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Abstract

Stability aspects of recursive partitioning procedures are investi-
gated. Using resampling techniques, diagnostic tools to assess single
split stability and overall tree stability are introduced. To correct for
the procedure’s preference for covariates with many unique realiza-
tions, corrected p-values are used in the factor selection component of
the algorithm. Finally, methods to stabilize tree based predictors are

discussed.
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1 Introduction

Recursive partitioning methods or tree-structured algorithms offer a nonpara-
metric alternative to classic, parametric regression and classification meth-
ods. Their modular approach allows adapdation to other problems such as
survival analysis. In addition, the results of tree based analyses are easily
conveyed to nonstatisticians due to the intuitive binary tree structure of the

predictors obtained.

Along with the increased practical use of recursive partitioning methods
have come doubts concerning the reliability and stability of the procedure.
One source of such instability is the method’s tendency to overfit the data,
and care needs to be taken to assure overfitting is objectively avoided. How-
ever not all of the instability can be assigned to too large trees. Much of the
variance of these procedures is due to the often unnatural dichotomization of
metric covariates. Often the defining cut-points are highly variable, and due
to the hierarchical structure of tree based models, any change in a branch of
a tree will certainly affect lower portions of the same branch and thus the

predictor as a whole, reducing its predictive accuracy.

The aim of this paper is to introduce tools to assess such variability and
offer ways to overcome unneccessarily large prediction error. In section 2,
the components making up a tree-based algorithm are explained. Data from
a breast cancer study are then analyzed using trees. Section 3 demonstrates
what is meant by tree instability and offers simple node-level diagnostic tools
based on resampling techniques to assess split stability. In section 4, the
algorithm’s well known preference for metric factors with many unique real-
izations in the training set is discussed. Correct p-values are obtained not
through an adjustment of the raw p-values, but rather via a general, though
computationally expensive permutation approach. Section 5 discusses sta-

bilizing procedures for tree-structured predictors. In addition to reviewing



Breiman’s “bootstrap aggregation” suggestion, a node-level stabilizing ap-
proach is introduced. Finally, a conclusion and an outlook pointing out open

questions are given.

2 Recursive Partitioning

2.1 Data notation

The goal of recursive partitioning procedures is to predict an unknown quan-
tity y; of an individual ¢ based upon known realizations of p covariates
x = (21,...,7p);. In order to construct a predictor § := d(x), a learning
sample or training set L consisting of a group of elements of tuples (y,z)
with both y and x components known, is employed. Different scales of y
determine the type of the problem and tree. If y is categorical, the tree
produces a discriminant function assigning each individual to an estimated
class, if y is metric, d is a regression function. As will be shown later, if y
denotes possibly censored survival times, CART can be extended to handle

these data also and produce so called survival trees.

2.2 Algorithm

The most widely used incarnations of recursive partitioning procedures in
statistics go back almost exclusively to CART in Breiman, Friedman, Olshen
and Stone (1984). Since then, many extensions and improvements have been
suggested, altering some or all parts of the modular algorithm, but always
keeping the main idea of sequential binary partitioning followed by some form
of tree pruning to control overfitting. A thorough review with emphasis on

biostatistics can be found in Zhang, Crowley, Sox and Olshen (1997).
Tree growth

In the first step of the algorithm, the predictor space X is partitionend into

disjunct subspaces to either form groups of elements, called nodes, which



are homogenous with respect to the response variable of interest, or to form
subgroups with maximized between group heterogeneity. This is achieved by
splitting the population at a node into two subpopulations according to a
simple question about one of the covariates.

Formally, one constructs a set ) of split inducing binary questions of the
form 'Is X; € A7 where j € {1,...,p} and A C X. Observe that
Q =Q1UQU...UQ,, where each ); is the set of binary questions con-
cerning covariate j. For ordered covariates X;, the set of possible questions
reduces to 'Is X; < ¢?’, with ¢ taking on all values of covariate realizations for
elements in the current node. For unordered covariates, all possible divisions
of categories into two groups must be examined. Each of these questions in-
duces a candidate split ¢, sending elements belonging to A to the left sibling
node, others to the right.

For every ¢ € @, a goodness of split criterion GS(¢,q) is evaluated to de-
termine the best split of a node ¢. Usually this criterion will measure the
improvement in homogeneity of the resulting subgroups of a candidate split
with respect to the response, choosing the split which produces the most
homogenous sibling nodes. Similarily, goodness of split criteria have been
derived which maximize heterogeneity between subgroups. Common good-
ness of split criteria for classification are the y2-test for contingency tables
or the entropy measure. In the regression setting choices include the mean
squared error or least absolute deviations. The value of the split criterion is

recorded for each possible ¢ € () and the split
Qopt "= argrgleaé(GS(t, q)

is selected as the optimal split. This splitting process is recursively repeated
for the resulting subgroups, until it is determined that further partitioning
is not warranted. Checking if further splitting is warranted or possible usu-
ally involves enforcing stopping criteria such as a minimum node size n,,;,
and possibly a minimal value G'S,,,;,, of the optimal goodness of split. Nodes

which are not split again are called terminal nodes and form the final sub-
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groups.
Constructing a predictor from the terminal nodes

After a set of terminal nodes is obtained, the final step of characterizing the
elements of the terminal nodes or more precisely assigning the same estimate
g := d(z) for each element of a terminal node remains. In the classification
setting this will be an estimate of class membership, for regression an esti-
mated response value is produced. The result of such an algorithm can be

displayed in a binary tree structure.
Controlling tree size

Although naive predictors can be obtained by using just this first part of
the algorithm, it is well known that these trees aren’t flexible enough with
respect to model complexity. Depending on the stopping rule used to de-
termine whether a node is to be split again or not, the tree or some branch
of it, will tend to be too large or too small, either overfitting the data or
not capturing all the information contained in the learning sample. Thus a
two stage procedure to determine the final tree is usually used for tree size
or model selection. The first stage is as above but with sufficiently liberal
stopping rules ensuring that the tree obtained is in no case too small. The
second stage called cost-complexity pruning involves cutting down the tree to
the right size in a step-wise fashion via a complexity adjusted error estimate
of the tree

Ro(T) = R(T) + T}, (1)

where R(T) is the raw error measure, |T| denotes the number of terminal
nodes in the tree and « is the penalty weight. Minimizing (1) as « increases
from 0 until only the root node is left for a,,.., creates a nested sequence of
cost-complexity optimal trees for a finite sequence of fixed «.

To find the globally optimal tree, cross-validation techniques are used within
which auxillary trees are grown and subsequently pruned using the same

sequence of a’s obtained from pruning the original tree. For each « in the



sequence, the error rate of the pruned tree is estimated by the mean of the
error rates of the pruned auxillary trees, for which honest estimates of error
are available, since a portion of the learning sample L was left unused for
each auxillary tree. The tree found to have minimal crossvalidated error is

then chosen as the final tree or model.

2.3 Adaptation to survival data

One area where recursive partitioning methods have become widely used
is medicine and more specifically in a survival analytic context, where clini-
cians are interested in predicting prognosis based upon certain risk factors, or
more generally prognostic factors. Here, trees are especially appealing since
in addition to stratifying study populations into subgroups with distinctly
different risk expectations, they also allow simple and intuitive identification
of potential prognostic factors and their possible interactions. Moreover, the
suggestive, graphically intuitive structure of the predictor is a valuable tool
when discussing results with clinicians.

In order to be able to handle censored survival data, certain parts of the
CART algorithm need to be adapted. The construction of the set of candi-
date splits () remains unchanged in the survival analysis setting. In contrast,
the goodness of split criterion, the way elements of a terminal node are char-
acterized and to some degree the pruning method need to be adapted to the
survival data situation. Commonly used extensions of recursive partitioning
to the survival analysis setting can be found in Ciampi, Chang, Hogg and
McKinney (1987), LeBlanc and Crowley (1992) and LeBlanc and Crowley
(1993). To divide the population of a node into homogenous subpopulations,
the log-rank test or similar tests with prespecified weights and thus emphasis
on certain time periods are commonly used. For every possible candidate
split ¢ € @), the p-value of the log-rank test used on the induced subpopu-
lations is recorded. The best split g, is obtained for that ¢ which has the

smallest p-value. The split is then performed according to g, if the stop-



ping criteria aren’t met, otherwise the node is declared terminal.

The most pronounced alteration from regular CART occurs when assigning
estimated responses to elements of a terminal node. Here a single value usu-
ally does not suffice. Instead, Kaplan-Meier estimates of cumulative survival
for the populations of each terminal node, possibly along with estimates of
relative risk with respect to the overall population under a proportional haz-
ards assumption are given.

Cross-validation based pruning methods using proportional hazards martin-
gale residuals as error measures can be used to control tree size, although
enforcing a maximum optimal p-value of, 0.01 for example, is another pop-
ular way to restrict model complexity. However, this approach also suffers

from the lack of flexibility mentionend earlier.

2.4 Example: Breast cancer

To demonstrate the use of tree-based methods, we employ a survival analy-
sis example. The data come from a prospective study of 315 breast cancer
patients conducted at the Technische Universitat Miinchen. While the main
aim of the study is to identify prognostic factors in node-negative patients
(patients, where the cancer has not spread to neighboring lymph nodes), here
we include all patients for our illustration. The goal remains the same: we
wish to identify the main prognostic factors determining further prognosis,
that is factors which allow a prediction as to whether the patient will experi-
ence a relapse. For each patient, the minimum of time under observation and
time to relapse 17" and a censoring or event indicator ¢ discriminating tumor
relapse (0 = 1) or disease-free survival (0 = 0) are recorded. In addition, the
following covariates are provided on an individual basis: age of the patient
at surgery (AGE), size of tumor in centimeters, number of positive removed
lymph nodes (LY PO), progesteron and estrogen receptor states (DER and
DPR), menopausal status (M ENOP) and concentration of urokinase plas-
minogen activator (UPA) and its inhibitor (PAI) in the removed tumor
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Figure 1: Survival tree for breast cancer data.

tissue. The last two substances are thought to measure body stress and are
thus hoped to give an indication of the aggressiveness of the tumor.

A survival tree was grown on these data using the log-rank test as split crite-
rion and enforcing a minimum node-size n,,;, of 15 and a maximum, optimal
p-value (G'S,i) for the log rank tests of .05. The result is depicted in figure
1. One can now follow the tree based predictor down for each present or
future patient individually, branching off to the left or the right, according

to the splits on the respective covariates at the determined cut-points, until
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Figure 2: Kaplan-Meier estimates for the subpopulations induced by the

root-node split on lymph node status.

the individual finally arrives at a terminal node. For these nodes (as for
the nonterminal nodes), estimates of relative risks with respect to the total
learning sample and Kaplan-Meier estimates of cumulative survival can be
computed. Of course, any other suitable measure describing terminal node
populations could also be added. Relative risk estimates are shown for the
terminal nodes. Figure 1 also depicts remaining sample sizes and number of
events for each of the terminal nodes. Notice how PAI plays the most im-
portant role in further predicting prognosis in the left subbranch of the tree.
This influence however, seems ill-captured by the repetitive binary structure
of the tree, as four splits are necessary to depict the relationship.

Figure 2 contrasts the survival expectation of the root node (the whole

training set) with those of the two subpopulations induced by the split on



the dominating prognostic factor, the number of positive removed lymph
nodes. Observe the clear separation of the two groups, with patients with six
or less affected lymph-nodes having a markedly better prognosis than their
counterparts with seven or more affected nodes. By now, one has gained
alot of information: lymph-node status (LY PO) is the dominating factor
determining prognosis, so much so, that a stratified analysis seems called for.
Supporting this approach are the tree’s strong suggestions at interactions:
while PAI is important in the left branch of the tree, it plays no role in
determining outcome in the poor prognosis group (right branch) of the tree.
Finally, one worries that modelling PAI by a series of dichotomous factors
may not be appropriate.

We will try to shed some light on this and other problems in the next sections.

3 Node-level stability diagnostics

Tree based predictors produce suggestive results. The hierarchical ordering
of the included factors lends itself to assessments of factor importance, the
general notion being that the closer to the root node a factor appears, the
more important is its influence on the response. In addition, the dichotomiza-
tion of factors allow convenient interpretations of individuals falling below
or above a certain cutpoint. In a medical setting, factor realizations below
the cutpoint could be considered within the normal range and others in the
elevated or pathological range.

While these interpretations are tempting, they are routinely used without
any idea about the variability involved. This however may be just as dan-
gerous and misleading as ignoring available confidence regions within other
statistical estimation procedures. What one needs then, is some measure
of reliability and stability of the partitions chosen by the algorithm. Since
direct, analytical inference about the distributions involved is difficult if not
impossible due to the hierarchical dependence structures, resampling tech-

niques such as the bootstrap may offer a simple alternative.
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When CART partitions the population at a node into two sibling nodes, the
choice of the cutpoint determines which elements of the original node are
branched to the left, and which ones to the right. Any change in sibling
populations of course has an effect on future partitions. In some cases it
might be argued that such a cutpoint will be naturally given, such as when
the relationship between the factor and the response involves some sort of
threshold below which all values of the factor have roughly the same influence
on the response, and above which the relationship is essentially different. In
most situations however the relationship between a factor and the response
will be much more complex, making the process of finding a cutpoint or in-
deed determining whether an adequate cutpoint exists at all, difficult. While
recursive partitioning algorithms generally do a good job at the former, they
are usually not at all concerned with the latter. Instead, their data-driven,
black-box behaviour all but ensures that a critical reflection upon the choices
made is never done. This eventhough simple diagnostic tools can be made

available with little effort, as will be seen in the following section.

3.1 Graphing the split criterion

To start out, looking at a graph of the test-statistic plotted against realiza-
tions of the corresponding factor provides a first impression of the adequacy
of the chosen factor and its cutpoint. Figure 3 shows such a plot for the fac-
tor LY PO for the root node of the tree from figure 1. The chosen cutpoint
of 6.5 lymph nodes dominates the graph, and the choice appears obvious.
A rugplot of factor realizations further aids in assessing the resulting pro-
portions in the sibling nodes for a potential cutpoint. In contrast, figure 4
depicts the same graph, but for the covariate PAI at node 2. Two seperated
modes are visible and it is not at all clear, that the choice of 27.5 as used in
the tree displayed in figure 1 is reasonably stable or if a stable choice can be

found.

11
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3.2 Bootstrap confidence intervals for the cutpoints

To further this discussion we employ bootstrap techniques. Consider the
population L; C L of node ¢t. By drawing B (B large) bootstrap samples Lgb)
with b = 1,..., B, we can repeat the optimization process for all replicate
samples. As usual, we obtain bootstrap confidence intervals for the cutpoint
by selecting the appropriate quantiles of the empirical distribution F,; of the
bootstrapped cutpoints. Thus, a confidence interval at level v for a cutpoint
would be given by [Fr.(2), Fu (1 — 3)].

This method was employed for PAI at node 2. The results are shown in
figure 5, with a density smother having been applied to the bootstrap dis-
tribution of the cutpoints, and the 90% confidence interval from [12.8, 34.8]
included. At once, one can appreciate how highly variable a cutpoint for
pat is in this situation, as the confidence interval easily encompasses the two
modes. In addition, the seemingly optimal cutpoint will only slice off a dis-

proportionately small subgroup, in the process not revealing much structure.

3.3 Assessing factor importance rankings

So far, we have assumed the choice of the factor to be fixed in our discussion
of tree stability. We will now shift focus, and concentrate on the stability
of the process governing the choice of the covariate which is used to split a
node.

To illustrate the problem, we will leave the survival analysis setting for the
moment and instead simulate a binary classification problem. The train-

ing set includes 5 metric covariates, each uniformly and independently dis-
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Figure 5: Smoothed density of bootstrapped cutpoints (solid) along with
90% confidence region (dashed) and rugplot of PAI realizations in node 2.

tributed on [—1,1]. The response y is determined by

1, if (X1 <0AXy<0)V
Y= (X1 >0AXy>0)

0, else.
Thus, only two covariates have a systematic influence on the response while
the remaining three are added as noise to distract the algorithm.
The complete tree is not of interest here, we will return to it in section 5. For
now, we concentrate on the root node split instead, that is on the partition-
ing of the complete training set. Even without added noise variables, this
is a tough problem for recursive partitioning to handle, as there is no way
for it to uncover the structure of the boolean operators within a single split.
To see what happens, we again use node-level bootstrap replicates, this time
using B = 100 replicates.
Table 1 shows the number of times each covariate was used to split the root

node. As one might expect, the two factors actually involved in the boolean
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Table 1: Results for one simulation (100 bootstrap samples).

Covariate | number of times used
X 40
X5 36
Xy 13
X3 7
X5 4

combination appear roughly the same number of times. The disturbing ob-
servation is the fact, that for almost 25% of the replicate samples, a factor
which has no systematic influence whatsoever on the response is determined
as being most important. Nonsensical splits like these which depend com-
pletely on idiosyncrasies in the data, remain largely invisible when just a
single split is generated. In contrast, employing simple diagnostic tools as
described above in a thorough fashion, allows detection of splits which are
based on chance rather than structure.

In the next two sections, we will discuss methods, which reduce or at least
average out some of the variability uncovered in this section, and thus allow

for the construction of predictors with improved predictive accuracy.

4 How to account for the multiple testing sit-

uation

One difficulty with tree-based predictors is their bias towards selecting met-
ric covariates when partitioning the test sample. Due to the optimization
process which is started anew at every node when trying to find the best
binary split of elements in the sample, it is clear that continuous covariates
have a better chance of providing homogenous subgroups within the learning

sample, than categorical ones with only a few unique realizations. While this
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behaviour is justified to a certain extent as metric covariates do have the
potential of carrying more information, there is also the danger of locking
into chance idiosyncrasies in the training sample. One way this phenomenon
may show up in tree-structured classifiers is the so called end-cut preference
of split criteria. Often, structure in a factor is seemingly revealed by splitting
of one disproportionately small subpopulation whose size is near the mini-
mum nodesize limit, and one subpopulation still carrying the overwhelming
number of cases of the original node to be split. While modified split criteria
have been proposed to reduce this tendency by penalizing splits of unequal
proportions, the type of penalty function remains arbitrary and introduces
yet another algorithmic tuning parameter.

Another way of looking at this situation is by studying the distribution of
the split criterion, as is done naturally for test-based split criteria such as
the log-rank test in the survival analysis setting. The two sample log-rank
test is asymptotically x? distributed with one degree of freedom, but when
looking for the best split one does not perform one log-rank test on two pre-
specified, fixed populations, rather one shifts the two subpopulations through
all possible combinations until the pair producing the largest test statistic
is found. Obviously, for this maximally selected test statistic, the x? dis-
tribution will not hold, drawing into question the utility of comparing the
raw, unadjusted p-values between covariates with unequal numbers of unique
realizations. This is just another way of saying, that one expects a metric
covariate to do better when modelling a cutpoint in a flexible, completely
datadriven fashion. However, since covariates of different scales need to be
compared to assess the goodness of splits and for the algorithm to work,
adjusted or simply correct p-values are required.

Several methods for adjusting p-values have been proposed, Hilsenbeck and
Clark (1996) give a comparative review of possibilities for adjusting log-rank
test p-values. Here, we wish to demonstrate the use of permutation tech-
niques as proposed by LeBlanc and Crowley (1993) to obtain correct p-values

without actually basing these on the raw p-values. Although this procedure
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is computationally demanding, it naturally transfers to most any other split
criterion both within and outside the survival analysis setting.

Assume that optimal splits for node ¢ have been obtained for every covariate
resulting in maximized teststatistics GSpas(J,t) for j = 1,...,p. To esti-
mate correct p-values for the optimal split of each covariate, we will obtain
an estimate of the distribution of each of the teststatistics. We do this by de-
liberately breaking up the structure between the response y and the predictor
variables z. Since computational burdens usually don’t allow generation of
all possible recombined node ¢ populations and the calculation of the exact
distribution of the test-statistics is thus not feasible, a large number K of
random permutations are used instead. Note that the process of breaking up
the structure between y and x components of the training set is very general
and thus flexible and that in contrast to commonly used p-value adjustment
approaches, no further assumptions are neccessary.

Specifically for survival data, we permute the response component y = (7, J)
with the explanatory covariates x of the elements in . Now, for each of
these permuted node populations, we repeat the process of finding an op-
timal split in the exact same fashion as for the original data. Thus, one
receives an optimal split-criterion GiS* (7, t) for each covariate in the k-th
permutation, with £ = 1,..., K. We can now obtain an estimate of the

teststatistic distributions through their empirical distributions and use

max

kzl{]{GSk (j,t)ZGSmaz(jat)}} + 1

7Tadj(j): m+1

as an estimate for the p-value of G S,,4.(j,t). Then covariate j* with
*=arg min {m.gi(7)},
j g min {mag(j)}

is chosen to split node ¢ at the cutpoint obtained from optimizing in the orig-
inal data. If this split meets some sort of minimum improvement criterion
(GSmin) such as mag < .05, the split is performed, otherwise ¢ is declared

terminal. Note that in order to receive correct p—value estimates of adequate
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resolution, K must be chosen sufficiently large, otherwise it will be impossible
to distinguish between important factors with similarily small, raw p-values.
The correction term in (2) assures that the estimate will be conservative and
always at least equal to 1/(K +1).

To appreciate how p-value corrections or adjustments affect not only esti-
mates of effect size, but also directly influence tree structure, consider table
2 where the results of the split optimizations are depticted for node 3 of the
breast cancer tree from figure 1. Columns 2 and 3 show the apparent factor
importance rankings along with the raw p-values based on the x? distribution
assumption. Columns 4 and 5 impressively demonstrate the change in im-
portance rankings when estimates of correct p-values are used instead. The
seemingly most important factor PAI drops to third place and progesteron
receptor status, a binary factor, is determined as most important factor. No-
tice how the overoptimism in effect size (raw p-values) is drastically corrected

particularily for metric covariates, in addition to the change in rankings.

Table 2: Comparison of raw and corrected factor importance rankings and

p-values.
raw corrected
Factor | rank | p-value | rank | p-value
PAI 1 ] 0.000559 3 0.01
DPR 2 | 0.000604 1 0.0015
AGE 3 | 0.005873 6 | 0.06200
DER 4 | 0.006897 2 0.006
DHORM | 5 | 0.010612 4 0.0125
MENOP 6 | 0.012251 5 0.019
UPA 7 | 0.048851 8 0.312
LYPO 8 | 0.050768 7 0.2495
TUMOR | 9 0.37069 9 0.8925

18



5 Stabilizing predictors

While adjusting for different scalings of the factors studied with methods
such as the one described in the previous section helps reduce the number of
splits caused by artefacts in the training set, this approach can’t on its own
remove all or even most of the undesired variability of tree based prediction
rules. Consider for example the root node split characteristics of our first
simulation experiment in section 3.3: there simply is no single perfect or
correct split in this situation. Without some sort of averaging or stabilizing,
some structure (here: one part of the boolean relation) will inevitably be
missed.

To further demonstrate the need for such measures we conduct another simu-
lation experiment, this time within a survival analysis framework. The basic
ideas for the simulations are taken from LeBlanc and Crowley (1993). We
simulate three models generating exponentially distributed failure times for
individuals with 5 covariates each. All covariates are drawn iid. from the
uniform distribution on [0, 1]. Their influence on the intensity paramter A of
the failure time generating exponential distributions can be seen from table

3. Model A has a constant intensity of A = 1, thus none of the 5 covari-

Table 3: Construction of the three simulation models.

Model 0; = log(\;) No. of risk levels
A 0; = 0 1
B 91‘ = I{$1i§0.5ﬁl‘2i>0.5} 2
C 0; = 3x1; + x9; continuous

ates contain any useful information regarding survival expectation. Model
B produces failure times originating from one of two survival distributions
with log(\) either 0 or 1 depending on a boolean combination of two of the
five covariates. Lastly, model C uses exponential distributions with contin-

uously varying intensity parameters depending on x; and x5 in an additive
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fashion. Populations of sample size n = 500 were generated for each model.
The training sets were then used to construct survival trees using the log-
rank test as a split criterion, enforcing a minimum node size of n,,;, = 25
and pruning the trees via ten-fold cross-validation. The whole process was
repeated 1000 times for each model, and the resulting number of terminal
nodes was recorded for every tree. Table 4 shows the relative frequencies
obtained for the 1000 runs on each of the tree models.

As hoped for with model A data, the tree realizes there is nothing to split

Table 4: Relative frequencies of terminal nodes for 1000 trees for each model.

relative frequency of terminal nodes

Model 1 2 3 4 ) >6
A 96.0 | 1.2 | 2.8 0 0 0
B 32028 380|14.4| 64 | 64
C 0 0 | 3.6 |12.8]|14.0 | 69.6

the data on in more than 95% of the runs. Still, structure is suggested in 4%
of the simulations eventhough none is present. As for model B, the difficulty
recursive partitioning procedures have with boolean combinations becomes
apparent in the second row of table 4. One would hope for a large number of
trees with three terminal nodes, accepting the fact that the breakup of the
boolean combination requires one additional split and thus produces an extra
terminal node. Although this does occur in about 40% of the runs, the tree
still comes up with an unsatisfactory answer in the rest of the simulations.
On half of these, the tree doesn’t detect any structure in the data at all after
pruning. Finally, the results for model C show the tree’s clumsy attempts to
sequentially dichotomize a linear relationship in a stepwise fashion.

Thus, there is clearly a large amount of variability contained in tree-based
predictors and one is worried that this instability will degrade predictive ac-

curacy in addition to hindering correct conclusions about factor importance
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and adequate cutpoints. In what follows we describe two attempts to cap-
ture this variability and to stabilize tree-based predictors by averaging or

aggregating.

5.1 Tree-based predictor aggregation via the bootstrap

Demonstrating that trees are high variance, low bias procedures, Breiman
(1996) suggests growing numerous trees using a series of training sets and
then suitably aggregating these to form a single, stabilized predictor.

More formally, starting off with a series of learning samples L") with r =
1,..., R, using R = 50 for example, Breiman constructs R trees d") using
identical growing and pruning parameters which he then combines. The ex-
act method of aggregation depends on the response type. For the regression
case, the arithmetic mean is used, so that the aggregated predictor d, is
simply % Y& d™, while for the classification case a simple voting procedure
is invoked, so that d 4 assigns that class ¢ to an element which was predicted
most often in the R single predictors.

Using a bias—variance decomposition of prediction error and employing Jensen’s
inequality, Breiman is able to show that the prediction error of the aggre-
gated predictor possesses the prediction error of the single predictor as an
upper bound. In other words, the aggregated predictor is always at least as
good as the single one.

For this to work, one needs a series of training sets drawn independently
from the population €2. Since this luxury is never available save for simula-
tions, Breiman uses bootstrap replicate training sets drawn form the original
training set L as a substitute for repeatedly drawing from . Each of these
replicate samples are then used to grow trees, which are aggregated as above.
Eventhough now the prediction error of the single predictor need no longer
be worse than that of the bootstrap aggregated predictor, bagging performs

remarkably well in most situations. Only in cases where the single predictor
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is extremely stable will bagging decrease performance.

To demonstrate bootstrap aggregation, we return to our survival simulations
from section 5. Survival trees were grown on data generated from models A,
B and C. The trees were pruned using ten-fold cross-validation. Afterwards,
bagged predictors were constructed using R = 50 bootstrap replicates for
each model. To compare predictor performance, the mean squared error be-
tween predicted and observed failure times was computed. Table 5 shows the
results for the three situations. As expected for model A, bagging slightly
decreases tree performance, whereas for models B and C, bootstrap aggre-
gation is able to adequately average out the variability of single tree—based
predictors, resulting in moderate improvements.

Predictor aggregation procedures can be improved upon by invoking an

Table 5: Comparison of single, tree predictors and bagged predictors for

survival data.

Model || MSEingie(t,t) | MSEuggregatea(t, t) | Change
A 1.004 1.017 +1.3%
B 0.883 0.861 —-2.5%
C 0.80 0.74 —8.1%

adaptive resampling approach, where attention on stabilization is focused on
those regions of the training set that led to poor or variable predictions in
the single predictor. Freund and Schapire (1996) discuss some possibilities.
There are drawbacks to bagging or predictor aggregation in general. In the
tree-based context, bagging requires individual (subject) specific estimates
of the response. While these are readily available in classification and regres-
sion settings, it is not immediately clear how this concept can be transferred
to a general survival setting with censored data, where population averaged
estimates and characteristics are usually provided.

The main problem with predictor aggregation is the loss of an intuitively
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structured, simple predictor. This consequence becomes especially apparent
for trees, as there is simply no tree to display for the aggregated predictor.
Thus, while prediction is usually improved, understanding how the predictor
reaches its conclusions is hindered. This is a drastic drawback in disciplines
such as medicine, where improving understanding which prognostic factors
influence prognoses is one of the main goals.

To alleviate this problem, Wernecke, Possinger and Kalb (1996) suggest what
amounts to counting and weighting specific split occurrences over numerous
(cross-validated) tree replicates, but at the cost of only allowing dichotomous
factors in the first place, thus reducing recursive partitioning to a variable
selection and interaction detection method.

In the next section we outline an approach that can potentially reduce pre-
dictive error by stabilizing individual splits, while at the same time keeping

the simple structure of a single tree—based predictor.

5.2 Node-level stabilization via the bootstrap

Stabilizing tree-based predictors by aggregating several slightly modified ver-
sions leads to marked improvements in their predictive accuracy. The loss
of simple structure however can be anything from a nuisance to a major
problem, especially when focus is on understanding as well as on making
decisions. As was demonstrated in section 3, alot of the variability of trees
stems from the instability at the node-level, when selecting the factor and
cutpoint to split a population on. Thus if more stable splits could be found,
one could reduce variability while keeping the single tree.

Here we try an approach along these lines for the binary classification simula-
tion of section 3.3. Using 100 bootstrap replicates of any node population, a
simple voting procedure is used to determine which factor is actually used to
split the node. Accordingly, the optimal cut-point is determined by taking
the median of the replicate cut-points for the chosen factor. Table 6 con-

trasts estimates of average classification errors for a single tree, a bootstrap
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aggregated predictor and a tree based on node-level stabilization measures
described above. Numbers shown reflect averages over 50 independent runs
of the same procedure. Both optimistically biased resubstitution estimates

and errors for an independently drawn validation sample are shown. We rely

Table 6: Average misclassification rates (50 runs).

Method Resubstitution | validation
estimate sample
single tree 0.18333 0.26067
bagging 0.01667 0.03533
node resampling 0.04333 0.06333

on the validation sample to compare performance. Note how the bootstrap
aggregated predictor leads to a drastic reduction in prediction error from
26% to less than 4%, but that node-level stabilization also reduces the error
to a competitive 6%. In addition, the node-level stabilized tree has kept its
simple, single tree structure and thus can easily be interpreted and commu-
nicated.

It must be mentionend that in contrast to bagging, node-level stabilization
can also lead to marked increase in errors in some situations, so care needs
to be taken when using this approach. More work needs to be done to
determine an optimal stabilized split, perhaps by making increased use of
information obtained by the diagnostic tools introduced earlier. Still, this
example demonstrates that approaches to stabilize trees without sacrificing

their simple structure are feasible.
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6 Conclusion

We have supplied and reviewed methods for assessing and improving tree
performance. The simple diagnostics tools introduced allow thorough analy-
ses of split and factor importance stability. The general concept of obtaining
p-values via permutation techniques has proven to be flexible and computa-
tionally feasible.

Predictor aggregation works well for improving performance, but the loss of
simplicity is a severe problem, at least in the medical setting. The concept of
“representer trees” in Breiman and Shang (1996), wherein trees are used to
produce structurally understandable representations of arbitrarily complex
predictors may reduce this problem, but was not analyzed here.

Node-level stabilizing procedures appear to have potential but haven’t been
extensively studied yet. Another alternative to reduce variability caused
by artificial dichotomizations of metric factors could be to allow non-binary
splits, that is instantaneous partitions of a node into more than two sub-
groups, when the data indicate such a split to be called for. Here as with
node-level stabilizing procedures, there appears to be a need to extend re-
cursive partitioning procedures to look ahead more than one split at a time.
While computationally demanding, this approach should be able to better
determine whether a certain split really is preferable over another one in the
“long run” or further down in the tree, eventually leading to better predic-

tion.
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