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SQUAMOSA PROMOTER BINDING PROTEIN-box genes (SBP-box genes) encode plant-specific proteins that share a highly
conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about
their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members
known as SPL genes. For one of these genes, SPL8, we isolated three independent transposon-tagged mutants, all of which
exhibited a strong reduction in fertility. Microscopic analysis revealed that this reduced fertility is attributable primarily to
abnormally developed microsporangia, which exhibit premeiotic abortion of the sporocytes. In addition to its role in micro-
sporogenesis, the SPL8 knockout also seems to affect megasporogenesis, trichome formation on sepals, and stamen fila-
ment elongation. The SPL8 mutants described help to uncover the roles of SBP-box genes in plant development.

INTRODUCTION

Transcription factors generally are believed to play key roles in
the control of tissue-specific gene expression. Because this is
a process central to the differentiation of multicellular organ-
isms, determining the function of transcription factors can pro-
vide important insights into eukaryotic development. Analysis
of the Arabidopsis genome reveals 29 classes of transcription
factors, 16 of which appear to be unique to plants (Arabidopsis
Genome Initiative, 2000). One of these is characterized by the
presence of a DNA binding domain referred to as the SQUA-
MOSA PROMOTER BINDING PROTEIN (SBP) domain and en-
coded by the SBP-box, a feature characteristic of the Arabidop-
sis SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)
gene family (Cardon et al., 1997, 1999). The 16 SPL genes
found in the Arabidopsis genome form quite a heterogeneous
family, but subfamilies can be recognized based on their geno-
mic structures and the sequences of the deduced proteins
(Cardon et al., 1999; Arabidopsis Genome Initiative, 2000; http://
www.uni-frankfurt.de/fb15/botanik/mcb/AFGN/Huijser.htm).
The first SBP-domain proteins, isolated from snapdragon (Klein
et al., 1996), showed in vitro binding to a sequence moatif in the
promoter region of the floral meristem identity gene SQUA-
MOSA (Huijser et al., 1992). A similar motif identified in the pro-
moter region of APETALA1 (AP1), the presumed Arabidopsis
ortholog of SQUAMOSA, was recognized in vitro by the SPL3
protein (Cardon et al., 1997). However, the precise role of SPL3
in normal development remains unsolved, although constitutive
overexpression of SPL3 in transgenic Arabidopsis plants caused
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early flowering (Cardon et al., 1997), as did AP7 (Mandel and
Yanofsky, 1995).

Despite the efforts of many groups to isolate and character-
ize an ever-increasing number of Arabidopsis mutants, none of
the corresponding genes isolated and published to date has
been found to represent an SBP-box gene. The only described
SBP-box gene with a known mutant phenotype remains the
LIGULELESS1 (LG1) gene of maize, isolated by Moreno and
co-workers (1997). The Ig1 mutation results in leaves that lack
auricles and ligules (Becraft et al., 1990).

To obtain a better insight into the role of SBP domain tran-
scription factors in plant development, we exploited available
transposon-mutagenized populations of Arabidopsis to search
for insertions in SBP-box genes. We identified and isolated
three such transposon insertion alleles representing the SPL8
gene. The corresponding mutant plants all exhibited a strong
reduction in fertility, primarily as a consequence of abnormal
cell differentiation within the developing anthers. Only a few pu-
tative transcription factors that control this precisely ordered
differentiation process (Scott et al., 1991; Goldberg et al., 1993;
Sanders et al., 1999) have been isolated. Among these are the
Arabidopsis proteins NOZZLE/SPOROCYTELESS (NZZ/SPL),
whose single genetic locus is only distantly related to known
transcription factor families (Schiefthaler et al., 1999; Yang et al.,
1999), MALE STERILITY1 (MS1), a PHD-finger class member
(Wilson et al., 2001), and ABORTED MICROSPORES (AMS), a
MYC class basic helix-loop-helix domain protein (Sorensen et
al., 2003). Whereas both MS1 and AMS are required primarily
for postmeiotic pollen development, the early-acting NZzZ/SPL
gene is specific to the archesporial cells of the anther, which
themselves give rise through successive divisions to both the
sporogenic tissue and its surrounding cell layers. Interestingly,
NZZ/SPL also affects early sporogenesis within developing
ovules.
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Here, we report the characterization of three loss-of-function
mutant alleles representing the SBP-box gene SPL8, which,
like NZZ/SPL, affects the early stages of microsporogenesis
and megasporogenesis.

RESULTS

Identification and Isolation of Transposon-Mutagenized
SPLS8 Alleles

Through systematic screening using a PCR-based reverse ge-
netics approach (Baumann et al., 1998), we searched for mu-
tant alleles of SPL genes in an Arabidopsis Columbia-0 (Col-0)
population mutagenized with the heterologous and autono-
mous transposable element En (Spm) from maize (ZIGIA popu-
lation) (Wisman et al., 1998; Steiner-Lange et al., 2001). How-
ever, in the case of SPL8, we fortuitously identified a first
insertion allele within this population through a forward genet-
ics screen for photosynthetic mutants (Varotto et al., 2000;
Pesaresi et al.,, 2001). The plant line 5ATA20 exhibited a
marked reduction in the effective quantum yield of photosys-
tem Il (P. Pesaresi and D. Leister, unpublished data). Further-
more, this line was found to harbor multiple copies of the trans-
poson, and sequencing of their flanking genomic DNA revealed
one of these to be inserted at the SPL8 locus, 1101 bp down-
stream of the presumed translation start codon and residing in
the SBP domain coding sequence of the second exon (Figure
1). However, subsequent segregation analysis revealed that
this insertion allele of SPL8 (referred to below as sp/8-2; note
that the alleles described in this article are numbered according
to the order of their positions within the locus) could not be re-
sponsible for the observed reduced photosynthetic perfor-

mance. Additional PCR-based screening of the ZIGIA popula-
tion allowed the isolation of a second SPL8 mutant allele
(referred to as spl8-3). In the corresponding line 7AT39, the in-
sertion also was found in the SBP-box, but this time in an op-
posite orientation and 78 bp downstream of the site of insertion
found in line 5ATA20 (Figure 1).

Finally, a third SPL8 insertion allele (sp/8-1) was identified after
screening the SINS database of transposon flanking sequences
derived from the SLAT collection generated at the Sainsbury
Laboratory (Norwich, UK) by Jones and co-workers (http://www.
jic.bbsrc.ac.uk/sainsbury-lab/jonathan-jones/SINS-database/
sins.htm). The SLAT collection represents pools of seeds ob-
tained from a population of Arabidopsis plants mutagenized
with a nonautonomous derivative, dSpm, of the maize trans-
posable Spm/En element (Tissier et al., 1999). From the corre-
sponding pool of seeds, we were able to identify two plants
that both contained a transposon 167 bp downstream of the
presumed start codon in the first exon but upstream of the
SBP-box of SPL8 (Figure 1). DNA gel blot analysis, using right
and left end border sequences of En, confirmed that one of
these plants contained a unique transposon insertion in the
SPL8 gene, whereas the other was found to harbor a second
insertion in its genome. Selfing these plants resulted in progeny
from which an spl8-1 homozygous mutant plant was selected
to be the progenitor of the sp/8-1 mutant lines 30213 and
30214.

The homozygous sp/8 mutant lines obtained from the ZIGIA
population and the SLAT collection all showed the same devia-
tions, in particular reduced fertility, as described below, from
the wild-type phenotype. Segregation analysis of heterozygous
plants showed a 3:1 wild type:mutant ratio, reflecting the re-
cessive nature of the sp/8 mutant alleles. Furthermore, F1
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Partial nucleotide sequences and the encoded amino acid residues around the En transposon insertion sites of the three mutant alleles compared
with the wild-type allele are shown below a scheme of the intron-exon structure of the SPL8 locus. The exons are depicted as boxes. The SBP-box is

shown in black, and other coding parts are shaded. The transposon in
open triangles, with the corresponding allele indicated above. Numbers
starting from the first nucleotide of the translational start codon. Nucle

characters in the DNA sequence highlight the termini of the transposon,

sertions found separately in the three different mutant alleles are marked by
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otides corresponding to the target site duplications are underlined. Boldface
and below them, the corresponding encoded amino acid residues that differ
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plants obtained from allelic tests among the different sp/8 mu-
tant lines again displayed these deviations, proving that the
spl8 mutations are responsible for the observed phenotype. In
all three mutant alleles, the En/dSpm insertions were expected to
cause a premature translational stop of the predicted SPL8 gene
product, as depicted in Figure 1. In fact, reverse transcriptase—
mediated PCR performed on RNA extracted from inflorescences
did not allow the detection of SPL8-derived transcripts in ho-
mozygous spl8-1 mutants. However, very low levels of tran-
scripts of wild-type length were detected in both sp/8-2 and
spl8-3 plants (data not shown). This finding could be explained
by assuming a low frequency of excision of the autonomous En
element residing at the SPL8 locus in these two lines.

In the absence of an activator to encode a transposase, the
dSpm element in line 30213 (i.e., representing the sp/8-1 allele)
is expected to remain stably integrated (Tissier et al., 1999),
whereas the autonomous En elements present in ZIGIA lines
may transpose during development and thereby cause addi-
tional mutations. Furthermore, line 30213 carries a transposon
insertion only at the SPL8 locus, in contrast to the ZIGIA lines,
which carry multiple En elements in their genomes.

To avoid any influence of secondary site mutations on the
analysis of the sp/8 mutant phenotype, the sp/8-1 mutant line was
selected for further detailed histological analysis, as described
below. However, we first characterized all three lines to confirm
that they display the same major phenotypic aberrations.

Characterization of the sp/8 Mutant Morphology

During the vegetative phase of growth, sp/8 mutants were in-
distinguishable from the corresponding wild-type plants, and
the time to flowering remained unaffected (Figure 2A). How-
ever, after anthesis, when petals and sepals start withering and
wild-type siliques elongate strongly and develop embryo-con-
taining seeds, the carpels of early sp/8 mutant flowers did not
elongate and remained without seeds. Only at later stages of
(primary) inflorescence development did sp/8 mutants form
flowers with elongating siliques.

The 12 earliest flowers and siliques from the main inflores-
cences of an sp/8 mutant plant and a wild-type plant, both at
the same developmental stage and comparable to the plants
shown in Figure 2A, are lined up in Figure 2B. Up to stage 13 of
flower development (Smyth et al., 1990), sp/8 flowers were al-
most indistinguishable from wild-type flowers, except that they
appeared somewhat more slender. However, whereas wild-
type siliques after stage 16 clearly elongated, the gynoecia of
early sp/8 mutant flowers did not change in length.

A closer look with the scanning electron microscope re-
vealed that in developing flowers, the sp/8 anthers and their fil-
aments remained smaller than those of the wild type (Figures
3A and 3B). As a result of their reduced size, the sp/8 mutant
stamens, four long and two short as in the wild type, did not
overgrow the pistil, as is typical for wild-type flower develop-
ment (i.e., at stage 14). At stage 13 to 14 of flower develop-
ment, sp/8 mutant anthers underwent dehiscence, but they al-
ways released fewer pollen grains than wild-type anthers
(Figures 3C and 3D).

To quantify the degree of semisterility in sp/8 mutants, we
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Figure 2. Phenotype of the sp/8 Mutant.

(A) A homozygous spl/8-1 mutant plant (left) compared with the wild
type. Both plants are the same age and were grown under the same
greenhouse conditions.

(B) Flowers from a single sp/8-1 mutant (top row) and a wild-type inflo-
rescence (bottom row) at similar stages of development. The flowers are
arranged in basipetal order with the first formed and oldest flower at
right. Note the somewhat slender appearance of the sp/8 mutant flow-
ers before anthesis and of the petals after anthesis. In particular, note
the long turgescent remaining stigma of the sp/8-7 mutant and the fail-
ure of its silique to fully stretch after anthesis. Elongation of the pedicels
remains unaffected. The horizontal lines behind the flowers are spaced
0.5 cm apart. Numbers between the rows of flowers indicate approxi-
mate developmental stages according to Smyth et al. (1990) and Bow-
man et al. (1991): stage 13, anthesis; stage 17, floral organ abscission.
(C) Close-up of an sp/8-1 mutant inflorescence tip showing young floral
buds with a reduced number of trichomes on their sepals compared
with the wild type in (D).

(D) Close-up of a wild-type inflorescence tip.
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Figure 3. Scanning Electron Microscopy Analysis of sp/8 Mutant
Flower Development.

(A) Wild-type flower at a developmental stage matching stage 11 to 12
(i.e., stigmatic papillae become visible, and petals and stamen have ap-
proximately the same height).

(B) sp/8-1 mutant flower at a developmental stage comparable to that of
the wild-type flower shown in (A). The flower is more slender, and an-
thers (arrowheads) remain smaller compared with the wild type.

(C) Wild-type anthers and stigma at anthesis. Ample pollen is released
by the anthers (arrowheads) and adheres to the stigma surface.

(D) spl/8-1 mutant anthers and stigma at anthesis. The anthers show de-
hiscence but release much less pollen (small arrows) compared with
wild-type anthers. Note also that as a consequence of failing pollination,
the papillae of the sp/8-1 mutant stigma remain turgescent.

(E) and (F) A phenotype similar to that of sp/8-7 (D) is displayed by sp/8-2
(E) and sp/8-3 (F) mutants at anthesis.

Sepals and petals have been removed in part to unveil the inner floral
organ whorls. Bars = 100 pm.

determined seed set and pollen production compared with
those of wild-type plants (Table 1). The first five to seven flow-
ers in the primary inflorescence of sp/8 mutants grown under
long-day conditions generally did not set seed (in secondary in-
florescences, the number of flowers remaining seedless was
even higher). In the wild type, occasionally only the first formed
flower remained seedless. Flowers formed at later stages of in-
florescence development in sp/8 did set seed but fewer of them
compared with the wild type (Table 2). It should be noted that in
the wild type during the final stage of inflorescence develop-
ment (i.e., before the complete cessation of flower formation),
seed production seemed to decrease again, probably as a re-
sult of a diminishing supply of nutrients.

Seed set of sp/8 flowers at defined positions in the primary
inflorescence correlated with pollen production, with early flow-
ers producing less pollen than later flowers (Table 1). This cor-
relation also held true for the wild type, but significantly more
pollen was produced compared with that in sp/8 mutants.

As a consequence of the strong reduction in pollen produc-
tion, possibly together with the reduced length of the filaments,
the frequency of self-fertilization of sp/8 mutant flowers was re-
duced dramatically or did not occur at all, as was generally the
case for the first flowers formed (Table 1).

Manual pollination of homozygous sp/8 mutant plants with
their own pollen improved seed set. However, even when man-
ually pollinated without emasculation, so as not to damage the
flowers, seed set in the sp/8 mutants remained low compared
with that in the wild type (Table 2). That this is not simply the re-
sult of reduced numbers and/or viability of sp/8 mutant pollen is
suggested by the fact that cross-pollination with wild-type pol-
len also did not increase seed set to wild-type levels (Table 2).
Furthermore, we determined the average number of seeds pro-
duced by emasculated wild-type flowers after cross-pollination
with either mutant or wild-type pollen. This resulted in 46.5 (SD =
13.1, n = 6) seeds after pollination by the wild type and 31.3 (sD =
19.8, n = 6) and 43.5 (sb = 14.2, n = 6) seeds when pollinated
by spl8-1 and spl8-2 mutants, respectively. These values do
not differ significantly (t test; P > 0.1) from each other and
strongly suggest that additional factors affect the overall fertility
of sp/8 mutant flowers (see Histological Analysis of sp/8 Mutant
Ovule Development below).

Histological Analysis of sp/8 Mutant Anther Development

To elucidate the nature of the observed male sterility, trans-
verse sections were prepared from anthers of early-formed and
largely sterile sp/8-1 mutant flowers (grown under long-day
conditions). In the observations below, we refer to the staging
of wild-type anther development as described by Sanders and
co-workers (1999).

Soon after stamen initiation, at stage 2 of wild-type anther
development, archesporial cells arise from four small groups of
hypodermal (L2 layer) cells at the corners of the anther primor-
dium. Further mitotic divisions of these cells result in an anther
with two theca, each of which bears a pair of pollen sacs or mi-
crosporangia. By the time the wild-type anther has reached
stage 5 of development, each microsporangium has differenti-
ated into a group of sporocytes surrounded by a tapetum, a
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Table 1. First Seed Set, Pollen Production, and Trichome Formation of Wild-Type and sp/8 Mutant Flowers
Col-0 spl8-1 spl8-2 spl8-3

Variable Mean SD n Mean SD n Mean SD n Mean SD n
First flower to set seed 1.1 0.2 36 5.92 1.4 43 5.32 11 12 7.22 1.3 6
Pollen per anther

1st flower 340.9 72.2 27 8.32 14.7 31 4.92 7.5 39 14.42 25.6 37

10th flower 511.8° 471 30 98.62> 24.3 30 117.63P 40.4 29 90.32P 45.2 35
Sepal trichomes®

1st flower 22.3 4.5 10 3.32 1.3 10 4.52 1.4 6 4.62 2.6 6

10th flower 4.7° 1.3 10 0.42p 0.5 10 0.7ab 0.8 6 0.62P 0.8 6

Flowers formed in primary inflorescences of plants grown under long-day conditions. Flowers were numbered according to their appearance.

aSignificantly different from the wild type (t test; P < 0.001).

b Significantly different from the first flower in the same inflorescence (t test; P < 0.001).

¢Total number of trichomes on the abaxial side of all first-whorl organs.

middle cell layer, and an endothecium. At stage 6, wild-type
sporocytes enter meiosis and form tetrads of microspores sur-
rounded by a callose wall (stage 7), and the anther increases
notably in size.

Compared with that in the wild type, the initiation of mi-
crosporogenesis already was disturbed in the sp/8-1 mutant.
Archesporial cells failed to be formed at all four positions of the
anther. As a consequence, sp/8-1 mutant anthers sometimes
developed with fewer than four differentiated pollen sacs (Fig-
ure 4A). Also, the subsequent histogenesis of the microsporan-
gia that are formed in sp/8 mutant anthers proceeded abnor-
mally. The division of the outer secondary parietal cell layer
remained incomplete, although sporadic, presumptive middle
layer and endothecium cells were visible (Figure 4B).

The failure of sporogenous cells to undergo meiosis, ob-
served after stage 5, also may contribute to the strong reduc-
tion of sp/8 male fertility. However, without understanding the
mechanism of SPL8 action on anther differentiation and devel-
opment, it is difficult to determine whether the disruption in the
microsporangium wall layers causes sporogenous cell abortion
or sporogenous cell abortion leads to disruption in the mi-
crosporangium wall layers. Whereas in the subsequent stages
(i.e., 7 and upward) the wild-type microspores were released
from the tetrads and continued differentiation, the sp/8 sporo-
genic tissue degenerated, as deduced from the large vacuoles
that appeared in the tapetal cells and the dense staining of the
sporogenous cells (Figure 4C). As a result, the “mature” sp/8
mutant anthers appeared shorter and narrower than the wild-
type anthers. However, occasionally, callose deposition was
seen in some developing pollen sacs of the sp/8 mutant after
stage 5 of anther development (cf. with the wild type in Figure
4D). This finding indicates that some sporocytes initiate meiosis
and continue their development (Figure 4E), which agrees with
the observation that sp/8 mutant anthers may release some
pollen.

Histological Analysis of sp/8 Mutant Ovule Development

To determine if the sp/8 mutation also can affect the entrance
into meiosis during megasporogenesis, we examined some

semithin sections from developing ovules. In Arabidopsis, mega-
sporogenesis proceeds without the formation of parietal and
sporogenous cells. Instead, one hypodermal archesporial cell
per developing ovule gives rise directly to the megaspore
mother cell (Schneitz et al., 1995; Bajon et al., 1999). Stage 2 of
ovule development (according to Schneitz et al., 1995), which
encompasses megasporogenesis, starts with the enlargement
of the megaspore mother cell before the entrance into meiosis
(Figure 5A), which is completed by the formation of a linear tet-
rad of four haploid megaspores, only one of which survives.
The ovules also initiate the differentiation of the inner and outer
integuments during this stage. Until the enlargement of the mega-
spore mother cell, ovule development in the sp/8-1 mutant
seemed to follow wild-type development (Figure 5B). However,
occasionally, developing ovules were observed in which the
megaspore mother cell did not enter meiosis; instead, a subse-
quent dense cytoplasmic staining suggested degeneration of
the megaspore mother cell (Figure 5C).

As noted above, even after manual pollination, sp/8 mutant
flowers produced fewer seeds than wild-type flowers. A degen-

Table 2. Seed Production of Wild-Type and sp/8 Mutant Flowers

Col-0 spl8-1 spl8-2
Flower Mean sD n Mean sSD n Mean sSD n
1st flower 282 21.0 12 0.0? 0.0 12 0.02 0.0 12
10th flower 52.6° 3.8 12 13.12b 10.4 12 17.0a® 10.4 12
10th flower¢ n.d. 27.02 203 12 21.82 17.8 12
10th flowerd n.d. 19.92 16.8 12 30.72 149 12

Flowers formed in primary inflorescences of plants grown under long-
day conditions. Flowers were numbered according to their appearance.
n.d., not determined.

aSignificantly different from the nontreated wild-type flower at a similar
position within the inflorescence (t test; P < 0.001).

bSignificantly different from the first flower in the same inflorescence
(t test; P < 0.001).

¢ After manual self-pollination without emasculation.

d After manual cross-pollination with wild-type pollen without emasculation.
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Figure 4. Light Microscopic Analysis of Developing sp/8 Mutant An-
thers.

(A) Cross-section through sp/8-1 mutant anthers comparable to stage 4
to 5 of wild-type anther development. sp/8-1 mutant anthers often de-
velop fewer than four pollen sacs (arrowheads).

(B) An spl8-1 mutant pollen sac at a higher magnification to illustrate the
often-observed disturbed tissue differentiation. In particular, the outer

eracy of approximately half of the sp/8 ovules may explain this
discrepancy in seed set, assuming that degeneration of ovules
in the wild type must be rare, because we did not observe this
phenomenon in sections of wild-type flowers. However, the fre-
quency with which abnormal ovule development was observed
in sp/8-1 mutant flowers seemed to vary, as deduced from the
few sp/8-1 mutant flower buds that were analyzed by sequen-
tial sectioning of the entire pistil. In the most extreme case, all
of the ovules within the sp/8-1 bud displayed a degenerate
megaspore mother cell. In other samples, fewer than one-third
of the ovules were affected. Like the production of pollen, this
probably correlates with the position of the flower within the in-
florescence. This aspect has not been investigated further.

Temporal and Spatial Expression Patterns of SPL8

Previous RNA gel blot analysis performed on poly(A)* RNA iso-
lated from all aerial tissues of long-day-grown plants (Cardon et
al., 1999) revealed low levels of SPL8 transcripts during vegeta-
tive growth. High levels were found in inflorescences formed af-
ter the floral transition. To determine the spatial expression pat-
tern of SPL8 during this phase of reproductive growth, in situ
hybridization analysis was performed on cross-sections of
young flower buds (Figure 6). To exclude cross-hybridization to
other SPL genes, only the transcribed sequence upstream of
the SPB-box region of SPL8 was used to generate the anti-
sense RNA probe. Comparison of the hybridization signals with
those obtained with an SPL8 sense probe suggested that most
if not all early floral tissues expressed SPL8. A renewed inspec-
tion of the floral buds of the three sp/8 mutant lines revealed

secondary parietal cells may not undergo a further mitotic division and
remain undifferentiated. Intermittently, in the developing outer second-
ary parietal layer, formation of presumptive endothecium and middle
layer cells caused by periclinal divisions (arrows) can be seen. Further-
more, the cells of the inner secondary parietal layer or tapetum are less
well differentiated, reduced in number, and have an appearance closer
to that of the sporogenous cells. Sporogenous cell number also is re-
duced compared with that in the wild type.

(C) The failure of sp/8-1 sporogenous cells to undergo meiosis, as ob-
served after stage 5 of wild-type anther development, and the subse-
quent decay of the pollen sac is revealed by the dense staining of their
cytoplasm and the vacuolated tapetal cells.

(D) Somewhat oblique cross-section through a wild-type pollen sac at
stage 5 to 6 of anther development just before meiosis. All cell layers
are well differentiated, and dark-staining callose surrounds the meio-
cytes.

(E) Cross-section through an sp/8-1 mutant anther comparable to stage
9 to 10 of wild-type anther development (cf. [F]). This anther bears two
pollen sacs with some free microspores.

(F) Cross-section through a wild-type anther at stage 9 to 10. All pollen
sacs are well developed and contain free vacuolated microspores with
exine walls.

ct, connective tissue; en, endothecium; ep, epidermis; g, gynoecium;
mc, meiocyte; ml, middle layer; msp, microspore; osp, outer secondary
parietal cell layer; p, petal; s, sepal; sc, sporogenous cells; ta, tapetum;
ve, vascular cells. (B) to (D) are at the same scale, as are (E) and (F).
Bars = 25 um in (A), 10 um in (C), and 50 um in (F).



Figure 5. Light Microscopic Analysis of Developing sp/8 Mutant Ovules.

(A) Longitudinal section through a developing wild-type ovule. An en-
larged megaspore mother cell (arrowhead) and the initiation of the integ-
uments can be recognized, indicating a stage just before the entrance
into meiosis.

(B) Longitudinal section through a developing sp/8-1 mutant ovule.
Based on the degree of megaspore mother cell (arrowhead) enlarge-
ment and integument formation, this ovule is slightly earlier in develop-
ment compared with the wild-type ovule shown in (A).

(C) Longitudinal section through a developing sp/8-7 mutant ovule at a
somewhat later stage of development compared with the wild-type
ovule shown in (A). The integuments are more advanced in their devel-
opment, but the megasporocyte seems to degenerate, as deduced from
the dense staining of the cytoplasm and the loss of turgor.

ii, inner integument; nu, nucellus; oi, outer integument. (A) to (C) are at
the same scale. Bar = 10 um in (C).

that the low expression of SPL8 in other floral tissues might be
correlated with the presence of significantly fewer trichomes on
the sepals compared with the wild type (Figures 2C and 2D).
However, the developing pollen sacs, up to stage 6 of anther
development, contained increased levels of the SPL8 tran-
scripts (Figures 6A to 6D). At later stages of anther develop-
ment, this signal disappeared (Figures 6E and 6F). This finding
correlates with the deviations observed in the development of
spl8 mutant anthers. Likewise, the stronger signal in the pla-
cental region of the carpels (Figure 6G) may correlate with the
occasionally observed abnormal ovules visualized in sp/8 mu-
tant flowers.

DISCUSSION

We were able to identify and isolate three mutant sp/8 alleles
from two different transposon-tagged Arabidopsis populations.
The phenotypes of the corresponding homozygous mutant
plants all exhibited a strong reduction in male fertility. Together
with the outcome of the heteroallelic tests and the segregation
analyses after backcrossing to the wild type, these observa-
tions allowed the conclusion that the phenotype described is
attributable to the mutation of the SPL8 gene and of SPL8
alone. This finding enabled us to determine a developmental
role for a member of the Arabidopsis SBP-box gene family.

SPL8 Has a Major Effect on Sporogenesis

Our phenotypic analysis clearly showed that a major effect of
SPL8 was on microsporogenesis and megasporogenesis within
the anthers and ovules, respectively, where both spore types
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may fail to enter meiosis. In particular, SPL8 gene function is
required (1) for the proper initiation of microsporangium forma-
tion at defined positions within the anther and (2) for the regular
entrance of spore mother cells into meiosis. The role of SPL8 in
the entrance into meiosis seems not to be specific to micro-
sporogenesis. Although seemingly not as frequent, megasporo-
cytes also encountered difficulties undergoing meiosis in the
absence of SPL8. In the absence of a functional SPL8 gene,
the sporocytes did not form free meiocytes and eventually de-
generated. In addition to meiocyte differentiation, SPL8 also af-
fected the formation of the parietal layers of the microspo-
rangium. In the absence of SPL8 gene function, the outer
secondary parietal cell layers did not properly differentiate to
surround the meiocytes. The sp/8 mutant shows evidence that
the endothecium and the middle layer have a common origin
and in this respect supports the suggested cell lineage in the
anther wall differentiation of dicots (Owen and Makaroff, 1995;
Yang et al., 1999).

To what extent the developmental fate of sporogenous cells
and parietal layers are interdependent remains unclear, but SPL8
has been found to be transcriptionally active in both tissues.
Furthermore, the observation that tapetal ablation (Mariani et
al., 1990) leads to premeiotic sporocyte abortion, along with
the observations in other sterility mutants such as nzz/spl/
(Schiefthaler et al., 1999; Yang et al., 1999) and gne2 (Sorensen
et al., 2002), suggest that correct differentiation of both the
sporogenous cells and the surrounding parietal cells is essen-
tial for the entry of the developing meiocytes into meiosis. Also,
in the most severely affected anthers of sp/8 in which early
meiocyte abortion took place, no callose deposition was ob-
served. This finding reiterates the importance of callose deposi-
tion for the entry into meiosis (Worrall et al., 1992). In addition,
the tapetum cell layer has been proposed to provide nutrients
to the developing microspores and is transcriptionally highly
active, although callose deposition and the entrance into meio-
sis in gne2 is seen in the absence of an adjacent tapetal layer
(Sorensen et al., 2002).

Another highly interesting phenotypic aspect of the sp/8 mu-
tant is the failure of initiation of all four microsporangia within
the developing anther. Transverse sections through the early
flower buds of sp/l8 mutants showed a complete absence of
differentiated microsporangia in the greatly reduced anthers,
whereas other transverse sections detected one or two partially
developed microsporangia. This observation suggests that
SPL8 somehow is involved in controlling the sensitivity of a yet
unknown signal for pattern formation within the anther. In this
context, it is interesting that SPL8 expression itself was found
to be inducible by the phytohormone gibberellin (M. Schmid
and D. Weigel, personal communication). Mutants known to be
affected in either the biosynthesis or the perception of gibberel-
lin often display severe fertility problems (Koornneef et al.,
1985; Jacobsen and Olszewski, 1993; Fei and Sawhney, 1999;
Goto and Pharis, 1999). Furthermore, trichome formation, which
also was reduced on the sepals of sp/8 mutant flowers, is
known to be controlled by gibberellin (Chien and Sussex, 1996;
Perazza et al., 1998).

spl8 mutants displayed a variable degree of expression,
probably as a result of endogenous and environmental factors
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Figure 6. In Situ Localization of SPL8 Transcripts.

Cross-sections through wild-type anthers at different stages of develop-
ment probed with digoxigenin-labeled SPL8 antisense or sense RNA.
(A) and (C) At premeiotic stages 4 to 5 (A) and 5 to 6 (C), SPL8 tran-
scripts are detectable primarily in the parietal and sporogenous cell lay-
ers that form the four pollen sacs of the anther.

(E) At postmeiotic stage 7 to 8, SPL8 transcripts are no longer detect-
able in the anther.

(B), (D), and (F) Control hybridizations on consecutive sections with an
SPL8 sense probe showing low or absent background signals.

(G) Overview of SPL8 expression in a cross-section of a young wild-type
floral bud. In addition to the expression in the developing pollen sacs of
the anthers, increased SPL8 transcript levels are detectable in the placen-
tal tissue of the developing gynoecium and at the margins of the petals.

(e.g., the position of the flower in the inflorescence and photo-
period). However, and despite the fact that a complete loss of
function will result in dramatically reduced progeny and thus a
strong reduction in reproductive fitness within an Arabidopsis
population, SPL8 function is not essential to Arabidopsis onto-
genesis. All sp/8 mutants remained capable of producing func-
tional pollen and of setting viable seed. An obvious explanation
would be a functional redundancy derived from another SBP-
box gene.

As mentioned above, SPL8 is one of 16 SBP-box genes
found in the Arabidopsis genome. However, sequence align-
ment of their deduced protein products (data not shown) did
not reveal a homolog (i.e., a possible SPL8 paralog). In fact,
outside of its SBP domain, SPL8 does not display any obvious
sequence similarity to other Arabidopsis SBP domain proteins.
Thus, the possibility of another Arabidopsis SBP-box gene
compensating for an SPL8 loss of function seems unlikely, but
as long as the mode of action of SBP domain proteins remains
unknown, this possibility cannot be excluded.

SPL8 Displays Only Limited Sequence Conservation
Outside of the SBP Domain

The SBP domain encoded by the SBP-box has been shown to
bind defined DNA sequences in vitro and to harbor a bipartite
nuclear localization signal (Klein et al., 1996; R. Birkenbihl and
P. Huijser, unpublished data). Furthermore, a translational fu-
sion of a SBP domain protein and green fluorescent protein
was found to be directed toward the nucleus (Moreno et al.,
1997; U. Unte, R. Birkenbihl, and P. Huijser, unpublished data).
Therefore, it is assumed that the SBP-box gene SPL8 acts as a
transcription factor, controlling as yet unknown target genes
whose functions are, at least in part, necessary for normal
sporogenesis and microsporangium wall formation. In addition,
their functions may be required for floral organ growth and tri-
chome formation.

Besides the DNA binding SBP domain, with its nuclear local-
ization signal, a Basic Local Alignment Search Tool (BLAST)
search of sequences available in the electronic databases did
not indicate other known conserved domains that could be of
help in understanding the mechanism of SPL8 function. How-
ever, almost immediately upstream of the SBP domain, SPL8
shares a short stretch of amino acid residues, RIGLNLGRTYF,
with a few SBP domain proteins known from other species, such
as AMSBPH3 from snapdragon and ZMSBP1, ZMSBP3, and
ZMSBP4 from maize. Interestingly, part of this domain, GLN-
LGRTYF, also is conserved in the maize LG1 protein, the only
other SBP domain protein with a known loss-of-function phe-
notype. LG1 controls the formation of the ligule, a structure

an, anther; ct, connective tissue; en, endothecium; ep, epidermis; f, fila-
ment; g, gynoecium; ml, middle layer; mmc, microspore mother cell;
msp, microspore; p, petal; pc, parietal cells; pt, placental tissue; s, se-
pal; sc, sporogenous cells; ta, tapetum; te, tetrad; vc, vascular cells. (A)
to (F) are at the same scale. Bars = 50 pm.



typical of the leaves of grasses. In a search for the function of a
possible LG1 ortholog in dicots, Mooney and Freeling (1997)
have suggested that the stipules at the base of Arabidopsis
leaves could represent structures homologous with the ligules
of maize leaves. We have not determined if stipules in sp/8 mu-
tants are affected. Although a phylogenetic analysis based on
the SBP domain sequence suggests that LG1 is related more
closely to SPL8 than to any of the other Arabidopsis SBP do-
main proteins (data not shown), the sequence similarity outside
of the SBP domain is very limited. The conserved stretch of
amino acid residues mentioned above indicates the presence
of at least a few other maize SBP domain proteins with greater
overall similarity to SPL8, and these might be related more
closely in function to SPL8 than is LG1.

METHODS

Plant Material and Growth Conditions

Arabidopsis thaliana plants from ecotype Columbia-0 (Col-0) were
grown in a phytochamber (CMP 3244; Conviron, Winnipeg, Canada) in
plastic trays filled with ready-to-use commercial, prefertilized soil mix-
ture (type ED73; Werkverband). For stratification, seeds were kept on
wet filter paper for 4 days at 4°C in the dark before transferring to soil.
Growing conditions were 22°C, 50% RH, and ~150 pE-m~2-s~" light (flu-
orescent Sylvania F72T12 cool-white light [75%] and incandescent Syl-
vania 100-W lamps [25%]). Cultivation was under a 16-h-light/8-h-dark
(long-day) photoperiod regime.

Genomic DNA and RNA Isolation

Leaves from long-day-grown Arabidopsis plants were collected, and the
DNA was isolated using a cetyl-trimethyl-ammonium bromide-based
extraction method (Sommer et al., 1990). Pooled genomic DNA was
used subsequently for transposon insertion analysis with the help of
PCR, as described by Baumann et al. (1998).

Total RNA for the detection of SPL8 transcripts was isolated from
young inflorescences using the Qiagen RNeasy kit (Valencia, CA) ac-
cording to the manufacturer’s protocol Plant+Fungi. Before use for re-
verse transcriptase-mediated (RT) PCR, the RNA was treated with
DNasel (Roche, Mannheim, Germany) and purified subsequently over
RNeasy mini spin columns (Qiagen).

RT-PCR was performed using the Qiagen OneStep RT-PCR kit, ac-
cording to the manufacturer’s instructions, in combination with the fol-
lowing primer oligonucleotides: 5'-TCCATCGTTCTCTCCGGAGATGAAAG-
3’ (GC420; SPL8 forward primer) and 5'-GAATTTGAAGACGAAGACGCT-
GACGTG-3’ (GC370; SPL8 reverse primer). Three-step cycling condi-
tions were as follows: 26 PCR cycles at 94°C for 40 s, 65°C for 30 s, and
72°C for 1 min using 100 ng of RNA.

Mutant Isolation and Molecular Genetic Analysis

The different male-sterile sp/8 mutants were identified in a reverse ge-
netics screen of En-1- and dSpm-mutagenized Arabidopsis Col-0 pop-
ulations. The generation of the En-7-mutagenized population of plants
has been described by Wisman et al. (1998), whereas the generation of
the dSpm-containing population has been described by Tissier et al.
(1999).

The SLAT line 30213, which carries the sp/8-1 allele, and the ZIGIA line
5AT20, which carries the spl8-2 allele, were back-crossed one time to
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the Col-0 wild type. The described mutant phenotype recurred only in F2
plants, segregating in a Mendelian fashion (i.e., 3:1 wild type:mutant). All
of the mutants, but none of the wild-type-looking F2 plants, were found
to be homozygous for the respective sp/8 mutation.

For the allelic test cross, homozygous sp/8-1 and sp/8-3 were crossed
together. The resulting F1 generation displayed the semisterile pheno-
type of its parents. To discriminate both mutant alleles and to confirm
the heteroallelic nature of the F1 plants, PCR analysis with the following
oligonucleotide primer combinations was used: 5'-AGAAGCACGACG-
GCTGTAGAATAGGA-3' (En205) together with 5'-AACAACGACCGC-
CGTCACATCACC-3' (GC326) to identify the sp/8-1 allele and En205 to-
gether with 5'-AAGACAGAAGTGGATTTCACGTCCAAC-3' (GC637) or
5'-GAGCGTCGGTCCCCACACTTCTATAC-3' (En8130) together with 5'-
GAATTTGAAGACGAAGACGCTGACG-3' (GC370) to identify sp/8-3.

Oligonucleotides used for the PCR-based reverse genetics screen
were 5'-TTGTTCTCCTACGACCAGACAGGACC-3' (GC633) and 5'-TTG-
TCGAATTCCGACAGCAAATGGAAC-3' (GC634).

Oligonucleotide Synthesis, DNA Sequencing, and
Sequence Analysis

DNA sequences were determined by the Max Planck Institute for Plant
Breeding Research DNA core facility on Applied Biosystems (Weiter-
stadt, Germany) Abi Prism 377 and 3700 sequencers using BigDye ter-
minator chemistry. Premixed reagents were from Applied Biosystems.
Oligonucleotides were purchased from Invitrogen (The Netherlands).
DNA and protein sequence analysis was performed using the GCG anal-
ysis tools (Wisconsin Package version 10 for digital UNIX; Genetics
Computer Group, Madison, WI) and the MacVector program (Oxford
Molecular Group).

Microscopy and in Situ Hybridization

A Leica binocular microscope (Wetzlar, Germany) equipped with a digital
camera was used to photograph floral buds and siliques at different de-
velopmental stages.

For scanning electron microscopy, freshly dissected flowers were
mounted on aluminum specimen stubs using Tissue-Tek OCT compound
(Sakura Finetek, Tokyo, Japan) and immediately shock frozen in liquid ni-
trogen. The samples were transferred subsequently to a Zeiss DSM 940
electron microscope (Jena, Germany) equipped with a cryo-chamber
(Oxford Instruments). After sublimation of possible ice on their surfaces,
the samples were sputter coated with gold and examined at an acceler-
ating voltage of 5 kV.

For light microscopic examination of anthers, young flower buds rang-
ing in length from 0.4 to 1.4 mm were fixed, dehydrated, and embedded
as described by Sorensen et al. (2002). Semithin sections of 0.8 um cut
on a Reichert ultramicrotome were stained with toluidine blue.

Tissue preparation and in situ hybridization with digoxigenin-labeled
RNA were performed according to the protocol published by Huijser et
al. (1992) as modified by Samach et al. (1997). To avoid cross-hybridiza-
tion with other SPL genes, only SPL8 sequences 5’ of the SBP-box were
used to generate both sense and antisense probes for in situ hybridiza-
tion. The fragment was amplified by PCR from the cloned SPL8 cDNA
using the oligonucleotide primer combination 5'-GACTCTGACCCGACC-
CGGTCATCCTTC-3' and 5'-CGAGTTCGCCATCCCTGACTCACC-3'.
The PCR product obtained was cloned subsequently in both orientations
in the T7 RNA polymerase promoter containing TOPOTA2-1 vector (In-
vitrogen) according to the instructions of the manufacturer. After linear-
ization with Hindlll, the plasmids were used as templates for T7 RNA
polymerase in vitro transcription and digoxigenin labeling according to
the description with the Roche Nucleic Acid Labeling and Detection Kit.
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Both the in situ hybridization slides and the semithin sections were ex-
amined and photographed with a Zeiss Axiophot microscope equipped
with differential interference contrast optics and a digital camera (Intas).

Remaining Techniques and Methods

Standard molecular biology techniques were performed according to
Sambrook et al. (1989). Digital photographic images were cropped and
assembled using Adobe Photoshop 4.0 (Adobe Systems, Mountain
View, CA). Color and contrast corrections were performed on entire im-
ages only.

Upon request, all novel materials described in this article will be made
available in a timely manner for noncommercial research purposes.

Accession Numbers

GenBank accession number for AMSBPH3 is AJ011621. GenBank ac-
cession number for ZMSBP1 is AJO11614. GenBank accession number
for ZMSBP3 is AJ011616. GenBank accession number for ZMSBP4 is
AJO11617.
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