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The initial stages of preprotein import into chloroplasts are mediated by the receptor GTPase Toc159. In Arabidopsis
thaliana, Toc159 is encoded by a small gene family: atTOC159, atTOC132, atTOC120, and atTOC90. Phylogenetic analysis
suggested that at least two distinct Toc159 subtypes, characterized by atToc159 and atToc132/atToc120, exist in plants.
atTOC159 was strongly expressed in young, photosynthetic tissues, whereas atTOC132 and atTOC120 were expressed at
a uniformly low level and so were relatively prominent in nonphotosynthetic tissues. Based on the albino phenotype of its
knockout mutant, atToc159 was previously proposed to be a receptor with specificity for photosynthetic preproteins. To
elucidate the roles of the other isoforms, we characterized Arabidopsis knockout mutants for each one. None of the single
mutants had strong visible phenotypes, but toc132 toc120 double homozygotes appeared similar to toc159, indicating
redundancy between atToc132 and atToc120. Transgenic complementation studies confirmed this redundancy but revealed
little functional overlap between atToc132/atToc120 and atToc159 or atToc90. Unlike toc159, toc132 toc120 caused
structural abnormalities in root plastids. Furthermore, when proteomics and transcriptomics were used to compare toc132
with ppi1 (a receptor mutant that is specifically defective in the expression, import, and accumulation of photosynthetic
proteins), major differences were observed, suggesting that atToc132 (and atToc120) has specificity for nonphotosynthetic
proteins. When both atToc159 and the major isoform of the other subtype, atToc132, were absent, an embryo-lethal
phenotype resulted, demonstrating the essential role of Toc159 in the import mechanism.
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although preprotein translocation can still occur (Chen et al.,
2000). Recently, a soluble pool of Toc159 protein was detected in
the cytosol (Hiltbrunner et al., 2001b), and it was proposed that
Toc complex assembly is a dynamic process involving switching
of Toc159 between a soluble form and an integral membrane
form (Bauer et al., 2002; Smith et al., 2002). Toc159 might
therefore be important for guiding preproteins from the cytosol to
the translocon. However, the biological relevance of the soluble
Toc159 pool has been questioned (Becker et al., 2004).

In Arabidopsis thaliana, both Toc-GTPases are encoded by
small gene families (Jarvis et al., 1998; Bauer et al., 2000;
Gutensohn et al., 2000; Hiltbrunner et al., 2001a; Jackson-
Constan and Keegstra, 2001). Arabidopsis has four Toc159
homologs (atToc159, atToc132, atToc120, and atToc90) and
two Toc34 homologs (atToc33 and atToc34). Several studies
have attempted to address the reason for the existence of
multiple Toc-GTPase isoforms in Arabidopsis. Characterization
of an atToc159 knockout mutant, termed ppi2, led to the
hypothesis that atToc159 might be a receptor with specificity
for highly abundant, photosynthetic proteins (Bauer et al., 2000).
In ppi2 plants, the differentiation of proplastids into chloroplasts
is blocked, leading to a striking albino phenotype, although root
plastids appear to develop normally (Bauer et al., 2000; Yu and
Li, 2001). Photosynthetic genes were transcriptionally repressed
in ppi2, and the accumulation of photosynthetic proteins was
greatly reduced in the mutant, whereas nonphotosynthetic
genes were unaffected (Bauer et al., 2000). Further evidence
for the existence of an import pathway with preference for
photosynthetic precursors was gained by detailed studies on the
atToc33 knockout mutant ppi1 (Jarvis et al., 1998; Kubis et al.,
2003). Using proteomics, transcriptomics, and in vitro import
assays, ppil was shown to be specifically defective in the
expression, chloroplast import, and accumulation of photosyn-
thetic proteins (Kubis et al., 2003). By extrapolation from these
data, it was proposed that atToc132, atToc120, and atToc34
might be preferentially involved in the import of nonphotosyn-
thetic proteins (Bauer et al., 2000; Kubis et al., 2003).

Whereas the function of atToc159 has previously been in-
vestigated using the ppi2 mutant (Bauer et al., 2000), similar
molecular-genetic studies of the other three Arabidopsis Toc159
homologs had not been reported until very recently. We therefore
conducted a comprehensive study of all four Arabidopsis Toc159
isoforms, using phylogenetics, gene expression studies, and
knockout mutants for each component. In parallel with us,
another laboratory independently conducted a similar study of
the Arabidopsis Toc159 gene family and reached very similar
conclusions (lvanova et al., 2004). The results of lvanova et al.
(2004) are therefore discussed extensively throughout this report.

RESULTS

Phylogenetic Analysis of the Arabidopsis Toc159
Gene Family

In Arabidopsis, as mentioned above, four Toc159-related pro-
teins are present (Bauer et al., 2000; Hiltbrunner et al., 2001a). All
four proteins exhibit a characteristic tripartite structure, consist-

ing of an N-terminal acidic domain (A-domain), a central GTP
binding domain (G-domain), and a C-terminal membrane-anchor
domain (M-domain) (Chen et al., 2000), although the A-domain is
greatly reduced in atToc90. Sequence similarities vary between
the domains, with the G- and M-domains displaying significantly
higher sequence conservation than the A-domain. The two most
similar proteins, atToc132 and atToc120, share 93.4% identity
within the G-domains and 68.9% identity over their entire length.
Amongst the other proteins, G-domain sequence identities range
from 44.3% (between atToc159 and atToc90) to 58.1% (between
atToc159 and atToc120); identities between the full-length
proteins range from 30.5% (between atToc159 and atToc90) to
36.7% (between atToc159 and atToc120).

To look at the relatedness and evolution of the different Toc-
GTPases, we constructed a phylogenetic tree using only the
G-domain sequences of the different proteins because the
G-domain is present and of a similar length in all proteins
(Figure 1). In addition to the previously described Arabidopsis
and pea proteins, Toc159- and Toc34-related proteins from the
monocotyledonous species rice (Oryza sativa) and maize (Zea
mays) were included as well as H-Ras p21, a GTPase from
human, which was used as an outgroup. Although a similar
phylogenetic study was conducted by Hiltbrunner et al. (2001a),
the reliability of the predicted clades was not tested by bootstrap
analysis, and monocotyledonous sequences were not included.
In both studies, two major branches were observed, which
correspond to the two main groups of Toc-GTPases: Toc159-
related proteins (atToc159, atToc132, atToc120, atToc90,
psToc159, osToc86-like_1, and osToc86-like_2 in Figure 1)
and Toc34-related proteins (atToc33, atToc34, psToc34,
zmToc34-1, and zmToc34-2 in Figure 1).

The phylogenetic tree reflects the sequence identities ob-
served within the Arabidopsis sequences. Arabidopsis atToc132
and atToc120 are within the same clade and, together with one of
the rice Toc86-like proteins, form one subgroup of Toc159-
related proteins. The other subgroup is comprised of atToc159,
psToc159, and the other rice Toc86-like protein. All branches are
supported by very high bootstrap values as indicated. The
groupings imply that the Toc159 family diverged into two distinct
subfamilies (atToc159-like and atToc132/atToc120-like) before
species divergence occurred in a common ancestor of mono-
cotyledonous and dicotyledonous species. This implies that
there are at least two, fundamentally different subtypes of
Toc159-related proteins in plants. By contrast, the data suggest
that the Arabidopsis Toc34-related protein family formed later,
after species divergence. Although atToc90 shows the lowest
sequence identity to the other three Arabidopsis Toc159-related
proteins, it clearly belongs to the Toc159 family.

Expression Profiles of the Arabidopsis Toc159
Homologous Genes

To gain an insight into the possible different functions of the four
Arabidopsis Toc159-related proteins, we investigated their
mRNA expression patterns in different tissues and at different
developmental stages. Previous studies only compared three of
the four genes (@tTOC159, atTOC132, and atTOC120) in whole
seedlings (Bauer et al., 2000) or mature leaves and roots (Yu and
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Figure 1. Phylogenetic Analysis of Toc-GTPases from Arabidopsis and
Other Species.

Amino acid sequences of the G-domains (equivalent to residues 828 to
1062 of psToc159) of Toc159 and Toc34 homologs from different
species were aligned and used to produce a phylogenetic tree. Numbers
of mutations are given above the clades, with bootstrap values below.
Genes and accession numbers of the sequences used are as follows:
atToc159, At4g02510; atToc132, At2g16640; atToc120, At3g16620;
atToc90, At5g20300; atToc33, At1g02280; atToc34, At5g05000;
psToc159, AAF75761; psToc34, Q41009; osToc86-like_1, AAG48839;
osToc86-like_2, AAK43509; zmToc34-1, CAB65537; zmToc34-2,
CAB77551; H-Ras p21, PO1112. Species of origin of the sequences
are indicated as follows: at, Arabidopsis thaliana; ps, Pisum sativum; os,
Oryza sativa; zm, Zea mays. H-Ras p21 is from human.

Li, 2001) by RT-PCR. We examined the expression patterns by
comparative RNA gel blot analysis (Figure 2A). Identical RNA gel
blots were probed in parallel using identically labeled cDNA
probes for the four genes (see Methods). Quantification was
performed using equivalent exposures of each blot, and the data
were normalized for 28S rRNA (Figure 2B).

The atTOC159 gene is the most regulated of the four: it is
expressed highly in young, rapidly dividing photosynthetic tis-
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sues and at much lower levels in mature tissues and nonphoto-
synthetic tissues (Figure 2B). By contrast, the other three genes,
atTOC132, atTOC120, and atTOC90, show relatively uniform
levels of expression in all tested tissues (Figure 2B). Expression
of atTOC132 is much lower than atTOC159 expression in most
tissues but always higher (5- to 10-fold) than the expression
of atTOC120. In 10-d-old seedlings, expression of atTOC159
is approximately eightfold higher than atTOC132 expression,
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Figure 2. Expression Profiles of the Four Arabidopsis Toc159 Homolo-
gous Genes.

(A) Fifteen-microgram samples of total RNA isolated from the indicated
Arabidopsis tissues were analyzed by RNA gel blotting. RNA was
isolated from wild-type seedlings grown in vitro for 10 d in the light
(10d), from three different tissues of 28-d-old wild-type plants grown on
soil (rosette leaves, young inflorescence tips, and roots), and from the
four original Toc159 homolog knockout mutants (Figure 3A) grown in
vitro for 10 d in the light. Filters were probed using 32P-labeled gene-
specific probes of similar lengths with identical specific activities. rRNA
(28S) was used as a loading control. The images shown were obtained
after 10-d or 22-d exposures, as indicated, but quantifications were
performed using identical exposures.

(B) Relative levels of expression of the atTOC159, atTOC132, atTOC120,
and atTOC90 genes, normalized for 28S rRNA, are shown in the chart; y
axis values between ~55 and ~95 have been removed to aid visual-
ization.
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which is in agreement with the data shown by Bauer et al. (2000).
In roots, however, atTOC159 is downregulated, and expression
of atTOC132 is actually higher than that of atTOC159, suggesting
that atToc132 (and its close relative, atToc120) might be relatively
more important than atToc159 in this tissue. These results are
broadly consistent with those presented by Ivanova et al. (2004).

Overall, the expression profiles of atTOC159 and atTOC132/
atTOC120 parallel those of atTOC33 and atTOC34, respectively
(Kubis et al., 2003), which is consistent with the hypothesis that
atToc159 is involved preferentially in the import of highly abun-
dant, photosynthetic proteins and that atToc132 and atToc120
are involved preferentially in the import of nonphotosynthetic
proteins (Bauer et al., 2000). Interestingly, atTOC90 is expressed
at a uniformly high level throughout development (Figure 2B),
suggesting that atToc90 may not exhibit similar substrate spec-
ificity.

Visible Phenotypes of Toc159 Homolog Knockout Mutants

Todirectly address the hypothesis that different Toc159 isoforms
are involved preferentially in import pathways with different
preprotein recognition specificities, we identified Arabidopsis
knockout mutants lacking each Toc159 isoform; the atToc159
knockout mutant ppi2 has been described previously (Bauer
et al., 2000) and was kindly provided by Felix Kessler. Previously
identified mutants affecting the import apparatus were referred
to as ppi (Jarvis et al., 1998; Bauer et al., 2000; Constan et al.,
2004) because the toc name had already been used to describe
circadian clock mutants (Millar et al., 1995). However, the use of
different names for corresponding mutants and proteins would
become confusing when dealing with multiple components, and
so the mutants described in this report are referred to using the
names of the corresponding proteins (Schnell et al., 1997;
Jackson-Constan and Keegstra, 2001); for the sake of consis-
tency, the ppi2 mutant is referred to here as toc7159. Because
atToc132 and atToc120 knockout mutants (termed attoc132-1
and attoc120-1) were recently described by lvanova et al. (2004),
we refer to the primary, equivalent mutants described in this re-
port as toc132-2 and toc120-2. The toc 159, toc132-2, toc120-2,
and toc90-1 mutants each contain a single-locus T-DNA in-
sertion (Figure 3A, Table 1) and are null for the corresponding full-
length mRNA as revealed by RNA gel blot analysis (Figure 2A). A
shorter transcript was observed in the toc732 mutant (data not
shown), which presumably corresponds to transcription of
atTOC132 up to the T-DNA insertion site. A truncated protein
encoded by this short transcript would lack part of its GTP
binding domain and its entire membrane domain, and it is
unlikely that it would be functional (Bauer et al., 2002; Lee et al.,
2003).

The visible phenotypes of the original four mutants are shown
in Figure 3. The strong albino phenotype of the ftoc759 mutant
has been described previously and is consistent with the pro-
posed role of atToc159 as the major receptor for photosynthetic
protein import (Bauer et al., 2000). The toc732 mutant has a very
slight pale phenotype in young plants (Figure 3B), which devel-
ops into a clear yellow-green, somewhat reticulate phenotype in
mature plants (Figures 3D and 3E). By contrast, the toc720 and
toc90 mutants were indistinguishable from the wild type through-

out development (Figures 3B and 3D). To confirm these visible
phenotypes, we identified additional, independent alleles of
toc132, toc120, and toc90 (Figure 3A). The toc132-3 mutant
had exactly the same yellow-green, reticulate phenotype as
toc132-2 (see Supplemental Figure 1 online), and the toc120-3,
toc90-2, and toc90-3 mutants all appeared exactly the same as
wild-type plants (data not shown). Unless stated otherwise, all of
the data presented in this article were derived using the originally
identified mutant alleles (i.e., toc132-2, toc120-2, and toc90-1).

The phenotypes of the four original mutants were quantified by
making chlorophyll measurements (Figure 4A). As expected,
wild-type amounts of chlorophyll per unit of fresh weight were
observed in the toc120 and toc90 mutants. By contrast, signif-
icantly reduced chlorophyll levels were present in 24-d-old
toc132 plants (~70% of the wild-type concentration), and only
trace amounts of chlorophyll were present in toc 159 plants of the
same age (<1% of the wild-type concentration) (Figure 4A).

Our observation that atToc120 knockout mutants display
neither a visible phenotype nor a chlorophyll deficiency pheno-
type is entirely consistent with the results of lvanova et al. (2004).
However, whereas these authors reported that an atToc132
knockout mutant was indistinguishable from the wild type
(Ilvanova et al., 2004), we observed a clear, visible phenotype in
two independent atToc132 knockout mutants (Figure 3; see
Supplemental Figure 1 online) and a chlorophyll deficiency
phenotype in the toc132-2 mutant (Figure 4). The reason for this
apparent discrepancy is not clear. One possibility is that the
phenotypic differences reflect the different genetic backgrounds
of the mutants. Whereas the toc132-2 and toc 132-3 mutants are
of the Columbia-0 (Col-0) ecotype, the attoc132-1 mutant de-
scribed by Ivanova et al. (2004) is of the Wassilewskija (Ws)
ecotype, and it is well documented that Col-0 is genetically
divergent from many other Arabidopsis ecotypes, including Ws
(Barth et al., 2002). Another possibility is that the different
observations reflect different plant growth conditions because
we repeatedly observed that the toc732 mutant phenotype
becomes clear only after a significant period of growth on soil.

Genetic Interactions between the Knockout Mutations

To assess the functional relationships amongst the Arabidopsis
Toc159-related proteins, the four knockout mutants were
crossed to each other in all pairwise combinations. For these
experiments, a 7X Col-0 introgressed toc159 line was used
(Table 1) because this mutant was originally of the Ws ecotype
and all of the other mutants were of the Col-0 ecotype. All
crosses were analyzed in the F2 and F3 generations for novel
phenotypes and using appropriate single or double antibiotic
selection media. To confirm the genotypes of putative double
mutants, PCR analysis was performed using appropriate gene-
specific and T-DNA-specific primers. The results of these
various double mutant studies are discussed below and in the
following sections.

In F2 families derived from crosses between toc90 and toc132
or toc120, individuals that were homozygous for both mutations
could be identified in each case. The toc720 toc90 double
mutant did not exhibit any new visible phenotypes and appeared
exactly the same as wild-type plants (Figure 3D). This phenotypic
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Figure 3. Visible Phenotypes of the Toc159 Homolog Knockout Mutants.

(A) Schematic diagrams showing the structure of the four Arabidopsis Toc159-related genes and the location of each T-DNA insertion. Protein-coding
exons are represented by black boxes, and untranslated regions are represented by white boxes; introns are represented by thin lines between the
boxes. T-DNA insertion sites are indicated precisely, but the insertion sizes are not to scale. ATG, translation initiation codon; stop, translation
termination codon; p(A), polyadenylation site; LB, T-DNA left border; RB, T-DNA right border.

(B) Homozygous, single knockout mutant seedlings grown in vitro alongside the wild type.

(C) Pale and bleached toc 132 toc120 double mutant seedlings grown in vitro alongside the wild type. The double mutants shown were homozygous for
toc132 and heterozygous for toc120 (toc132/toc132; +/toc120; pale) or homozygous for both mutations (toc132 toc120; bleached).
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Table 1. Genetic Analyses of the Toc159 Homolog Knockout Mutants

Resistant (if Plated
on Selection)

Genotype Selection Green? Albino Total Resistant Sensitive Green:Albino Resistant:Sensitive
toc159 (ppi2, Col-0) None 856 286 -b - 3.00:1.00 -
Kanamycin 395 155 550 222 2.00:0.78 2.48:1.00
toc132, T3 None 4442 0 - - oo -
Phosphinothricin 15432 0 1543 487 o 3.17:1.00
toc120, T5 None 393 0 - - 0 -
Hygromycin 446 0 446 165 o 2.70:1.00
toc90, T4 None 489 0 - - oo -
Phosphinothricin 732 0 732 215 0 3.40:1.00

aScoring of phenotypes was conducted after 10 d of growth in vitro, and so green plants here include toc132 homozygotes, which exhibit only slight

chlorosis at the seedling stage.
b Not determined.

normality was reflected in the unchanged chlorophyll levels of the
double mutant (Figure 4A). Similarly, the toc7132 toc90 double
mutant displayed the same visible phenotype and chlorophyll
concentration as the toc132 single mutant (Figures 3D and 4A).
Thus, our data indicate that there is no significant functional
overlap or redundancy between atToc90 and atToc120 or
atToc132.

The toc132 toc120 Double Homozygote Appears Similar
to toc159

When the F2 progeny of crosses between toc732 and toc120
were scored after 10 d of growth in vitro, all individuals could be
placed into one of three discrete, phenotypic classes, termed
green, pale, and bleached (Table 2); at this early stage of devel-
opment, the visible phenotype of toc132 is slight and difficult
to score (Figure 3B), and plants classified as green here also
included toc132 homozygotes. No individuals falling outside of
these three phenotypic classes were observed. All 18 pale
individuals tested by PCR were found to be homozygous for
toc132 and heterozygous for toc120 (genotype: toc132/toc132;
+/toc120), whereas all five bleached individuals tested were
found to be homozygous for both mutations (genotype: toc132/
toc132; toc120/toc120). The ratio observed between these three
phenotypes in the F2 generation (Table 2) supports the hypoth-
esis that all pale and bleached individuals have these genotypes
(the expected ratio is 13:2:1). The segregation ratios of the pale,
bleached, and antibiotic resistance phenotypes in the F3 gener-
ation further confirmed the genotypes associated with these
novel phenotypes (Table 2).

Our identification of a viable toc132 toc120 double homozy-
gote conflicts with the results of Ivanova et al. (2004) because
these authors reported that this genotype causes lethality during
embryogenesis or early seedling growth. To further confirm our
results, we crossed the foc132-3 and toc 120-3 mutants with the
original toc120-2 and toc132-2 mutants, respectively, and ana-
lyzed the resultant F2 populations. In both cases, green, pale, and
bleached plants were once again observed at the expected
frequencies (13:2:1; Table 2). Furthermore, when 20 pale plants
and 25 bleached plants from the toc132-2 X toc120-3 F2
population were genotyped by PCR, all of the pale plants were
found to be homozygous for the toc132 mutation and heterozy-
gous for toc120, and all of the bleached plants were found to be
doubly homozygous. We therefore conclude that the toc132
toc120 double homozygous genotype is not lethal in the Col-0
background. The reason for the discrepancy between our data
and those of lvanova et al. (2004) is not clear, but it is once again
possible that the phenotypic differences reflect genetic dissim-
ilarities between the Col-0 and Ws ecotypes (Barth et al., 2002) or
different plant growth conditions.

The pale phenotype of toc132 toc120 heterozygotes (geno-
type: toc132/toc132; +/toc120) is clearly visible at the seedling
stage, especially in the cotyledons (Figure 3C), and remains so
throughout development (Figure 3D). This phenotype is signifi-
cantly more severe than that of the toc 7132 single mutant, and this
is reflected in the reduced chlorophyll levels of the double mutant
(Figures 4A to 4C): the toc132 toc120 heterozygote contains
~34 to 37% of the wild-type chlorophyll concentration through-
out development. Although we occasionally observed some very
subtle variegation of the leaves of toc132 toc120 heterozygous

Figure 3. (continued).

(D) Mature (24-d-old) single and double mutants. Apart from the individual labeled toc 132/toc132; +/toc120, all plants shown were homozygous for the
indicated mutations. Plants were germinated in vitro and transferred to soil (or, in the case of toc132 toc120 and toc 159, to medium containing 3% [w/V]

sucrose) after 10 d of growth.

(E) Rosette leaves of the toc132 single mutant have a reticulate appearance.

(F) The toc 132 toc 120 double homozygote is able to survive to maturity on soil. The double mutant was allowed to establish itself on medium containing

3% (w/v) sucrose for 2 weeks before transfer to soil.
Bars = 5 mm.
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Figure 4. Chlorophyll Accumulation in the Toc159 Homolog Knockout
Mutants.

The chlorophyll contents of 10-d-old (B) and 24-d-old ([A] and [C]) plants
are shown. The charts in (B) and (C) have a dual y axis, such that the right
side of each chart is at 10-fold higher magnification than the left side. The
data shown in (C) are also shown in (A). All values shown are means
(D) derived from five independent samples.

plants (data not shown), we never observed the strongly varie-
gated phenotype reported by lvanova et al. (2004). Again, this
phenotypic difference may be because of the use of different
plant growth conditions or genetic differences between the
Col-0 and Ws ecotypes.

The toc132 toc120 double homozygote has a very strong
visible phenotype that is almost as severe as that of the toc759
mutant (Figures 3B to 3D). Its chlorophyll concentration is only
~10% of that present in the toc132 toc120 heterozygote
(genotype: toc132/toc132; +/toc120) but still threefold to four-
fold higher than that present in toc159 (Figures 4A to 4C). Thus,
unlike toc159, the toc132 toc120 double homozygote is able to
survive to maturity on soil (Figure 3F) if first allowed to establish
itself on medium containing 3% sucrose.

The progression of phenotypic severity in homozygous toc132
mutants lacking either one (genotype: toc132/toc132; +/toc120)
or both (genotype: toc132/toc132; toc120/toc120) atTOC120
alleles clearly demonstrates the existence of substantial func-
tional overlap between atToc132 and atToc120.

The toc159 toc132 Double Homozygote Is Embryo Lethal

To investigate the functional relationships between atToc159
and the other three proteins, we crossed the toc759 (Col-0)
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mutant to toc132, toc120, and toc90. In the F2 generation of
each cross, plants that were homozygous for toc132, toc120, or
toc90 and heterozygous for toc 159 were identified by scoring for
the appropriate antibiotic resistance phenotypes and by con-
ducting PCR analysis. The F3 progeny of these plants were then
examined carefully for evidence of genetic interactions. Rela-
tively normal frequencies of albino toc759 homozygotes were
observed in the progenies of the toc720 and toc90 crosses
(Table 3), and, when these double homozygotes were grown to
maturity alongside toc 159 single mutants (on medium containing
3% sucrose), no obvious effects of the toc 120 or toc90 mutations
on toc159 phenotypic severity could be observed (data not
shown).

Interestingly, when the F3 progeny of the toc759 X toc132
crosses were examined, no albino plants were observed (Table
3). Because toc 159 homozygotes would normally be expected to
occur at a frequency of 25% in the F3 generation, the chances of
observing no albinos in the total scored population of 2108 plants
(Table 3), because of random chance alone, is essentially zero
(x?2 = 702.667, df = 1, P value = 0.000). Thus, the data suggest
that the toc159 toc132 double homozygous mutation is lethal
during some early stage of development. Because plastids are
known to play an important role during embryo development
(Uwer et al., 1998; Apuya et al., 2001; Constan et al., 2004), we
suspected that the defect might be occurring during embryo-
genesis. Consistent with this hypothesis, aborted seeds were
observed at a frequency of exactly 25% in the siliques of F3
plants having the genotype +/toc159; toc132/toc132 (Figure 5).
Taken together, these data provide strong evidence for the
embryo lethality of the toc159 toc132 double homozygous
genotype.

In summary, our double mutant studies provided clear evi-
dence for functional redundancy between the close relatives
atToc132 and atToc120. No evidence for functional overlap
between atToc159 and atToc120, or between atToc90 and any
other protein, was observed. The lethality of the toc759 toc132
genotype can be interpreted in two different ways: (1) it reflects
the disruption of import of a broad range of precursor types
through two different import pathways and indicates minimal
functional overlap between atToc159 and atToc132; (2) it reflects
a severe or complete block in a single import pathway that is only
partially disrupted in either single mutant and indicates signifi-
cant functional redundancy between atToc159 and atToc132.
Considering the sequence similarities between the atToc159,
atToc132, and atToc120 proteins, and their relative levels of
expression, the former explanation seems the most likely to be
correct.

Transgenic Complementation Studies

To corroborate our findings on the functional relationships
between atToc132, atToc120, and atToc90 and to differentiate
between the two possible explanations for the embryo lethality of
the toc159 toc132 genotype, we conducted transgenic comple-
mentation studies. All four Arabidopsis Toc159-related proteins
were expressed under the control of the strong, constitutive,
Cauliflower mosaic virus 35S promoter in two different mutant
backgrounds: (1) the toc159 single mutant background; (2) the
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Table 2. Genetic Analyses of Interactions between the toc732 and toc720 Mutations

Resistant (if Plated on Selection)

Genotype Selection Green? Pale Bleached Total Resistant Sensitive Green:Pale:Bleached Resistant:Sensitive
toc132-2 X toc120-2, F2 None 5562 88 9 -b - 13.00:2.06:0.21 -
toc132-2 X toc120-3, F2 None 3172 53 25 - - 13.00:2.17:1.03 -
toc132-3 X toc120-2, F2 None 5592 72 45 - - 13.00:1.67:1.05 -
toc132-2 X toc120-2, F3° None 1082 190 55 - - 1.00:1.76:0.51 -
Phosphinothricin 1252 217 30 372 0 1.00:1.74:0.24 o
Hygromycin 0 229 76 305 109 0.00:2.00:0.66 2.80:1.00

2Scoring of phenotypes was conducted after 10 d of growth in vitro, and so green plants here include toc732 homozygotes, which exhibit only slight

chlorosis at the seedling stage.
b Not determined.
¢The data shown describe the progeny of pale F2 plants.

toc132 toc120 double mutant background. The atTOC90 cDNA
used in these experiments (accession number AV548084) was
recently shown to be truncated at the 5’ end by the identification
of a slightly longer clone (accession number NM_122037).
However, the former encodes a protein that is only 14 residues
shorter (779 residues) than that encoded by the full-length clone
(793 residues). Because this small, N-terminal deletion does not
impinge upon the G-domain and because atToc159 mutants
completely lacking the N-terminal A- or A+G-domains are active
in vivo (Bauer et al., 2002; Lee et al., 2003), it seems unlikely that
this mutation would strongly affect protein activity.

At least 10 independent transgenic lines were identified for
each transgene/mutant combination. From these 10 lines, be-
tween four and six lines were selected for detailed analyses in
each case. Lines were selected at random and were phenotyp-
ically representative of the entire set. In the selected lines, the
degree of complementation of the mutant phenotypes was
quantified by making chlorophyll measurements, and the extent
of transgene overexpression, relative to the wild type, was
assessed using semiquantitative RT-PCR (Figure 6).

The results obtained from the toc759 complementation ex-
periments were clear. All five selected 35S-atTOC159 lines
displayed essentially wild-type chlorophyll concentrations (Fig-
ure 6A). These complemented plants were homozygous for the
toc159 mutation (as revealed by segregation analysis and by

PCR; data not shown) and were either heterozygous or homo-
zygous for the 35S-atTOC159 transgene. Wild-type chlorophyll
concentrations were achieved despite the fact that the transgene
could only drive atTOC159 expression at ~40% of the wild-type
level (Figure 6A). By contrast, lines that were homozygous for the
35S8-atTOC132, 35S-atTOC120, or 35S-atTOC90 transgenes,
and the toc159 mutation, and which displayed significant levels
of transgene overexpression, did not display significantly higher
chlorophyll concentrations than untransformed toc759 homozy-
gotes. Taking into account the data shown in Figure 2, the levels
of transgene expression achieved with 35S-atTOC7132 and
35S-atTOC120 are roughly equivalent to those achieved with
35S-atTOC159. Furthermore, when 35S-atTOC132 and 35S-
atTOC120 lines were analyzed by immunoblotting using
atToc132- and atToc120-specific antibodies (lvanova et al.,
2004), significant levels of protein overexpression were ob-
served, indicating that both constructs were intact and fully
active (see Supplemental Figure 2 online). Although the 35S-
atTOC132 transformants did appear slightly larger than control
toc159 plants (data not shown), the chlorophyll data clearly
indicate that overexpression of atToc132 cannot compensate for
the absence of atToc159 to any significant degree (Figure 6A).
The results obtained from the toc 732 toc 120 complementation
experiments were also clear. All five selected 35S-atTOC132
lines and all four selected 35S-atTOC1720 lines contained

Table 3. Genetic Analyses of Interactions between the toc759 Mutation and the Other Mutations

Resistant (if Plated on Selection)

Genotype Selection Green? Albino Total Resistant  Sensitive Green:Albino  Resistant:Sensitive
toc159 X toc132, F3® Phosphinothricin 12002 0 1200 0 o0 o0
Kanamycin 5862 0 586 322 0 1.82:1.00
toc159 X toc120, F3° Hygromycin 522 93 615 0 3.00:0.53 o
Kanamycin 243 59 302 126 2.00:0.49 2.40:1.00
toc159 X toc90, F3P Phosphinothricin 546 117 663 0 3.00:0.64 o
Kanamycin 462 117 579 139 2.00:0.51 4.17:1.00

aScoring of phenotypes was conducted after 10 d of growth in vitro, and so green plants here include toc732 homozygotes, which exhibit only slight

chlorosis at the seedling stage.

bThe data shown describe the progeny of F2 plants that were homozygous for toc132, toc120, or toc90 and heterozygous for toc159.




wild-type chlorophyll concentrations (Figure 6B). These comple-
mented plants were homozygous for the toc 132 mutation, either
heterozygous or homozygous for the toc 720 mutation, and either
heterozygous or homozygous for the appropriate 35S transgene.
These data confirm the previously drawn conclusion that
atToc132 and atToc120 exhibit a high level of functional similar-
ity. By contrast, toc132 toc 120 heterozygotes (genotype: toc 132/
toc132; +/toc120) that were either heterozygous or homozygous
for the 35S-atTOC159 or 35S-atTOC90 transgenes did not
display significantly higher chlorophyll concentrations than un-
transformed toc132 toc120 heterozygotes (Figure 6B). Because
the level of atTOC90 overexpression observed in these trans-
genic lines was good (5.3-fold on average; Figure 6B), these data
strongly support the conclusion that atToc90 and atToc132/
atToc120 do not share significant functional redundancy. How-
ever, because high levels of atTOC159 overexpression were not
observed (presumably because atTOC159 is already expressed
at very high levels in wild-type plants; Figure 2), the functional
relationship between atToc159 and atToc132/atToc120 is more
difficult to assess (data shown in Figure 6A are more informative
in this regard). Nevertheless, individual lines that displayed 47
and 30% atTOC159 overexpression, relative to the wild type, did
not contain significantly higher chlorophyll concentrations than
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Figure 5. Embryo Lethality of the toc159 toc132 Double Mutation.

(A) Three to four siliques from three different individuals (at least nine
siliques in total) of the indicated genotypes were scored for the presence
of aborted seeds. The F3 plants scored were all heterozygous for the
toc159 mutation (introgressed into the Col-0 ecotype) and homozygous
for the second mutation (Table 3). Error bars indicate sD.

(B) The appearance of aborted seeds within the silique of an F3 individual
that was homozygous for toc732 and heterozygous for toc159.
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Figure 6. Transgenic Complementation of the toc759 Single Mutant and
the toc132 toc120 Double Mutant.

Plants carrying the toc7159 (A) or toc132 and toc120 (B) knockout
mutations were stably transformed with four different T-DNA constructs:
35S8-atTOC159, 35S-atTOC132, 35S-atTOC120, and 35S-atTOC90. Mu-
tant complementation was quantified in the T3 generation by making
chlorophyll measurements on plants with appropriate mutant genotypes
(toc159/toc159 [A] and toc132/toc132; +/toc120 [B] or, occasionally,
amongst the 35S-atTOC132 and 35S-atTOC120 transformants toc132/
toc132; toc120/toc120 [B]) and that were either heterozygous or
homozygous for the relevant transgene. The chlorophyll values shown
are means (+SD) derived from measurements on four to six independent
transformants; for each transformant, five independent measurements
were made. Values are expressed as a percentage of the wild-type
chlorophyll concentration. The extent of transgene overexpression in
each transformant was estimated by conducting RT-PCR experiments
using T2 plants that were either heterozygous or homozygous for the
relevant transgene. Mean fold changes in expression (=SD), relative to
the wild type, for each transgene/mutant combination are given textually
above the corresponding chlorophyll data bars.
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untransformed toc132 toc120 heterozygotes, suggesting that
the level of redundancy is minimal.

Taken together, these transgenic overexpression data confirm
the conclusions drawn from the double mutant studies and
indicate that the first hypothesis put forward to account for the
lethality of the toc159 toc132 genotype is correct; that is,
the severity of the phenotype of the double homozygote results
from the disrupted import of a broad range of precursor types
because of the fact that atToc159 and atToc132 operate
preferentially in different import pathways.

Ultrastructure of Plastids in the Single and Double Mutants

To gain insight into the functional specialization of Toc159-
related proteins implied by the phylogenetic, genetic, and trans-
genic data, we used transmission electron microscopy to
characterize leaf and root plastid ultrastructure in the mutants
(Figure 7). The severity of chloroplast ultrastructural defects
broadly paralleled the severity of the visible and chlorophyll
phenotypes of the mutants (Figures 3 and 4). In young plants,
toc132 chloroplasts were similar to those in the wild type (data
not shown), but the chloroplasts of the pale and bleached toc132
toc120 double mutants (genotypes: toc132/toc132; +/toc120
and toc132/toc132; toc120/toc120, respectively) were smaller
with less developed thylakoids (Figure 7A). Remarkably, chloro-
plasts inthe toc 132 toc 120 double homozygote were much more
developed, with distinct thylakoids and grana, than those in the
toc159 mutant (Figure 7A), despite the fact that two mutants look
very similar (Figure 3). This latter observation is consistent with
the hypothesis that atToc159 is relatively more important for the
biogenesis of photosynthetic proteins and that atToc132 and
atToc120 are relatively more important for the biogenesis of
nonphotosynthetic proteins (Bauer et al., 2000).

In mature plants, chloroplasts in the toc132 single mutant and
the pale toc132 toc 120 heterozygote (genotype: toc132/toc132;
+/toc120) were small with less developed thylakoids (Figure 7B).
Interestingly, in both of these genotypes, the chloroplasts in cells
surrounding the vascular bundles were more highly developed
than those in the interveinal tissues of the mesophyll (Figure 7B).
This observation most likely explains the reticulate appearance of
toc132 leaves (Figure 3E). Arabidopsis cue T mutants, which have
defects in the phosphoenolpyruvate/phosphate translocator of
the plastid inner envelope membrane, have a similar, but more
severe, reticulate phenotype (Streatfield et al., 1999). The bio-
synthesis of aromatics is compromised in cue, and the reticulate
phenotype of the mutant can be rescued by feeding aromatic
amino acids (Streatfield et al., 1999). It is possible that deficien-
cies in amino acid biosynthesis, caused by the inefficient chlo-
roplast import of the necessary biosynthetic enzymes, are also
responsible for the reticulate appearance of the toc732 mutant.

Particularly interesting observations were made when the root
plastids of toc132 toc120 double homozygotes were examined.
Whereas toc 159 root plastids appeared relatively normal (Figure
7C) (Yu and Li, 2001), a high proportion of toc132 toc120 double
homozygote root plastids were found to contain large cytoplas-
mic inclusions (Figure 7C), each surrounded by a normal double
envelope membrane (Figure 7C). Of the 75 double mutant
plastids examined, 31% contained at least one inclusion. By

contrast, of the 49 wild-type and 45 toc159 root plastids
examined, only 4 and 9%, respectively, contained cytoplasmic
inclusions, and these tended to be smaller than those in the
double mutant. Similar inclusions were also observed in the
chloroplasts of toc132 toc120 plants (Figures 7A and 7B), which
also exhibited other structural irregularities (i.e., they appeared
elongated and flattened) (Figures 7A and 7B). It is possible that
these structural defects are the result of the failure of toc132
toc120 plastids to import certain proteins, for example, cyto-
skeletal or division apparatus components. Alternatively, they
may be the result of a specific response designed to increase the
surface area of metabolically compromised plastids to facilitate
the exchange of substances with the cytosol.

Taken together, these electron microscopy data are con-
sistent with the hypothesis that atToc132 and atToc120 play
a significant role in the import of nonphotosynthetic proteins.

Protein Import in the toc132/toc132; +/toc120
Double Mutant

To investigate whether the phenotypic differences between the
toc132 toc120 double mutants and toc 159 could be attributed to
differential effects of the mutations on the import of different
preproteins, import studies were performed using isolated chlo-
roplasts. The pale toc7132 toc120 double mutant (genotype:
toc132/toc132; +/toc120) was chosen for these studies because
it has a stronger phenotype than either single mutant and yet is
sufficiently healthy to allow isolation of a reasonable yield of
chloroplasts, which would not be feasible using the double
homozygote. The F3 progeny of pale toc132 toc120 double
mutants were plated on hygromycin plates, and hygromycin
sensitive seedlings (corresponding to toc732 single mutants)
were picked out by hand after 7 to 8 d of growth. Both pale and
bleached toc132 toc120 seedlings (genotypes: toc132/toc132;
+/toc120 and toc132/toc132; toc120/toc120, respectively) were
used for chloroplast isolation, but, because of the greatly re-
duced growth of the double homozygotes, the yield of chloro-
plasts resulting from these was estimated to be <5% of the total.

The photosynthetic preprotein, preSSU (precursor of the small
subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase
[Rubisco]), and the nonphotosynthetic preprotein, preL11 (pre-
cursor of a 50S ribosomal protein), were selected for analysis
because their import efficiencies were previously shown to be
affected differentially by the ppi7 mutation (Kubis et al., 2003).
However, using the wheat germ translation system for precursor
synthesis, no defect in import was observed for either precursor
in the double mutant chloroplasts (see Supplemental Figure 3
online). To eliminate the possibility that soluble factors in the
wheat germ lysate were responsible for this negative result
(Hiltbrunner et al., 2001b; Schileiff et al., 2002), we tested the
same precursors again using the rabbit reticulocyte system for
translation (Figure 8). Once again, however, no import deficien-
cies were detected, and our data show that double mutant
chloroplasts import both precursors at a similar rate to wild-type
chloroplasts in vitro.

One possible explanation of these data is that the soluble
forms of Toc159-related proteins act, in vivo, to increase the
efficiency of import by facilitating the targeting of precursors
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A Plastids from cotyledons of 10-d-old plants
toc132/toc132; +/toc120

toc132 toc120

toc132/toc132;
+/toc120 (v)
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B cont'd.
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Figure 7. Ultrastructure of Plastids in the Toc159 Homolog Knockout Mutants at Different Developmental Stages.

(A) Plastids from the cotyledons of young (10-d-old) wild type, pale toc132 toc120 double mutant (genotype: toc132/toc132; +/toc120; arrowheads
indicate five cytoplasmic inclusions, one of which contains a plastid [p]), bleached toc132 toc720 double homozygous (arrowheads indicate two
cytoplasmic inclusions, one of which contains a mitochondrion [m]), and toc159 (two mitochondria and one plastid are indicated) plants are shown. All
images are at the same magnification. Bar = 1 um.

(B) Chloroplasts from the leaves of mature (28-d-old) wild type, toc132, and pale toc132 toc120 double mutant (genotype: toc132/toc132; +/toc120)
plants are shown. The wild-type chloroplast is from an interveinal region; mutant chloroplasts are from veinal (v) and interveinal (iv) regions, as indicated.
Arrowheads indicate five cytoplasmic inclusions. An enlargement of the indicated region (Z1) in the pale toc132 toc120 double mutant interveinal
chloroplast is shown. All of the chloroplasts shown are at the same magnification; bar = 1 um. The enlargement (Z1) is at eightfold higher magnification;
bar = 0.1 pm.

(C) Plastids from the roots of 10-d-old wild type, toc159, and toc132 toc120 double homozygous plants are shown. Cytoplasmic inclusions are
indicated (j). An enlargement of the indicated region (Z2) in the toc132 toc120 double mutant plastid is shown. All of the plastids are at the same
magnification; bar = 1 wm. The enlargement (Z2) is at 5.3-fold higher magnification; bar = 0.1 um.
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Figure 8. Comparison of Import Rates into Isolated Wild-Type and
Mutant (toc132/toc132; +/toc120) Chloroplasts for Different Preproteins.

In vitro-translated, 35S-Met-labeled preSSU (A) and preL11 (B) were
imported into wild-type and mutant (toc132/toc132; +/toc120) chloro-
plasts for the times indicated in the graphs. The amount of protein
imported into chloroplasts was expressed as a percentage of the amount
imported into wild-type chloroplasts at the final time point in each case.
The data shown are means (+sD) of four (A) or three (B) independent
experiments.

from the cytosol to the translocation channel (Hiltbrunner et al.,
2001b). Thus, in an in vitro import system that lacks these soluble
components, base rates of import might still be observed, but the
effects of the toc732 and toc720 mutations would no longer be
apparent. Alternatively, it is possible that the atToc132 and
atToc120 proteins are involved preferentially in the import of
subsets of proteins that do not include either preSSU or preL11.

Analysis of the toc132 Chloroplast Proteome

In a further attempt to gain insight into the substrate preferences
of the import pathway in which atToc132 (and atToc120) are
involved, the chloroplast proteome of the toc7132 mutant
was analyzed. To do this, we employed the same procedure—
involving difference gel electrophoresis (DIGE) and CyDye
technology—that was used to analyze the ppi7 chloroplast
proteome (Kubis et al., 2003). The degree of enrichment or de-
pletion of toc132 chloroplast proteins, relative to the wild type,
was determined by CyDyeDIGE analysis (see Supplemental
Figure 4 online), and these data were then used to select
proteins for identification by mass spectrometry (Table 4).

The results clearly show that the perturbations that exist in the
toc132 chloroplast proteome are distinct from those that were

observed previously in the ppi7 chloroplast proteome. For
example, photosynthetic proteins such as SSU, OE33, and
ribose-5-phosphate isomerase—all of which were deficient in
ppi1 chloroplasts—are present at normal levels in toc132.
Furthermore, some photosynthetic proteins (e.g., Rubisco acti-
vase and the Calvin cycle enzyme phosphoribulokinase) are even
slightly enriched in toc 7132 chloroplasts. However, no clear trend
indicating a selective effect of the toc132 mutation on the
accumulation of nonphotosynthetic proteins was observed be-
cause proteins depleted in the mutant included the Calvin cycle
enzyme fructose-1,6-bisphospate aldolase in addition to obvi-
ously nonphotosynthetic proteins (the branched-chain amino
acid biosynthetic enzymes ketol-acid reductoisomerase and
dihydroxy-acid dehydratase). What is more, many nonphoto-
synthetic proteins are present at normal levels (e.g., the 50S
ribosomal protein L12-C and the molecular chaperones Hsp70
and Hsp90) or slightly elevated levels (e.g., the ammonium
fixation enzyme glutamate-ammonia ligase and the translation
elongation factor EF-Tu) in toc 7132 chloroplasts. These data may
indicate that atToc132 is not exclusively involved in the import of
nonphotosynthetic precursors or reflect the continued presence
of atToc120 protein in the toc732 mutant. Nevertheless, it is clear
that the toc132 chloroplast proteome is quite different from the
ppi1 chloroplast proteome, in that it is not specifically deficient in
photosynthetic proteins.

The toc132 Transcriptome Response Is Distinct from
the ppi1 Response

The expression of nuclear genes encoding plastidic proteins is
regulated in response to complex signals emitted by the plastids
themselves (Jarvis, 2003; Richly et al., 2003). We previously
demonstrated that specific defects in the import and accumu-
lation of photosynthetic proteins in the ppi7 mutant (which lacks
a receptor, atToc33, with putative specificity for photosynthetic
proteins) are correlated with the selective downregulation of the
corresponding nuclear photosynthetic genes (Kubis et al., 2003).
Because the transcriptome response of ppi1 reflected the
characteristics of the ppi7 import defect, we used exactly the
same procedure to characterize the toc732 transcriptome re-
sponse. Thus, nylon filter DNA array technology (Richly et al.,
2003) was employed to compare the mRNA expression of 3292
nuclear genes, most of them encoding plastidic proteins, in the
toc132 mutant and the wild type; RNA gel blot analysis was
previously used to confirm the accuracy of gene expression data
generated using this method (Kubis et al., 2003). A total of 686
genes (~20% of those analyzed) were found to be significantly
differentially expressed in toc732 compared with the wild type
(see Supplemental Table 1 online). Of those genes showing
differential expression in toc132, ~70% (486) were upregulated
and ~30% (200) were downregulated. A similar number of
downregulated genes (161 of a total of 1461 differentially ex-
pressed genes) was observed in the ppi7 mutant (Kubis et al.,
2003).

When we compared the toc132 transcriptome response with
the previously described ppi1 response (Kubis et al., 2003) by
cluster analysis, we observed that the responses were only
partially overlapping (Figure 9A). Although the gene expression
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Table 4. Proteins Identified by DIGE and Mass Spectrometry

Spot No. Gene No. Fold Change in toc1322 Protein MASCOT Score®
1 At1g32060 2.44 = 0.05 Phosphoribulokinase 548 (Q)
2¢ At2g39730 1.95 + 0.03 Rubisco activase 551 (Q)
3¢ At2g39730 1.86 = 0.27 Rubisco activase 537 (Q)
4 At5g20720 1.81 = 0.03 Cpn21 chaperonin 401 (Q)
5 At4g23100 1.80 = 0.05 y-Glutamylcysteine synthetase 134 (Q)
6 AtCg00120 1.74 = 0.06 ATPase synthase, o subunit 74 (Q)
7 At5g35630 1.63 = 0.17 Glutamate-ammonia ligase 98 (M)
8 At4g20360 1.59 *= 0.01 Elongation factor, EF-Tu homolog 83 (M)
9 At2g28000 1.51 = 0.05 Chaperononin 60« 951 (Q)

10 AtCg00490 - Rubisco large subunit, LSU 128 (M)

11 At5g38410 - Rubisco small subunit, SSU (Ats3B) 90 (M)

12 At3g50820 - 33-kD subunit of the oxygen evolving 98 (Q

complex, OE33

13 At3g13470 - Chaperononin 603 92 (M)

14 At3g04790 - Ribose-5-phosphate isomerase 124 (Q)

15 At5g09650 - Inorganic pyrophosphatase 167 (Q

16 At3g27850 - 50S ribsomal protein, L12-C 91 (Q

17 At4g24280 - Hsp70 homolog 75 (M)

18 At2g04030 - Hsp90 homolog 126 (M)

19 At3g62030 - Peptidyl prolyl isomerase 161 (Q)

204 At3g58610 0.47 = 0.20 Ketol-acid reductoisomerase 188 (Q)

20d At3g23940 0.47 = 0.20 Dihydroxy-acid dehydratase 107 (Q)

21 At4g38970 0.43 = 0.16 Fructose-1,6-bisphosphate aldolase 531 (Q)

22 At2g21330 0.40 = 0.10 Fructose-1,6-bisphosphate aldolase 455 (Q)

2Values are means = SD.

bM indicates data acquired by peptide mass fingerprinting using a Micromass TofSpec2E MALDI Tof; Q indicates data acquired by liquid
chromatography tandem mass spectrometry (LC-MS/MS) using a Micromass Qtof2.

¢These two spots correspond to the same protein and most likely differ as a result of posttranslational modification.

dThese two proteins were not resolved by two-dimensional gel electrophoresis and so were identified within the same spot.

profiles of the two mutants were quite similar with respect to
upregulated genes (Figure 9A), major differences were observed
when only downregulated genes were considered (Figure 9B). Of
all the genes showing downregulated expression in toc132 (200
genes), only 3% (six genes) were also downregulated in ppiT.
Similarly, of all the genes showing downregulated expression in
ppi1 (161 genes), only 4% (six genes) were also downregulated in
toc132. Thus, toc132 does not exhibit the same specific down-
regulation of photosynthetic genes as was found in ppi7. Indeed,
very few of the 200 genes that show reduced expression in
toc132 encode known photosynthetic proteins (see Supplemen-
tal Table 1 online). Although these data do not provide a direct
assessment of protein import in the toc732 mutant, they are
nevertheless consistent with the hypothesis that atToc132 is
involved preferentially in an import pathway with some specificity
for nonphotosynthetic proteins.

DISCUSSION

Our phylogenetic analyses suggested that there are at least
two distinct subtypes of Toc159-related proteins within plant
cells—characterized by atToc159 and atToc132/atToc120,
respectively—that differentiated before the divergence of
monocotyledonous and dicotyledonous species (Figure 1). Ac-
cordingly, when the functional relationships between the four

Arabidopsis proteins were tested genetically in double mutant
studies (Figures 3 and 4, Table 2) and in transgenic complemen-
tation studies (Figure 6), atToc132 and aToc120 were shown to
exhibit a high degree of functional redundancy. By contrast, the
data indicated that there is very little functional overlap between
atToc159 and atToc132 or atToc120 (Figure 6, Table 3; data not
shown). Although toc 732 toc120 double homozygotes exhibited
a very severe phenotype, reminiscent of the toc759 phenotype,
clear differences between the toc132 toc720 and toc159 phe-
notypes were observed (Figures 3, 4, and 7), implying functional
differences between the two protein subtypes. Indeed, the fact
that these two mutants each have such severe phenotypes
(albino or near-albino) indicates that proteins of one subtype
cannot completely compensate for the absence of protein(s) of
the other subtype. Interestingly, the toc759 toc132 double
homozygous mutation was found to cause embryo lethality
(Figure 5, Table 3). Transgenic complementation studies (Figure
6) revealed that the strength of this genetic interaction is a re-
flection of functional nonredundancy between the atToc159 and
atToc132 proteins and that lethality is most likely because of the
disruption of import across a wide range of different precursor
types.

Lethal effects of certain mutations affecting genes of chloro-
plast function have been reported previously. For example,
inactivation of either plastidic glycyl-tRNA synthetase or
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Figure 9. Effects of the toc132 and ppi1 Mutations on the Accumulation
of Nuclear Transcripts Encoding Chloroplast Proteins.

(A) Nylon filter DNA array technology was used to characterize the ppi1
(Kubis et al., 2003) and toc132 (see Supplemental Table 1 online) nuclear
chloroplast transcriptome responses. Hierarchical clustering of the
expression profiles of the 288 genes that show significant differential
expression, relative to the wild type, in both mutants (ppi7 and toc132) is
shown. Colors indicate downregulated (green) or upregulated (red) gene
expression relative to the wild type.

(B) The behavior of those genes that are downregulated in ppi7, relative
to the wild type, in the toc132 mutant is shown in the top pie chart.
Similarly, the behavior of those genes that are downregulated in toc132,
relative to the wild type, in the ppi7 mutant is shown in the bottom pie
chart. The top chart describes 161 genes, and the bottom chart
describes 200 genes. Colors indicate downregulated (green), upregu-
lated (red), or unchanged (gray) gene expression relative to the wild type.

chaperonin-60a resulted in developmental arrest during em-
bryogenesis (Uwer et al., 1998; Apuya et al., 2001). The essential
nature of plastids during embryo development can be attributed
to their unique role as a site for the biosynthesis of important
compounds (such as lipids, amino acids, purines, and pyrimi-
dines) and, during later stages of embryogenesis, for photosyn-
thesis. More recently, it was reported that a major component of
the chloroplast protein import apparatus, Toc34, also plays an
essential role in Arabidopsis (Constan et al., 2004). Whereas
single knockout mutations affecting either atToc33 or atToc34
result in rather mild phenotypes (Jarvis et al., 1998; Constan etal.,
2004), individuals that are homozygous for both mutations arrest
during early embryo development (Constan et al., 2004). The

essential nature of the Toc34 protein family indicates that this
component plays a central role during protein import, rather than
a peripheral or regulatory role as had previously been proposed.
The fact that the toc159 toc132 genotype is also lethal indicates
that the Toc159 protein family plays a similarly important role
during import. It is interesting that both Toc-GTPases have been
assigned to the so-called core Toc complex (Schleiff et al., 2003)
because core components of the functionally similar Tom
complex of mitochondria are also essential for viability (Baker
and Schatz, 1991).

Specific defects in the expression and accumulation of pho-
tosynthetic proteins in ppi2 (toc159) led to the hypothesis that
atToc159 is a receptor with specificity for photosynthetic pro-
teins and, by extension, that atToc132 and atToc120 are re-
ceptors with specificity for nonphotosynthetic proteins (Bauer
et al., 2000). The existence of a separate receptor to cope with
the bulk flow of highly abundant, photosynthetic precursors, and
thus prevent the fatal consequences that would result from
outcompeted import of essential, nonphotosynthetic prepro-
teins, is an attractive model. Although the inactivation of photo-
synthesis would perhaps not be expected to result in embryo
lethality (Kanevski and Maliga, 1994), a complete block in the
import of nonphotosynthetic proteins (involved in the biosynthe-
sis of essential metabolites, for example) would because plas-
tids are integral to cellular metabolism. Thus, if atToc132 and
atToc120 are indeed receptors with preference for nonphoto-
synthetic proteins, the fact that toc732 toc720 double homozy-
gotes are viable indicates that some other protein must be
compensating for their absence in the double mutant. Because
atToc159 is the most abundantly expressed isoform (Figure 2)
and because no evidence for any detrimental effect of the toc90
mutation was observed (Figures 3 and 4, Table 3), the compo-
nent most likely to be fulfilling this compensatory role is
atToc159. The lethality of the toc 159 toc 132 genotype is certainly
consistent with this hypothesis, and so we conclude that the two
Toc159 subtypes, characterized by atToc159 and atToc132/
atToc120, exhibit significant but incomplete functional special-
ization.

We recently proposed that atToc33 (the most abundant of two
Toc34 isoforms in Arabidopsis) is preferentially involved in the
import of photosynthetic proteins (Kubis et al., 2003). This
hypothesis was based on the observation that the atToc33
knockout mutant, ppi1, is specifically deficient in the expression,
chloroplast import, and accumulation of photosynthetic pro-
teins. Interestingly, the ppi7 and toc132 transcriptome re-
sponses were extremely different with respect to downregulated
genes (Figure 9B) because very few of the downregulated genes in
toc 132 encode known photosynthetic proteins (see Supplemental
Table 1 online). Furthermore, when we used proteomics to
characterize toc132 chloroplasts, we found that several of the
photosynthetic proteins that were previously shown to be deficient
in ppi1 were not depleted in toc132 (Table 4). We also observed
pronounced structural defects inroot plastids of the toc 132 toc 120
double homozygotes (defects that were not apparent in toc159
root plastids), and similar abnormalities were apparent in toc132
toc 120 chloroplasts (Figure 7). Taken together, these data strongly
support the hypothesis that atToc132 and atToc120 are receptors
with some preference for nonphotosynthetic proteins.



The preferential involvement of the various Toc159 and Toc34
isoforms in different import pathways with substrate preferences
has taken further significant support from the work of Ilvanova
et al. (2004). In addition to investigating functional relationships
among atToc159, atToc132, and atToc120 in genetic experi-
ments similar to some of those described in this report, these
authors assessed physical associations between the different
Toc isoforms directly and studied the binding of two different
preproteins (one photosynthetic and one nonphotosynthetic) to
the atToc132 receptor. An analysis of chloroplast membrane
extracts by immunoaffinity chromatography revealed that
atToc132 and atToc120 are present together in Toc complexes
from which atToc159 is completely excluded. Furthermore,
these atToc132/atToc120-containing complexes contained pre-
dominantly atToc34 and only small amounts of atToc33. By
contrast, atToc159-containing complexes (from which atToc132
and atToc120 were excluded) contained predominantly atToc33,
an observation that accounts nicely for the qualitatively similar
phenotypes observed in the atToc159 and atToc33 knockout
mutants ppi2 and ppi1 (Bauer et al., 2000; Kubis et al., 2003).
When the binding of synthetic precursors bearing photosynthetic
(preSSU) and nonphotosynthetic (prepyruvate dehydrogenase
Ela) transit peptides was compared in pull-down assays,
atToc132 was shown to exhibit a marked preference for the
nonphotosynthetic transit peptide (lvanova et al., 2004).

Given the uniformly high level of expression exhibited by the
atTOC90 gene (Figure 2), it is surprising that we could find no
evidence for a role of the atToc90 protein during chloroplast
biogenesis: toc90 homozygotes were indistinguishable from the
wild type with respect to appearance, rate of growth and de-
velopment, and chlorophyll accumulation (Figures 3 and 4).
Similarly, no obvious effect of the ftoc90 mutation was observed
inthe toc159, toc132, and toc 120 backgrounds (Figures 3 and 4,
Table 3), and the overexpression of atTOC90 was inactive in
complementation studies (Figure 6), suggesting that the atToc90
protein does not share substantial functional redundancy with
any of these components. Possible explanations of these data
are that atToc90 is an evolutionary vestige that no longer plays an
active role in protein translocation or that it plays a role unrelated
to chloroplast protein import. Alternatively, atToc90 may play
a nonessential or accessory role in import, perhaps acting to
increase the efficiency of translocation under certain conditions
that were not investigated during the course of this study.

We have identified new Arabidopsis knockout mutants lacking
the atToc132, atToc120, and atToc90 proteins and character-
ized these mutants in detail along with the previously described
atToc159 knockout mutant ppi2 (Bauer et al., 2000). In agree-
ment with the results of lvanova et al. (2004), our data provide
clear evidence for (incomplete) functional specialization amongst
the Toc159 protein family and are consistent with the notion that
the closely related atToc132 and atToc120 proteins play a sig-
nificant role in the import of nonphotosynthetic proteins. These
new mutants will be useful tools for the further exploration of the
substrate specificities of the Toc159-related receptors in the
future. Given that chloroplasts isolated from the pale toc132
toc120 double mutant did not exhibit any evidence of an import
defect in vitro, it is likely that further progress in this area will
necessitate the use of in vivo approaches.
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METHODS

Sequence Analysis

Amino acid sequences were aligned using ClustalW within the BioEdit
program (Hall, 1999). Phylogenetic trees were calculated using PAUP* 4.0
b10 (Swofford, 2003). All analyses were performed using branch and
bound searches, with the collapse option and furthest addition sequence
selected. No weighting or ordering was imposed on the characters, and
any gaps were treated as missing data. Indels were coded separately and
appended to the sequence data matrix. Coding of indels was usually
binary (deletions 0, insertions 1), but in places where more than one size
occurred, the alternatives were coded as 2, 3, etc. Support for clades was
estimated by means of nonparametric bootstrap analyses, as imple-
mented in PAUP* 4.0, using 1000 replicates. The human c-H-Ras1 p21
proto-oncogene (accession number P01112) was used as an outgroup.

Plant Material and Growth Conditions

Arabidopsis thaliana plants, both wild type and mutants, used in this study
were of the Col-0 ecotype. The ppi2 (toc 159) mutant, which is of the Ws
ecotype, was kindly provided by Felix Kessler (Bauer et al., 2000) and was
subsequently introgressed into the Col-0 ecotype (see Results). Seeds
were surface sterilized, and plants were grown as described previously
(Aronsson and Jarvis, 2002). When necessary, the following antibiotics
were included in the medium at the indicated concentrations: 50 wg/mL of
kanamycin monosulphate (Melford Laboratories, Ipswich, UK) was used
to select for toc159 and the Salk Institute Genomic Analysis Laboratory
(SIGNnAL) lines; 10 wg/mL of bL-phosphinothricin (Duchefa, Haarlem, The
Netherlands) was used to select for toc132-2 and toc90-1; 15 ng/mL of
hygromycin B (Duchefa) was used to select for toc720-2; and 110 pg/mL
of gentamicin sulfate (Duchefa) was used to select for pCHF2 trans-
formants. Plants grown on soil were kept under standard greenhouse
conditions.

Identification of Knockout Mutants

The three new mutants that were the main focus of this study were
obtained from the following sources: Syngenta, lines Garlic_667_D04
(toc132-2) and Garlic_1236_C11 (toc90-1); Csaba Koncz Laboratory,
pool 286, line 28,567 (toc120-2). The additional, supportive mutants were
obtained from SIGnAL, lines SALK_017374 (toc120-3), SALK_064469
(toc90-2), and SALK_ 119434 (toc90-3) and from Genomanalyse im
Biologischen System Pflanze (GABI)-Kdlner Arabidopsis T-DNA (Kat),
line 394E01 (toc 132-3). The mutants were isolated according to published
procedures: Syngenta (Sessions et al., 2002); Csaba Koncz Laboratory
(Rios et al., 2002); SIGnAL (Alonso et al., 2003); GABI-Kat (Rosso et al.,
2003).

Gene-specific and T-DNA-specific primers used to confirm the muta-
tions were as follows: Toc132-F, 5'-GATGGGACTGAGTTTGTGGT-
TAGGTC-3'; Toc132-R, 5'-CAAAGCACATCAACGCTCAGCAAAATCCA-
3'; Toc120-F, 5'-CTAACCAGGTTAGATTCTCGCCATCAC-3'; Toc120-R,
5'-GACGTGTTAAATTGACGAGCACTGTAGAG-3’; Toc90-F, 5'-TTC-
TTCTTTAGTCGGTTTATTGTGCGGTGGAG-3’; Toc90-R, 5'-AGGAGT-
GGAGAAATCAAAGAGAAAGCGAGGAG-3'; Syngenta T-DNA LB3, 5'-
TAGCATCTGAATTTCATAACCAATCACGATACAC-3’; Syngenta T-DNA
104RB3, 5'-TAACAATTTCACACAGGAAACAGCTATGAC-3’; Koncz
T-DNA LB FISH1, 5'-CTGGGAATGGCGAAATCAAGGCATC-3'; Koncz
T-DNA RB HOOK?2, 5'-TACTTTCTCGGCAGGAGCAAGGTGA-3'; SIG-
nAL T-DNA LBal, 5'-TGGTTCACGTAGTGGGCCATCG-3'; GABI-Kat
T-DNA LB, 5'-CCCATTTGGACGTGAATGTAGACAC-3'.

For the original three mutants, both T-DNA junctions were sequenced
to verify the predicted location of the T-DNA with respect to each gene
(Figure 3A); for the additional, supportive mutants, only one junction was
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sequenced in each case (Figure 3A). Complex T-DNA insertions were
present in the toc7132-2 and toc90-1 mutants because left border
sequences were found at both ends of the insertion; however, no
evidence for rearrangements of gene sequences or larger deletions was
observed. Single-locus T-DNA insertion lines were identified for each of
the original mutants (Table 1), and homozygotes derived from these lines
were confirmed by PCR before further analysis.

Chlorophyll Quantification and Electron Microscopy

Chlorophyll determinations and transmission electron microscopy were
performed as described previously (Porra et al., 1989; Constan et al.,
2004). Transmission electron microscopy was performed at the Electron
Microscope Laboratory, Faculty of Medicine and Biological Sciences,
University of Leicester.

Identification of Double Mutants

Homozygous toc132, toc120, and toc90 plants and heterozygous toc 159
(Col-0) plants were crossed to each other in all pairwise combinations, the
resultant F1 plants were allowed to self-pollinate, and F2 seeds were
obtained. After 10 d of growth in vitro, in the presence or absence of
appropriate antibiotics, F2 plants were scored for antibiotic resistance
and chlorotic phenotypes. After several more days of growth, genomic
DNA was extracted (Edwards et al., 1991) from selected individuals and
used for PCR genotyping. The PCR primers used were the gene-specific
and T-DNA-specific primers given above.

Transgenic Complementation Experiments

The atTOC159, atTOC132,atTOC120, and atTOC90 open reading frames
were expressed from a double-enhancer version of the 35S promoter,
using plant transformation/expression vector, pCHF2 (Jarvis et al., 1998).
For atTOC90, cDNA clone RZL46 g05 (accession number AV548084)
was subcloned into pCHF2 as a Sacl/end-filled Asp718 fragment into
Sacl/Smal-cut pCHF2. The full-length atTOC120 open reading frame
was amplified from Arabidopsis Col-0 genomic DNA using forward
(5'-TCTCTGAGCTCTGTTTCGTGATTTTGGGTGAT-3') and reverse
(5'-TCAAAGTCGACAAACAAAAGTGAATTCCGACAAC-3’) primers and
cloned into pCHF2 using Sacl/Sall restriction sites introduced into the
forward and reverse primers, respectively. The resulting atTOC120
complementation vector was confirmed by sequencing. The atTOC132
complementation vector was constructed from the truncated cDNA clone
H3A2 (accession number W43632), which carries a 975-bp 5’ terminal
deletion. Firstly, the truncated cDNA was subcloned as a Sacl/Xhol
fragment into a modified version of pCHF2 (carrying a single EcoRl site in
the polylinker) cut with Sacl/Sall. A 2-kb atTOC132 RT-PCR product,
amplified using forward (5'-GTCTGAGCTCCTATCTCTAACTTCTGCG-
GTGGTG-3') and reverse (5'-CAGGTGGATTCTTCTTGATG-3') primers,
was then cloned as a Sacl/EcoRI fragment into the complementation
vector to reconstitute the full-length atTOC132 cDNA. The PCR-amplified
portion of the full-length atTOC132 cDNA was confirmed by sequencing.
The full-length atTOC159 open reading frame, including the intron,
was constructed from cDNA clone APZL25e08 (accession number
AV523359), which carries a 5’ truncation, and a 3-kb PCR product
amplified from Col-0 genomic DNA using forward (5'-CAAAGGTA-
CCATGGACTCAAAGTCGGTTAC-3') and reverse (5'-GTCTGAGCT-
CCTATCTCTAACTTCTGCGGTGGTG-3') primers. The atTOC159
amplification product was ligated as an Apal/Hindlll fragment into the
partial cDNA clone to reconstitute the full-length open reading frame,
which was then confirmed by sequencing and cloned into pCHF2 as an
Asp718/Xbal fragment.

The complementation constructs were introduced into Agrobacterium
strain GV3101 (pMP90) and then used to transform toc 159 heterozygotes
or toc132 toc 120 heterozygotes (genotype: toc132/toc132; +/toc120) by
the floral dip method (Clough and Bent, 1998). Transgene overexpression
was estimated by RT-PCR and, in some cases, by immunoblotting. RNA
was extracted from 15-d-old T2 plants grown on medium containing
gentamicin using the RNeasy plant mini kit (Qiagen, Valencia, CA) and
treated with DNase | (DNA-free; Ambion, Austin, TX). RT-PCR was
conducted using previously described procedures (Constan et al.,
2004), using 18 cycles of amplification. PCR primers were selected to
give ~700-bp products and were as follows: atTOC159 forward,
5'-CAGTAGCAAAGCGGAAATGGACTCAAAG-3'; atTOC159 reverse,
5’-GCCACATCAACATGCACTGATTC-3'; atTOC132 forward, 5’ -GATG-
GGACTGAGTTTGTGGTTAGGTC-3'; atTOC132 reverse, 5'-CTCTT-
GTTCTGTCTGTATGCC-3'; atTOC120 forward, 5'-AATTGGTTCGCAG-
GAGGGTC-3'; atTOC120 reverse, 5'-CTTTCAGTCTCTCCCTTCTC-3;
atTOC90 forward, 5'-TTCCGTGACCCTCATCAAGAAC-3’; atTOC90
reverse, 5 -GAGAAATCACTGTATCGCATGTCG-3'; elF4E1 forward,
5’-AAACAATGGCGGTAGAAGACACTC-3’; elF4E1 reverse, 5'-AAG-
ATTTGAGAGGTTTCAAGCGGTGTAAG-3'. PCR products were resolved
by agarose gel electrophoresis, stained with ethidium bromide, and
quantified using Quantity One software (Bio-Rad, Hercules, CA); a A DNA
dilution series was used to confirm the accuracy of the quantification
procedure. Data for the Toc159-related genes were normalized using
equivalent data for the translation initiation factor gene elF4E1 (Rodriguez
et al., 1998). Total protein extracts were prepared from 10-d-old T3 plants
as described previously (Aronsson et al., 2003) and were analyzed by
staining with Coomassie Brilliant Blue R 250 (Fisher Scientific, Lough-
borough, UK) or by immunoblotting (Aronsson et al., 2003) using anti-
bodies against atToc132 and atToc120 (lvanova et al., 2004).

Complementation was estimated by making chlorophyll measure-
ments using 10-d-old T3 plants. T3 families in the toc132 toc120
background were grown on medium containing phosphinothricin, hy-
gromycin, and gentamicin, and only triply-antibiotic-resistant plants were
used for chlorophyll quantifications. T3 families carrying the 35S-
atTOC132, 35S-atTOC120, and 35S-atTOC90 constructs in the toc159
background were scored on medium containing gentamicin to identify
35S transgene homozygotes; chlorophyll measurements were then
conducted using only 35S transgene/toc159 double homozygotes. T3
families carrying the 35S-atTOC 159 construct in the toc 159 background
were scored phenotypically and by PCR to identify toc 159 homozygotes;
chlorophyll measurements were then conducted using only toc159
homozygotes carrying the 35S transgene.

Isolation of Arabidopsis Chloroplasts

Chloroplasts were isolated from 10-d-old wild-type and pale toc132
toc120 double mutant (genotype: toc132/toc132; +/toc120) plants grown
in vitro as described previously (Aronsson and Jarvis, 2002; Kubis et al.,
2003). Plant material was homogenized for 3 to 4 s (wild type) or2to 3 s
(toc132 toc120) using a polytron. The yield and intactness of the
chloroplasts were determined as described previously (Aronsson and
Jarvis, 2002).

Protein Import into Chloroplasts

Template DNA for the in vitro transcription/translation of preproteins was
amplified by PCR from cDNA clones using M13 primers. The preSSU and
preL11 cDNA clones were as described previously (Aronsson and Jarvis,
2002). Transcription/translation was performed using a coupled reticulo-
cyte lysate system (TNT T7 Quick for PCR DNA; Promega, Madison, WI)
or a coupled wheat germ system (Promega), containing 35S-Met and T7
RNA polymerase, according to the manufacturer’s instructions. Import



reactions and quantifications were performed as described previously
(Aronsson and Jarvis, 2002; Kubis et al., 2003).

Chloroplast Proteomics

Preparation of protein samples from wild-type and toc732 mutant
chloroplasts, their labeling with complementary CyDyeDIGE fluors,
separation, quantification, and identification was performed as described
by Kubis et al. (2003). The following changes were applied: proteins within
the gel-excised spots were first reduced, carboxyamidomethylated, and
then digested to peptides using trypsin on a MassPrepStation (Micro-
mass, Manchester, UK). The resulting peptides were applied to either
matrix-assisted laser-desorption ionization time of flight MS (TofSpec2E;
Micromass), for peptide mass fingerprinting, or LC-MS/MS. For LC-MS/
MS, the liquid chromatographic separation was achieved with a PepMap
C18 reverse phase, 180-pm i.d., 15-cm column (LC Packings, Amster-
dam, The Netherlands), and the mass spectrometer was a Qtof2 (Micro-
mass). Fragmentation data was used to search the National Center for
Biotechnology Information database using the MASCOT search engine
(http://www.matrixscience.com). Probability-based MASCOT scores
were used to evaluate identifications. Only matches with P < 0.05 for
random occurrence were considered significant (further explanation of
MASCOT scores can be found at http://www.matrixscience.com).

RNA Isolation and RNA Gel Blot Analysis

RNA was isolated from plant material grown in vitro (10 d old) or on soil (28
d old) as described by Kubis et al. (2003). RNA gel electrophoresis,
transfer to Hybond NX membrane (Amersham Pharmacia Biotech,
Uppsala, Sweden), labeling of DNA fragments, and hybridization and
washing of membranes at 65°C were all performed as described pre-
viously (Kubis et al., 2003). Band quantification was performed using
ImageQuant software (Molecular Dynamics, Sunnyvale, CA).

Identical filters were probed simultaneously with atTOC159, atTOC132,
atTOC120, and atTOC90 probes. The four probes corresponded to cDNA
fragments of the A-domain (A+G-domain in the case of atToc90) that
were similar in length (786-bp atTOC132, 802-bp atTOC120, 874-bp
atTOC90, and 910-bp atTOC759) and guanine/cytosine nucleotide
content (39.15% atTOC120, 42.31% atTOC132, 43.36% atTOC90, and
46.37% atTOC159). The probes were labeled simultaneously under
identical conditions using the same isotope and were shown to have
identical specific activities by scintillation counting (<10% variation).
Hybridization, washing, and exposure steps were performed simulta-
neously under identical conditions.

Cross-hybridization among the four genes can be excluded because
probes were selected from the most variable region of the genes, where
homology is low or restricted to short DNA stretches (in the case of
atToc120 and atToc132), and the wash stringency used only allowed
probe-target combinations with >83% homology to remain hybridized.

DNA Array Analysis

The 3292 GST array (Richly et al., 2003) was used for the transcriptome
analysis of the toc 132 mutant as described by Kubis et al. (2003). The data
obtained for all significantly differentially regulated genes are given in
Supplemental Table 1 online. Complete data are deposited at the
GeneOmnibus Web site (http://www.ncbi.nim.nih.gov/geo/) under the
accession number GSM14832. Hierarchical clustering of the expression
profiles of the 288 genes that show significant differential expression in
both toc132 and ppi1 was performed using Genesis Software (version
1.1.3; Sturn et al., 2002).

Sequence data from this article have been deposited with the EMBL/
GenBank data libraries under accession numbers AV523359, AV548084,
NM_122037, P01112, and W43632.
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