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Abstract

Stability aspects of recursive partitioning procedures are investi�

gated� Using resampling techniques� diagnostic tools to assess single

split stability and overall tree stability are introduced� To correct for

the procedure�s preference for covariates with many unique realiza�

tions� corrected p�values are used in the factor selection component of

the algorithm� Finally� methods to stabilize tree based predictors are

discussed�

Keywords� CART� Tree�based methods� stability� diagnostic tools� predictor ag�

gregation� p�value adjustment
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� Introduction

Recursive partitioning methods or tree�structured algorithms o�er a nonpara�

metric alternative to classic� parametric regression and classi�cation meth�

ods� Their modular approach allows adapdation to other problems such as

survival analysis� In addition� the results of tree based analyses are easily

conveyed to nonstatisticians due to the intuitive binary tree structure of the

predictors obtained�

Along with the increased practical use of recursive partitioning methods

have come doubts concerning the reliability and stability of the procedure�

One source of such instability is the method�s tendency to over�t the data�

and care needs to be taken to assure over�tting is objectively avoided� How�

ever not all of the instability can be assigned to too large trees� Much of the

variance of these procedures is due to the often unnatural dichotomization of

metric covariates� Often the de�ning cut�points are highly variable� and due

to the hierarchical structure of tree based models� any change in a branch of

a tree will certainly a�ect lower portions of the same branch and thus the

predictor as a whole� reducing its predictive accuracy�

The aim of this paper is to introduce tools to assess such variability and

o�er ways to overcome unneccessarily large prediction error� In section ��

the components making up a tree�based algorithm are explained� Data from

a breast cancer study are then analyzed using trees� Section 	 demonstrates

what is meant by tree instability and o�ers simple node�level diagnostic tools

based on resampling techniques to assess split stability� In section 
� the

algorithm�s well known preference for metric factors with many unique real�

izations in the training set is discussed� Correct p�values are obtained not

through an adjustment of the raw p�values� but rather via a general� though

computationally expensive permutation approach� Section � discusses sta�

bilizing procedures for tree�structured predictors� In addition to reviewing
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Breiman�s �bootstrap aggregation
 suggestion� a node�level stabilizing ap�

proach is introduced� Finally� a conclusion and an outlook pointing out open

questions are given�

� Recursive Partitioning

��� Data notation

The goal of recursive partitioning procedures is to predict an unknown quan�

tity yi of an individual i based upon known realizations of p covariates

x � �x�� � � � � xp�i� In order to construct a predictor �y �� d�x�� a learning

sample or training set L consisting of a group of elements of tuples �y� x�

with both y and x components known� is employed� Di�erent scales of y

determine the type of the problem and tree� If y is categorical� the tree

produces a discriminant function assigning each individual to an estimated

class� if y is metric� d is a regression function� As will be shown later� if y

denotes possibly censored survival times� CART can be extended to handle

these data also and produce so called survival trees�

��� Algorithm

The most widely used incarnations of recursive partitioning procedures in

statistics go back almost exclusively to CART in Breiman� Friedman� Olshen

and Stone ����
�� Since then� many extensions and improvements have been

suggested� altering some or all parts of the modular algorithm� but always

keeping the main idea of sequential binary partitioning followed by some form

of tree pruning to control over�tting� A thorough review with emphasis on

biostatistics can be found in Zhang� Crowley� Sox and Olshen �������

Tree growth

In the �rst step of the algorithm� the predictor space X is partitionend into

disjunct subspaces to either form groups of elements� called nodes� which

	



are homogenous with respect to the response variable of interest� or to form

subgroups with maximized between group heterogeneity� This is achieved by

splitting the population at a node into two subpopulations according to a

simple question about one of the covariates�

Formally� one constructs a set Q of split inducing binary questions of the

form �Is Xj � A �� where j � f�� � � � � pg and A � X� Observe that

Q � Q� � Q� � � � � � Qp� where each Qj is the set of binary questions con�

cerning covariate j� For ordered covariates Xi� the set of possible questions

reduces to �Is Xj � c��� with c taking on all values of covariate realizations for

elements in the current node� For unordered covariates� all possible divisions

of categories into two groups must be examined� Each of these questions in�

duces a candidate split q� sending elements belonging to A to the left sibling

node� others to the right�

For every q � Q� a goodness of split criterion GS�t� q� is evaluated to de�

termine the best split of a node t� Usually this criterion will measure the

improvement in homogeneity of the resulting subgroups of a candidate split

with respect to the response� choosing the split which produces the most

homogenous sibling nodes� Similarily� goodness of split criteria have been

derived which maximize heterogeneity between subgroups� Common good�

ness of split criteria for classi�cation are the ���test for contingency tables

or the entropy measure� In the regression setting choices include the mean

squared error or least absolute deviations� The value of the split criterion is

recorded for each possible q � Q and the split

qopt �� argmax
q�Q

GS�t� q�

is selected as the optimal split� This splitting process is recursively repeated

for the resulting subgroups� until it is determined that further partitioning

is not warranted� Checking if further splitting is warranted or possible usu�

ally involves enforcing stopping criteria such as a minimum node size nmin

and possibly a minimal value GSmin of the optimal goodness of split� Nodes

which are not split again are called terminal nodes and form the �nal sub�






groups�

Constructing a predictor from the terminal nodes

After a set of terminal nodes is obtained� the �nal step of characterizing the

elements of the terminal nodes or more precisely assigning the same estimate

�y �� d�x� for each element of a terminal node remains� In the classi�cation

setting this will be an estimate of class membership� for regression an esti�

mated response value is produced� The result of such an algorithm can be

displayed in a binary tree structure�

Controlling tree size

Although naive predictors can be obtained by using just this �rst part of

the algorithm� it is well known that these trees aren�t �exible enough with

respect to model complexity� Depending on the stopping rule used to de�

termine whether a node is to be split again or not� the tree or some branch

of it� will tend to be too large or too small� either over�tting the data or

not capturing all the information contained in the learning sample� Thus a

two stage procedure to determine the �nal tree is usually used for tree size

or model selection� The �rst stage is as above but with su�ciently liberal

stopping rules ensuring that the tree obtained is in no case too small� The

second stage called cost�complexity pruning involves cutting down the tree to

the right size in a step�wise fashion via a complexity adjusted error estimate

of the tree

R��T � � R�T � � �j �T j� ���

where R�T � is the raw error measure� j �T j denotes the number of terminal

nodes in the tree and � is the penalty weight� Minimizing ��� as � increases

from � until only the root node is left for �max� creates a nested sequence of

cost�complexity optimal trees for a �nite sequence of �xed ��

To �nd the globally optimal tree� cross�validation techniques are used within

which auxillary trees are grown and subsequently pruned using the same

sequence of ��s obtained from pruning the original tree� For each � in the
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sequence� the error rate of the pruned tree is estimated by the mean of the

error rates of the pruned auxillary trees� for which honest estimates of error

are available� since a portion of the learning sample L was left unused for

each auxillary tree� The tree found to have minimal crossvalidated error is

then chosen as the �nal tree or model�

��� Adaptation to survival data

One area where recursive partitioning methods have become widely used

is medicine and more speci�cally in a survival analytic context� where clini�

cians are interested in predicting prognosis based upon certain risk factors� or

more generally prognostic factors� Here� trees are especially appealing since

in addition to stratifying study populations into subgroups with distinctly

di�erent risk expectations� they also allow simple and intuitive identi�cation

of potential prognostic factors and their possible interactions� Moreover� the

suggestive� graphically intuitive structure of the predictor is a valuable tool

when discussing results with clinicians�

In order to be able to handle censored survival data� certain parts of the

CART algorithm need to be adapted� The construction of the set of candi�

date splits Q remains unchanged in the survival analysis setting� In contrast�

the goodness of split criterion� the way elements of a terminal node are char�

acterized and to some degree the pruning method need to be adapted to the

survival data situation� Commonly used extensions of recursive partitioning

to the survival analysis setting can be found in Ciampi� Chang� Hogg and

McKinney ������� LeBlanc and Crowley ������ and LeBlanc and Crowley

����	�� To divide the population of a node into homogenous subpopulations�

the log�rank test or similar tests with prespeci�ed weights and thus emphasis

on certain time periods are commonly used� For every possible candidate

split q � Q� the p�value of the log�rank test used on the induced subpopu�

lations is recorded� The best split qopt is obtained for that q which has the

smallest p�value� The split is then performed according to qopt� if the stop�
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ping criteria aren�t met� otherwise the node is declared terminal�

The most pronounced alteration from regular CART occurs when assigning

estimated responses to elements of a terminal node� Here a single value usu�

ally does not su�ce� Instead� Kaplan�Meier estimates of cumulative survival

for the populations of each terminal node� possibly along with estimates of

relative risk with respect to the overall population under a proportional haz�

ards assumption are given�

Cross�validation based pruning methods using proportional hazards martin�

gale residuals as error measures can be used to control tree size� although

enforcing a maximum optimal p�value of� ���� for example� is another pop�

ular way to restrict model complexity� However� this approach also su�ers

from the lack of �exibility mentionend earlier�

��� Example� Breast cancer

To demonstrate the use of tree�based methods� we employ a survival analy�

sis example� The data come from a prospective study of 	�� breast cancer

patients conducted at the Technische Universit�at M�unchen� While the main

aim of the study is to identify prognostic factors in node�negative patients

�patients� where the cancer has not spread to neighboring lymph nodes�� here

we include all patients for our illustration� The goal remains the same� we

wish to identify the main prognostic factors determining further prognosis�

that is factors which allow a prediction as to whether the patient will experi�

ence a relapse� For each patient� the minimum of time under observation and

time to relapse T and a censoring or event indicator � discriminating tumor

relapse �� � �� or disease�free survival �� � �� are recorded� In addition� the

following covariates are provided on an individual basis� age of the patient

at surgery �AGE�� size of tumor in centimeters� number of positive removed

lymph nodes �LY PO�� progesteron and estrogen receptor states �DER and

DPR�� menopausal status �MENOP � and concentration of urokinase plas�

minogen activator �UPA� and its inhibitor �PAI� in the removed tumor
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Figure �� Survival tree for breast cancer data�

tissue� The last two substances are thought to measure body stress and are

thus hoped to give an indication of the aggressiveness of the tumor�

A survival tree was grown on these data using the log�rank test as split crite�

rion and enforcing a minimum node�size nmin of �� and a maximum� optimal

p�value �GSmin� for the log rank tests of ���� The result is depicted in �gure

�� One can now follow the tree based predictor down for each present or

future patient individually� branching o� to the left or the right� according

to the splits on the respective covariates at the determined cut�points� until
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Figure �� Kaplan�Meier estimates for the subpopulations induced by the

root�node split on lymph node status�

the individual �nally arrives at a terminal node� For these nodes �as for

the nonterminal nodes�� estimates of relative risks with respect to the total

learning sample and Kaplan�Meier estimates of cumulative survival can be

computed� Of course� any other suitable measure describing terminal node

populations could also be added� Relative risk estimates are shown for the

terminal nodes� Figure � also depicts remaining sample sizes and number of

events for each of the terminal nodes� Notice how PAI plays the most im�

portant role in further predicting prognosis in the left subbranch of the tree�

This in�uence however� seems ill�captured by the repetitive binary structure

of the tree� as four splits are necessary to depict the relationship�

Figure � contrasts the survival expectation of the root node �the whole

training set� with those of the two subpopulations induced by the split on
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the dominating prognostic factor� the number of positive removed lymph

nodes� Observe the clear separation of the two groups� with patients with six

or less a�ected lymph�nodes having a markedly better prognosis than their

counterparts with seven or more a�ected nodes� By now� one has gained

alot of information� lymph�node status �LY PO� is the dominating factor

determining prognosis� so much so� that a strati�ed analysis seems called for�

Supporting this approach are the tree�s strong suggestions at interactions�

while PAI is important in the left branch of the tree� it plays no role in

determining outcome in the poor prognosis group �right branch� of the tree�

Finally� one worries that modelling PAI by a series of dichotomous factors

may not be appropriate�

We will try to shed some light on this and other problems in the next sections�

� Node�level stability diagnostics

Tree based predictors produce suggestive results� The hierarchical ordering

of the included factors lends itself to assessments of factor importance� the

general notion being that the closer to the root node a factor appears� the

more important is its in�uence on the response� In addition� the dichotomiza�

tion of factors allow convenient interpretations of individuals falling below

or above a certain cutpoint� In a medical setting� factor realizations below

the cutpoint could be considered within the normal range and others in the

elevated or pathological range�

While these interpretations are tempting� they are routinely used without

any idea about the variability involved� This however may be just as dan�

gerous and misleading as ignoring available con�dence regions within other

statistical estimation procedures� What one needs then� is some measure

of reliability and stability of the partitions chosen by the algorithm� Since

direct� analytical inference about the distributions involved is di�cult if not

impossible due to the hierarchical dependence structures� resampling tech�

niques such as the bootstrap may o�er a simple alternative�
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When CART partitions the population at a node into two sibling nodes� the

choice of the cutpoint determines which elements of the original node are

branched to the left� and which ones to the right� Any change in sibling

populations of course has an e�ect on future partitions� In some cases it

might be argued that such a cutpoint will be naturally given� such as when

the relationship between the factor and the response involves some sort of

threshold below which all values of the factor have roughly the same in�uence

on the response� and above which the relationship is essentially di�erent� In

most situations however the relationship between a factor and the response

will be much more complex� making the process of �nding a cutpoint or in�

deed determining whether an adequate cutpoint exists at all� di�cult� While

recursive partitioning algorithms generally do a good job at the former� they

are usually not at all concerned with the latter� Instead� their data�driven�

black�box behaviour all but ensures that a critical re�ection upon the choices

made is never done� This eventhough simple diagnostic tools can be made

available with little e�ort� as will be seen in the following section�

��� Graphing the split criterion

To start out� looking at a graph of the test�statistic plotted against realiza�

tions of the corresponding factor provides a �rst impression of the adequacy

of the chosen factor and its cutpoint� Figure 	 shows such a plot for the fac�

tor LY PO for the root node of the tree from �gure �� The chosen cutpoint

of ��� lymph nodes dominates the graph� and the choice appears obvious�

A rugplot of factor realizations further aids in assessing the resulting pro�

portions in the sibling nodes for a potential cutpoint� In contrast� �gure 


depicts the same graph� but for the covariate PAI at node �� Two seperated

modes are visible and it is not at all clear� that the choice of ���� as used in

the tree displayed in �gure � is reasonably stable or if a stable choice can be

found�
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Figure 	� Graph of the splitcriterion at the root level for the factor �number

of positive� removed lymph nodes �LY PO�
�
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Figure 
� Graph of the split criterion at node � for PAI�
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��� Bootstrap con�dence intervals for the cutpoints

To further this discussion we employ bootstrap techniques� Consider the

population Lt � L of node t� By drawing B �B large� bootstrap samples L
�b�
t

with b � �� � � � � B� we can repeat the optimization process for all replicate

samples� As usual� we obtain bootstrap con�dence intervals for the cutpoint

by selecting the appropriate quantiles of the empirical distribution Fcut of the

bootstrapped cutpoints� Thus� a con�dence interval at level � for a cutpoint

would be given by �Fcut�
�

�
�� Fcut���

�

�
���

This method was employed for PAI at node �� The results are shown in

�gure �� with a density smother having been applied to the bootstrap dis�

tribution of the cutpoints� and the �� con�dence interval from ������ 	
���

included� At once� one can appreciate how highly variable a cutpoint for

pai is in this situation� as the con�dence interval easily encompasses the two

modes� In addition� the seemingly optimal cutpoint will only slice o� a dis�

proportionately small subgroup� in the process not revealing much structure�

��� Assessing factor importance rankings

So far� we have assumed the choice of the factor to be �xed in our discussion

of tree stability� We will now shift focus� and concentrate on the stability

of the process governing the choice of the covariate which is used to split a

node�

To illustrate the problem� we will leave the survival analysis setting for the

moment and instead simulate a binary classi�cation problem� The train�

ing set includes � metric covariates� each uniformly and independently dis�
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Figure �� Smoothed density of bootstrapped cutpoints �solid� along with

�� con�dence region �dashed� and rugplot of PAI realizations in node ��

tributed on ���� ��� The response y is determined by

y �

�����
����

�� if �X� � � �X� � ���

�X� 	 � �X� 	 ��

�� else�

Thus� only two covariates have a systematic in�uence on the response while

the remaining three are added as noise to distract the algorithm�

The complete tree is not of interest here� we will return to it in section �� For

now� we concentrate on the root node split instead� that is on the partition�

ing of the complete training set� Even without added noise variables� this

is a tough problem for recursive partitioning to handle� as there is no way

for it to uncover the structure of the boolean operators within a single split�

To see what happens� we again use node�level bootstrap replicates� this time

using B � ��� replicates�

Table � shows the number of times each covariate was used to split the root

node� As one might expect� the two factors actually involved in the boolean
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Table �� Results for one simulation ���� bootstrap samples��

Covariate number of times used

X� 
�

X� 	�

X� �	

X� �

X� 


combination appear roughly the same number of times� The disturbing ob�

servation is the fact� that for almost �� of the replicate samples� a factor

which has no systematic in�uence whatsoever on the response is determined

as being most important� Nonsensical splits like these which depend com�

pletely on idiosyncrasies in the data� remain largely invisible when just a

single split is generated� In contrast� employing simple diagnostic tools as

described above in a thorough fashion� allows detection of splits which are

based on chance rather than structure�

In the next two sections� we will discuss methods� which reduce or at least

average out some of the variability uncovered in this section� and thus allow

for the construction of predictors with improved predictive accuracy�

� How to account for the multiple testing sit�

uation

One di�culty with tree�based predictors is their bias towards selecting met�

ric covariates when partitioning the test sample� Due to the optimization

process which is started anew at every node when trying to �nd the best

binary split of elements in the sample� it is clear that continuous covariates

have a better chance of providing homogenous subgroups within the learning

sample� than categorical ones with only a few unique realizations� While this
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behaviour is justi�ed to a certain extent as metric covariates do have the

potential of carrying more information� there is also the danger of locking

into chance idiosyncrasies in the training sample� One way this phenomenon

may show up in tree�structured classi�ers is the so called end�cut preference

of split criteria� Often� structure in a factor is seemingly revealed by splitting

of one disproportionately small subpopulation whose size is near the mini�

mum nodesize limit� and one subpopulation still carrying the overwhelming

number of cases of the original node to be split� While modi�ed split criteria

have been proposed to reduce this tendency by penalizing splits of unequal

proportions� the type of penalty function remains arbitrary and introduces

yet another algorithmic tuning parameter�

Another way of looking at this situation is by studying the distribution of

the split criterion� as is done naturally for test�based split criteria such as

the log�rank test in the survival analysis setting� The two sample log�rank

test is asymptotically �� distributed with one degree of freedom� but when

looking for the best split one does not perform one log�rank test on two pre�

speci�ed� �xed populations� rather one shifts the two subpopulations through

all possible combinations until the pair producing the largest test statistic

is found� Obviously� for this maximally selected test statistic� the �� dis�

tribution will not hold� drawing into question the utility of comparing the

raw� unadjusted p�values between covariates with unequal numbers of unique

realizations� This is just another way of saying� that one expects a metric

covariate to do better when modelling a cutpoint in a �exible� completely

datadriven fashion� However� since covariates of di�erent scales need to be

compared to assess the goodness of splits and for the algorithm to work�

adjusted or simply correct p�values are required�

Several methods for adjusting p�values have been proposed� Hilsenbeck and

Clark ������ give a comparative review of possibilities for adjusting log�rank

test p�values� Here� we wish to demonstrate the use of permutation tech�

niques as proposed by LeBlanc and Crowley ����	� to obtain correct p�values

without actually basing these on the raw p�values� Although this procedure
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is computationally demanding� it naturally transfers to most any other split

criterion both within and outside the survival analysis setting�

Assume that optimal splits for node t have been obtained for every covariate

resulting in maximized teststatistics GSmax�j� t� for j � �� � � � � p� To esti�

mate correct p�values for the optimal split of each covariate� we will obtain

an estimate of the distribution of each of the teststatistics� We do this by de�

liberately breaking up the structure between the response y and the predictor

variables x� Since computational burdens usually don�t allow generation of

all possible recombined node t populations and the calculation of the exact

distribution of the test�statistics is thus not feasible� a large number K of

random permutations are used instead� Note that the process of breaking up

the structure between y and x components of the training set is very general

and thus �exible and that in contrast to commonly used p�value adjustment

approaches� no further assumptions are neccessary�

Speci�cally for survival data� we permute the response component y � �T� ��

with the explanatory covariates x of the elements in t� Now� for each of

these permuted node populations� we repeat the process of �nding an op�

timal split in the exact same fashion as for the original data� Thus� one

receives an optimal split�criterion GSk
max�j� t� for each covariate in the k�th

permutation� with k � �� � � � � K� We can now obtain an estimate of the

teststatistic distributions through their empirical distributions and use


adj�j� �

mP
k��

fIfGSkmax�j�t��GSmax�j�t�gg� �

m� �
� ���

as an estimate for the p�value of GSmax�j� t�� Then covariate j
� with

j� � arg min
j�f������pg

f
adj�j�g�

is chosen to split node t at the cutpoint obtained from optimizing in the orig�

inal data� If this split meets some sort of minimum improvement criterion

�GSmin� such as 
adj � ���� the split is performed� otherwise t is declared

terminal� Note that in order to receive correct p!value estimates of adequate

��



resolution�K must be chosen su�ciently large� otherwise it will be impossible

to distinguish between important factors with similarily small� raw p�values�

The correction term in ��� assures that the estimate will be conservative and

always at least equal to ���K � ���

To appreciate how p�value corrections or adjustments a�ect not only esti�

mates of e�ect size� but also directly in�uence tree structure� consider table

� where the results of the split optimizations are depticted for node 	 of the

breast cancer tree from �gure �� Columns � and 	 show the apparent factor

importance rankings along with the raw p�values based on the ��
� distribution

assumption� Columns 
 and � impressively demonstrate the change in im�

portance rankings when estimates of correct p�values are used instead� The

seemingly most important factor PAI drops to third place and progesteron

receptor status� a binary factor� is determined as most important factor� No�

tice how the overoptimism in e�ect size �raw p�values� is drastically corrected

particularily for metric covariates� in addition to the change in rankings�

Table �� Comparison of raw and corrected factor importance rankings and

p�values�

raw corrected

Factor rank p�value rank p�value

PAI � �������� 	 ����

DPR � �������
 � ������

AGE 	 �������	 � �������

DER 
 �������� � �����

DHORM � �������� 
 ������

MENOP � �������� � �����

UPA � ���
���� � ��	��

LYPO � �������� � ���
��

TUMOR � ��	���� � ������

��



� Stabilizing predictors

While adjusting for di�erent scalings of the factors studied with methods

such as the one described in the previous section helps reduce the number of

splits caused by artefacts in the training set� this approach can�t on its own

remove all or even most of the undesired variability of tree based prediction

rules� Consider for example the root node split characteristics of our �rst

simulation experiment in section 	�	� there simply is no single perfect or

correct split in this situation� Without some sort of averaging or stabilizing�

some structure �here� one part of the boolean relation� will inevitably be

missed�

To further demonstrate the need for such measures we conduct another simu�

lation experiment� this time within a survival analysis framework� The basic

ideas for the simulations are taken from LeBlanc and Crowley ����	�� We

simulate three models generating exponentially distributed failure times for

individuals with � covariates each� All covariates are drawn iid� from the

uniform distribution on ��� ��� Their in�uence on the intensity paramter � of

the failure time generating exponential distributions can be seen from table

	� Model A has a constant intensity of � � �� thus none of the � covari�

Table 	� Construction of the three simulation models�

Model 
i � log��i� No� of risk levels

A 
i � � �

B 
i � Ifx�i�	���x�i�	��g �

C 
i � 	x�i � x�i continuous

ates contain any useful information regarding survival expectation� Model

B produces failure times originating from one of two survival distributions

with log��� either � or � depending on a boolean combination of two of the

�ve covariates� Lastly� model C uses exponential distributions with contin�

uously varying intensity parameters depending on x� and x� in an additive

��



fashion� Populations of sample size n � ��� were generated for each model�

The training sets were then used to construct survival trees using the log�

rank test as a split criterion� enforcing a minimum node size of nmin � ��

and pruning the trees via ten�fold cross�validation� The whole process was

repeated ���� times for each model� and the resulting number of terminal

nodes was recorded for every tree� Table 
 shows the relative frequencies

obtained for the ���� runs on each of the tree models�

As hoped for with model A data� the tree realizes there is nothing to split

Table 
� Relative frequencies of terminal nodes for ���� trees for each model�

relative frequency of terminal nodes

Model � � 	 
 � � �

A ���� ��� ��� � � �

B 	��� ��� 	��� �
�
 ��
 ��


C � � 	�� ���� �
�� ����

the data on in more than �� of the runs� Still� structure is suggested in 
 

of the simulations eventhough none is present� As for model B� the di�culty

recursive partitioning procedures have with boolean combinations becomes

apparent in the second row of table 
� One would hope for a large number of

trees with three terminal nodes� accepting the fact that the breakup of the

boolean combination requires one additional split and thus produces an extra

terminal node� Although this does occur in about 
� of the runs� the tree

still comes up with an unsatisfactory answer in the rest of the simulations�

On half of these� the tree doesn�t detect any structure in the data at all after

pruning� Finally� the results for model C show the tree�s clumsy attempts to

sequentially dichotomize a linear relationship in a stepwise fashion�

Thus� there is clearly a large amount of variability contained in tree�based

predictors and one is worried that this instability will degrade predictive ac�

curacy in addition to hindering correct conclusions about factor importance

��



and adequate cutpoints� In what follows we describe two attempts to cap�

ture this variability and to stabilize tree�based predictors by averaging or

aggregating�

��� Tree	based predictor aggregation via the bootstrap

Demonstrating that trees are high variance� low bias procedures� Breiman

������ suggests growing numerous trees using a series of training sets and

then suitably aggregating these to form a single� stabilized predictor�

More formally� starting o� with a series of learning samples L�r� with r �

�� � � � � R� using R � �� for example� Breiman constructs R trees d�r� using

identical growing and pruning parameters which he then combines� The ex�

act method of aggregation depends on the response type� For the regression

case� the arithmetic mean is used� so that the aggregated predictor dA is

simply �
R

PR
r�� d

�r�� while for the classi�cation case a simple voting procedure

is invoked� so that dA assigns that class �y to an element which was predicted

most often in the R single predictors�

Using a bias!variance decomposition of prediction error and employing Jensen�s

inequality� Breiman is able to show that the prediction error of the aggre�

gated predictor possesses the prediction error of the single predictor as an

upper bound� In other words� the aggregated predictor is always at least as

good as the single one�

For this to work� one needs a series of training sets drawn independently

from the population "� Since this luxury is never available save for simula�

tions� Breiman uses bootstrap replicate training sets drawn form the original

training set L as a substitute for repeatedly drawing from "� Each of these

replicate samples are then used to grow trees� which are aggregated as above�

Eventhough now the prediction error of the single predictor need no longer

be worse than that of the bootstrap aggregated predictor� bagging performs

remarkably well in most situations� Only in cases where the single predictor

��



is extremely stable will bagging decrease performance�

To demonstrate bootstrap aggregation� we return to our survival simulations

from section �� Survival trees were grown on data generated from models A�

B and C� The trees were pruned using ten�fold cross�validation� Afterwards�

bagged predictors were constructed using R � �� bootstrap replicates for

each model� To compare predictor performance� the mean squared error be�

tween predicted and observed failure times was computed� Table � shows the

results for the three situations� As expected for model A� bagging slightly

decreases tree performance� whereas for models B and C� bootstrap aggre�

gation is able to adequately average out the variability of single tree!based

predictors� resulting in moderate improvements�

Predictor aggregation procedures can be improved upon by invoking an

Table �� Comparison of single� tree predictors and bagged predictors for

survival data�

Model MSEsingle�t� �t� MSEaggregated�t� �t� Change

A ����
 ����� ���	 

B ����	 ����� ���� 

C ���� ���
 ���� 

adaptive resampling approach� where attention on stabilization is focused on

those regions of the training set that led to poor or variable predictions in

the single predictor� Freund and Schapire ������ discuss some possibilities�

There are drawbacks to bagging or predictor aggregation in general� In the

tree!based context� bagging requires individual �subject� speci�c estimates

of the response� While these are readily available in classi�cation and regres�

sion settings� it is not immediately clear how this concept can be transferred

to a general survival setting with censored data� where population averaged

estimates and characteristics are usually provided�

The main problem with predictor aggregation is the loss of an intuitively

��



structured� simple predictor� This consequence becomes especially apparent

for trees� as there is simply no tree to display for the aggregated predictor�

Thus� while prediction is usually improved� understanding how the predictor

reaches its conclusions is hindered� This is a drastic drawback in disciplines

such as medicine� where improving understanding which prognostic factors

in�uence prognoses is one of the main goals�

To alleviate this problem� Wernecke� Possinger and Kalb ������ suggest what

amounts to counting and weighting speci�c split occurrences over numerous

�cross�validated� tree replicates� but at the cost of only allowing dichotomous

factors in the �rst place� thus reducing recursive partitioning to a variable

selection and interaction detection method�

In the next section we outline an approach that can potentially reduce pre�

dictive error by stabilizing individual splits� while at the same time keeping

the simple structure of a single tree!based predictor�

��� Node	level stabilization via the bootstrap

Stabilizing tree!based predictors by aggregating several slightly modi�ed ver�

sions leads to marked improvements in their predictive accuracy� The loss

of simple structure however can be anything from a nuisance to a major

problem� especially when focus is on understanding as well as on making

decisions� As was demonstrated in section 	� alot of the variability of trees

stems from the instability at the node!level� when selecting the factor and

cutpoint to split a population on� Thus if more stable splits could be found�

one could reduce variability while keeping the single tree�

Here we try an approach along these lines for the binary classi�cation simula�

tion of section 	�	� Using ��� bootstrap replicates of any node population� a

simple voting procedure is used to determine which factor is actually used to

split the node� Accordingly� the optimal cut�point is determined by taking

the median of the replicate cut�points for the chosen factor� Table � con�

trasts estimates of average classi�cation errors for a single tree� a bootstrap

�	



aggregated predictor and a tree based on node�level stabilization measures

described above� Numbers shown re�ect averages over �� independent runs

of the same procedure� Both optimistically biased resubstitution estimates

and errors for an independently drawn validation sample are shown� We rely

Table �� Average misclassi�cation rates ��� runs��

Method Resubstitution validation

estimate sample

single tree ����			 �������

bagging ������� ���	�		

node resampling ���
			 ����			

on the validation sample to compare performance� Note how the bootstrap

aggregated predictor leads to a drastic reduction in prediction error from

�� to less than 
 � but that node�level stabilization also reduces the error

to a competitive � � In addition� the node�level stabilized tree has kept its

simple� single tree structure and thus can easily be interpreted and commu�

nicated�

It must be mentionend that in contrast to bagging� node�level stabilization

can also lead to marked increase in errors in some situations� so care needs

to be taken when using this approach� More work needs to be done to

determine an optimal stabilized split� perhaps by making increased use of

information obtained by the diagnostic tools introduced earlier� Still� this

example demonstrates that approaches to stabilize trees without sacri�cing

their simple structure are feasible�

�




� Conclusion

We have supplied and reviewed methods for assessing and improving tree

performance� The simple diagnostics tools introduced allow thorough analy�

ses of split and factor importance stability� The general concept of obtaining

p�values via permutation techniques has proven to be �exible and computa�

tionally feasible�

Predictor aggregation works well for improving performance� but the loss of

simplicity is a severe problem� at least in the medical setting� The concept of

�representer trees
 in Breiman and Shang ������� wherein trees are used to

produce structurally understandable representations of arbitrarily complex

predictors may reduce this problem� but was not analyzed here�

Node�level stabilizing procedures appear to have potential but haven�t been

extensively studied yet� Another alternative to reduce variability caused

by arti�cial dichotomizations of metric factors could be to allow non�binary

splits� that is instantaneous partitions of a node into more than two sub�

groups� when the data indicate such a split to be called for� Here as with

node�level stabilizing procedures� there appears to be a need to extend re�

cursive partitioning procedures to look ahead more than one split at a time�

While computationally demanding� this approach should be able to better

determine whether a certain split really is preferable over another one in the

�long run
 or further down in the tree� eventually leading to better predic�

tion�
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