fahrmeir and Tutz (1997), Section 7.3.3. Equivalently, equation (10) can be
replaced by separate equations for each ,BAZ(]H'I) for7 =1,...,n. Due to the block tridiagonal
structure of F.,, = Z'WZ + P a similar partitioning for equation (11) of ~ is not possible.
To avoid direct inversion of F,, we use an algorithm, which utilizes the so—called LDL'
factorization of the positive definite block tridiagonal matrix, as pointed out in Section
1. Fahrmeir and Kaufmann (1991) propose this algorithm, which is described in the next
section, in similar form as alternative to the Kalman filter and smoother in the DGLM. In
combination with the backfitting algorithm it is possible to implement this algorithm in a

faster and numerically more stable way than the Kalman filter and smoother.

4 Inversion of the block tridiagonal matrix

Assuming only regular covariance matrices @; of the error terms v; in the transition equa-
tions (2), the forward-backward recursive algorithm to solve the inverse of F,, presented
in Fahrmeir and Kaufmann (1991) can be simplified as given below. This simplification
has the effect, that the algorithm is faster than the original one. Since the whole estimat-
ing procedure given in this paper with EM algorithm (see Section 5), Fisher scoring and
backfitting is very time consuming, this simplification is really useful.

A simple transformation of equation (11) yields

Fyp 4 = Sy (12)



defining s = Z'W(k)(ygf) — Xak+h) — Uty = (sh, sh, ..., s%). The block tridiagonal
matrix F,, has the same form as matrix P in definition (4), but with submatrices P,
replaced by submatrices Fy; given by Fyo = Q Ly Py, Fy = Sy ZuWiuZ!, + Py and
Fi1y =Py fort=1,...,T. Fy, can uniquely be factorized into the form F., = LDL'
with D = diag(Dy, D1, ..., Dy), where Dy, ..., Dy are positive definite matrices, and

I 0
| B
0 —Bh I

Multiplying out the factorization LDL' and comparing the result with the components of
F,, yields Dy = Fyo, By = —D;llFt_l,t and Dy = Fy +B£Ft_1,t fort=1,...,T. Equation
(12) now can be solved by forward-backward recursion. First the system Le7. = s is solved
by forward recursion for the auxiliary vector X = (¢, ...,e%)" and then DL'4*+1) = &,
by backward recursion for 451 = (54,44, ...,44)". This leads to the following algorithm

solving one backfitting step for ~:

Initialization : €9 = sg, Do = Fyo
Forward recursion, fort =1,...,T: B; = —D;llFt,l,t
D, = Fuy+BF_1,
er = 8+ Bigiy
Filter correction :  Ar = D;leT
Smoother corrections, for t =T,...,1: H_1 = D;llst_l + By

In addition Fahrmeir and Kaufmann (1991) give a formula to get approximate covari-

ance matrices Vyp of ;. Starting with Vpp = Dy ! they obtain
Viar =D\ +BVyrB;, t=T,...,1, (13)
by backward recursion. They also show, that
B, = m,m,leﬁil, t=1,...,T, (14)
a result from the Kalman filter and smoother, holds for the above defined B;. Both (13)
and (14) are necessary for the estimation of hyperparameters in the next section.
5 Estimation of hyperparameters

In the sections above the hyperparameters — parameters defining the distribution of the
unknown parameters ¢ — are considered to be known. But knowledge of these hyperpa-
rameters is given only in few cases. Now we assume that hyperparameters, the covariance

matrix H of (;, the initial values ag, Qo and the covariance matrices @y = @} (independent



of t > 1) of transition model (2), are unknown and have to be estimated from the data.
Estimation is based on the maximum likelihood principle and can be realized by procedures
like the iterative EM algorithm of Dempster et al. (1977) avoiding numerical integrations.

Here we use a modification of the EM algorithm, the so—called EM—type algorithm, that
is given in Fahrmeir and Tutz (1997, Sections 7 and 8) separately for the random effects
and the dynamic model. To avoid calculation of posterior means, these are replaced by
posterior modes as in Stiratelli, Laird and Ware (1984) or Wong and Mason (1985).

For the estimation of the unknown hyperparameters 8 = (H, ag, Qo, Q) we consider the

penalized log-likelihood (3) in dependence on 6,

n T
PL(ol0) = 33" ki) + 1(|H) + L(r0la0, Qo) + 1(+]Q).
i=1t=1
and neglect constant terms not including 6 in [(5|H) = —%5log|H| — % " BIHTB;,
1(y0lao0, Qo) = —31og |Qol — 3 (70— a0)' Qg (Yo — ao) and I(v]Q) = =L log |Q| — 3 =7 (v —

Tevi-1)'Q (v — Tiy—1)-
The expectation—step of the r—th cycle of the EM algorithm consists in computing the
conditional expectation of PL(p|f) given the observations and the current iterate (7).

Because of the independence of I;(¢) of @ we only consider S(A|0)) = S;(H|0™)) +
S2(a0, Qol0) + S3(Q[0) with

S1(H|0M) = E(1 (ﬁIH) | 0 )
- _0 10g |H| — = Z trace ( “IE( B8] o) ))

=1
Sa(ao, Qo|0™) = E(1(yolas, Qo) |6))
= —% log |Qo| — %trace (QEIE( (Yo — a0) (70 — ao)’ | 8 ))

S3(QI07) = B(1(1@Q)[0™)
T
= 2 Tog @l — 5 D7 trace (Q7'B( (30 — Tinp 1) — Tiw 1)/ 160)))
t=1

The maximization-step of the r—th cycle of the EM algorithm consists in maximiz-
ing S(0|6) with respect to 6. This results in H = L 57 E(B;8!10("), ag = E(y[0)),
Qo = cov(y0]0") and Q = % 11 B(wy) — w¥i 1T} = Tove1vh + Toyem1vi 1 T7 [ 0)). Con-
sidering B(8;8{|0")) = cov(B;10)) + E(Bi|0) E(B:]0)),  B(yiyil6™)) = cov(y,]6)) +
E(y10) E(310)) and E(yi—17}100)) = cov(yi—1,7100) +E(y-107) E(3 |00, we see,
that we need posterior means and covariances of 5; and ~y; to get estimates of the hyper-
parameters 6. To avoid numerical integrations in high dimensions we replace posterior
means by posterior mode estimates BZ and 4; and posterior covariances by the covariance
matrices of the posterior mode estimates of §; and 7, resulting from the Fisher scoring
algorithm of Section 3. This covariance matrices are approximately given by the corre-
sponding submatrices of the inverse of the expected information matrix (6), F~'(¢). But
even with methods for inverting partitioned matrices it is not possible to obtain the nec-

essary submatrices, denoted by V(f;) and V (), in closed form, since F'(p) contains the



block tridiagonal matrix F,,. Therefore, as approximation we consider the inverses of the

submatrices Fgg and F),, separately,

V(A1) 0 V() *
Fol— R ot .

BB :
0 14 (Bn) * 14 (’YT)

This approximation is in spirit to the BRUTO method for penalized likelihood estimation
of generalized additive models (see Hastie and Tibshirani, 1990). Here in the definition of
the generalized cross validation for selecting the smoothing parameters the joint additive—
fit operator of all nonparametric functions is replaced by a sum over the separate linear
smoothers of each function.

Hence, we use V(8;) = cov(53;|0)) and V(y;) = cov(y]0")) instead of the posterior
covariances of 3; and vy, with V() = Vjp given by (13). Following Schneider (1986), the
covariance cov(v;_1,7:|6(")) can be replaced by Vi = BiVyr with By defined by (14).

This results in the equations

B o= 230 (vie) + ) (15
1=1

ap = Ao (16)

Qo = Vor (17)

>

1y, o A
-7 > ((’Yt = Tiie—1) (e — Teve—1)'
=1
+ Vir = Vir BiTy — TiBVyr + TtVt,”TTt'). (18)

With these results, the EM—type algorithm for simultaneous estimation of model pa-

rameters ¢ and hyperparameters 6 can be defined as follows:
Initialization : Choose starting values (0 = (H(©) dgo)’ Q(()O), Q).

For r=0,1,2,...:

Smoothing step :  Compute posterior mode estimates &, BZ-, 4¢ and posterior
curvatures V(5;), Vyr by the Fisher scoring algorithm in Section 3, with hyper-

parameters 6 replaced by their current estimates o)

EM step :  Compute ") using equations (15), (16), (17) and (18).

Stop if some termination criterion is reached.

6 Application: Business test data

In this section we apply the DGLMM to the multicategorical IFO business test data to
illustrate the method with a simple econometric model. A similar modelling of this data
as given below already was used in Fahrmeir (1992) and Knorr-Held (1995). For a more
correct econometric modelling we refer to Konig, Nerlove and Oudiz (1981). The algorithms

of Sections 3 to 5 are implemented in C4++.
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The IFO business test data is based on monthly questions on the tendency of realizations
and expectations of variables like production, orders in hands and demand of firms in
various industrial branches in Germany. Here we look at data of n = 55 firms of the branch
“Steine und Erden” for the years 1980 to 1990 (7' = 132). The aim is to analyze the
dependency of the categorical response “production plans” P; at month ¢ on the explanatory
variables “expected business condition” C}, “orders in hand” O, and “production plans in
the previous month” P;_;. Furthermore, we assume unobserved heterogeneity in the sample
and introduce firm—specific random effects 3; to deal with.

Response and covariates P;, C; and O, are given in the three ordered categories “de-
crease” (—), “no change” (=) and “increase” (+). Each of these trichotomous variables is
described by | = 2 dummy variables P;", P;~ (etc.) with reference category “decrease” (—),
so (1,0), (0,1) and (0,0) stand for categories +, = and —, respectively. The multivariate
response y; = (P;7, P;7)" is multinomially distributed, i.e., y;; ~ Ma(1, pit). To deal with
ordered categorical response we use the cumulative logistic model (see Fahrmeir and Tutz,

1997, for details) with the response function

h(ni) = ( F(nin) )

F(ni2) — F(nin)

and F(z) = 1/(1 + exp(—z)), the logistic distribution function. The components of the
linear predictor ny = (91, mir2)’ have the form 1. = 6;4 + 7 for 7 = 1,2, where the
thresholds 6;;1, 0;;0, with the restriction 6;;1 < 60;2, model the ordering of the response

categories.

Model 1
First we assume that the effects of the covariates C;7, C;~, O;", Of, P;"| and P, are all
time—dependent, i.e., there is no fixed effect « in the model. The threshold—parameters 6;4,
are additively decomposed in unit-specific random effects b,; and time-varying effects g,
yielding 6;1, = by; + grt, ¥ = 1,2. Since we have monthly data the time—varying component
grt of the threshold is again decomposed in a trend component 7,4 and a seasonal component
Spty 1.€., grt = Trt + Sp¢. The component s, is modelled with s = 12 seasons (months) in a
[5/2]

trigonometric form as the sum s, = -

721 sjre of [s/2] cyclical components defined by

Sjrt = Sjrt—1COS )\j + §jr,t—1 sin )\j + Wirt

gjrt = —Sjrt-1 sin )\j + gjr,t—l CcoS )\j + ﬁ)j,«t, jg=1..., [8/2],
with seasonal frequencies A\; = 27j/s and mutually independent white noise processes
{wijri}, {Wjr} With a common variance o2, (see Fahrmeir and Tutz, 1997, Section 8.1.1, or
Harvey, 1989, pp. 40-43, for details). The components 3., are only required for recursive
definition of sj.;. We use this seasonal model because it yields nonsingular covariance

matrices @; in transition model (2). These definitions result in parameters 3; = (b1;, b2;)’,

Ve = (Tits S11t, S11ts - - - » S51t5 351t S61ts T2ts S12t S124 - - - » S52t5 852¢, S621,7;) and matrices
,_ (10 (110 1010 0 2,
" o1) 0 0110 -~ 101 2z
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with covariates z, = (C;,C;,0;,0;,P;L,,P7;) and dynamic covariate effects 7, =
(yes - - -
as Nitr = bpi + Trt + St + 20,7 for r = 1,2. Assuming a random walk of first order for trend

,7Y6)- The components of the linear predictor n;; = U},[; + Z.,y: are then defined

components 7,4 and dynamic effects 4;, the transition matrices T} of transition model (2)
have the form T, = diag(1,T;,1,T},1,...,1), with the submatrix

cos Ay sin g 0
~ —sin A1 cos A\
t =
0 COS Ag

The EM-type algorithm was initialized with H = diag(0.1,0.1), ag = (0,...,0), Qo =
Q@ = diag(0.1,...,0.1) and converged after 86 EM-steps.

In Figure 1 the unit-specific components of the threshold-parameters are given. In
1 (a) estimates of first and second components are plotted against each other, pointing out
a lot of variation within the firms with values between about —1 to +2. That indicates how
important it is to consider the unobserved heterogeneity. Furthermore the shown effects
are highly negative correlated. Firms with negative values of Bli and positive I;gi seem to
use often the conservative answer “no change” in the response, while the opposite case with
positive by; and negative bo; possibly indicates firms avoiding the “no change” category in
the response. Figures 1 (b) and (c) show the estimates by; and by; each plotted against the
corresponding estimated variance var(lA)”-). It indicates that estimates of firms avoiding the
“no change” category (i.e. by positive and bo; negative) are more precise, i.e., have smaller
variance. Figure 2 shows the estimated trend components of the first and second threshold
parameter within pointwise one standard deviation confidence bands. The first component
(lower line) shows a slightly decreasing trend while the second component (upper line) is
nearly constant over time. The distinct separation of both trend components provides that
the restriction by; + 71 + s1¢ < bo; + 7o + Sot to the thresholds holds. A strong seasonal
pattern of the first and second seasonal component with highest points in the first quarter

and lowest points in the last quarter of the year can be seen in Figure 3. Estimates of the

o o
S , : . s :
. 3 .
o 5 ) 1] .
- ‘a ® =° |° o% eg
= o, = . [ N e o
N oo, ® 29 P =)
<o % [ [ g 1 '.. 8o . :. .
© b °® - ° L) > °
o’.‘. ®e 178 oo . =] °® ...
) #. [ ]
< o..‘o 9' ° ..‘ . o ’....
i «* ° © ® 0% Tee 8 ﬁ’t.}
1 0 1 2 1 0 1 -1.0 0.0 1.0 2.0
(a) b_1i (b) b_1i (C) b_2i

Figure 1: (a) Estimations of unit-specific parameters I;U and I;gi plotted against each other

for every unit. (b) Estimate versus estimated variance of parameter by;. (c¢) Estimate versus

estimated variance of parameter bo;. (Model 1)
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1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Figure 2: Estimates (solid lines) and estimated pointwise one standard deviation confidence
bands (dotted lines) of the trend components of the first and second threshold parameter
(model 1).

time—dependent covariate effects are shown in Figure 4. All effects are positive but nearly
time—constant, except the effect of the variable “increasing expected business condition”
C;. Here a clear temporal variation exists with lowest point at the beginning of 1982.
From that time—point the effect increases, which coincides with the establishment of a
new government in Germany, what may indicate positive reactions of business to the new

government.

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Figure 3: Estimates (solid lines) and estimated pointwise one standard deviation confidence
bands (dotted lines) of the seasonal components of first (above) and second threshold

parameter (model 1).
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————————— production plans (+/=)
ordersin hand (+/=)
0 - expected business condition (+ /=)
—
on 4
~ 4
-
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
Figure 4: Estimates of time—dependent covariate effects (model 1).
Model 2

Since the effects of the covariates “orders in hand” O; and “production plans in the previous
month” P, 1 are nearly time—constant, we now try to model them as fixed effects, what is
computationally less expensive than a time-dependent modelling. Now we use the DGLMM
with linear predictor n; = X],a + U}, 8; + Z],7y:. The fixed effect o contains two threshold
components a1, az and the effects & = (o, ..., aq) of covariates 2}, = (O}, 07, P |, P~ 1),

ie., @ and X/, are given as o = (aq, az,&')" and

,_ (10 z,
* 0 1 =z,

Definitions of Uy, B, Zit, v+ and Ty remain unchanged, but z;; and 4 within Z;; and -y; are
reduced to 2}, = (C;",C;7) and ¥ = (v41,712), the time-dependent effects of the covariate
“expected business condition”. The components of the linear predictor are now defined as
Nitr = r + bpi + Tyt + Syt + 24 + 25,4 for = 1,2. The components a, can be seen as
overall thresholds with the unit— and time-specific deviations by;, 74 and s,.

In model 2 the EM—type algorithm converged after 68 iterations. Estimates of the fixed
effects « are given in the Table 1. Comparing the covariate effects with Figure 4 we see that

the estimated fixed effects of O, O}, Pttl and P~ are approximately the mean values of

Thresholds  (STD) Covariate effects ~ (STD)
ay -6.1541 (1 0.1753 ) o} 1.0905 ( 0.1558 )
as -0.0810  ( 0.1286 ) O; 0.7583 ( 0.0850 )

AR 2.9527 (1 0.1438)
Pz, 1.4274 ( 0.0816 )

Table 1: Estimates of the fixed effects (model 2).
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the estimates of the dynamic effects in model 1. The sums of the estimated fixed threshold
components and the estimated trend components, a, + 7,;, are very near to the estimates
of the trend components in model 1, see Figure 2. Also estimates of the remaining effects

bri, Syt and v are nearly the same as in model 1 and are omitted here.

7 Concluding remarks

The proposed algorithm is a useful tool for combining the GLMM and the DGLM. Due
to the additive definition of the DGLMM we can use the definitions of the GLMM for
estimating the fixed and the random effects and the definitions of the DGLM for estimating
the dynamic effects of the DGLMM. Instead of the extended Kalman filter and smoother,
which is standard in the DGLM to compute the dynamic effects, we use an algorithm that is
numerically more stable and faster in combination with the backfitting algorithm. With the
EM-type algorithm a simultaneous estimation of model parameters and hyperparameters is
possible, where also definitions of the GLMM and the DGLM are used. For the estimation
of hyperparameters, where some approximations are required, there exist other possible
approaches, which are subject of further research. For estimation in the GLMM Steele
(1996) presents Laplace approximations within the EM algorithm, while Wagenpfeil (1995)
uses cross—validation in the DGLM. The approach of Lin and Zhang (1999), mentioned in

Section 1, applies Laplace approximations in the double penalized quasi-likelihood.
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