
Intracompartmental and Intercompartmental
Transcriptional Networks Coordinate the Expression of
Genes for Organellar Functions1[W]

Dario Leister2, Xi Wang2, Georg Haberer2, Klaus F.X. Mayer, and Tatjana Kleine*

Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-
Universität München, D–82152 Planegg-Martinsried, Germany (D.L., T.K.); and Munich Information Center
for Protein Sequences/Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, D–85764
Neuherberg, Germany (X.W., G.H., K.F.X.M.)

Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle
biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to
ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling
influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily
regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks
coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of
nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana)
were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in
the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the
expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear
OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are
perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can
even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental
transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state
and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear
genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of s factors are identified.

In eukaryotes, genetic information is stored in the
nucleus and in the organellar genomes of mitochon-
dria and chloroplasts. The organellar genomes are
of ancient endosymbiotic origin but are now highly
impoverished owing to either gene loss or gene trans-
fer to the nucleus (Rand et al., 2004; Timmis et al., 2004;
Kleine et al., 2009a). Therefore the majority of mito-
chondrial and chloroplast proteins are encoded in the
nucleus, synthesized in the cytoplasm, and posttrans-
lationally imported into the organelles (Jarvis, 2008).
The residual organellar genomes code for proteins
involved in organellar gene expression (OGE) or
organellar energy production (OEP; i.e. in the light

reactions of photosynthesis in chloroplasts and in the
respiratory chain in mitochondria). Hence, organellar
multiprotein complexes, such as 70S-type ribosomes,
photosystems, and the respiratory chain complexes
are actually mosaics of subunits encoded by nuclear
and organellar genes. Their correct assembly obvi-
ously requires the coordination of OGE and nuclear
gene expression (NGE) at different levels (Rodermel
and Park, 2003; Beck, 2005; Nott et al., 2006; Pogson
et al., 2008;Woodson and Chory, 2008) and is thought to
include primarily posttranscriptional and translational
mechanisms that provide for direct control of OGE by
nuclear genes (“anterograde signaling”; Somanchi and
Mayfield, 1999; Barkan and Goldschmidt-Clermont,
2000; Rochaix, 2001; Choquet and Wollman, 2002;
Giegé et al., 2005; Stern et al., 2010). Conversely,
“retrograde signaling” from the organelle to the nu-
cleus is believed to enable NGE to be modified at the
transcriptional level, in accordance with the develop-
mental and metabolic state of the organelles (Nott
et al., 2006; Pogson et al., 2008; Kleine et al., 2009b).
However, evidence is accumulating that also OGE can
be regulated at the transcriptional level. Thus, data
derived from transcriptomic and proteomic studies of
acclimation responses in photosynthetic eukaryotes
showed that the photosynthetic apparatus can rapidly
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adapt to metabolic and light fluctuations also at the
transcriptional level (Eberhard et al., 2008). Moreover,
cluster analyses of chloroplast genes conducted on
transcriptomes from mutants with severe photo-
synthetic defects or from plants exposed to stresses
suggested that the accumulation of plastid gene tran-
scripts is regulated in response to altered states of the
chloroplast (Cho et al., 2009). The importance of tran-
scriptional control in the chloroplast is underpinned
by work with s (SIG) factors, which are nucleus en-
coded and required as chloroplast RNA polymerase
transcription factors for chloroplast genes (Schweer
et al., 2010; Lerbs-Mache, 2011). Accordingly, the
loss of SIG2 and SIG6 delays chloroplast biogenesis
(Hanaoka et al., 2003; Ishizaki et al., 2005; Loschelder
et al., 2006).
Transcriptome analyses in the model plant Arabi-

dopsis (Arabidopsis thaliana) have suggested the exis-
tence of different layers of retrograde control over the
transcriptional expression of nuclear genes for chloro-
plast or mitochondrial proteins; here, they are named
“nuclear chloroplast (or mitochondrial) genes,” in
contrast to “organellar chloroplast (or mitochondrial)
genes.” Retrograde signaling seems to involve two
distinct types of mechanisms: (1) a “master switch”
that acts in a binary mode to either induce or repress
the same large set of genes (Richly et al., 2003; Biehl
et al., 2005); and (2) a mechanism that supports the
coregulation of nuclear and organellar genes for pho-
tosynthesis and chloroplast (cp)OGE components
(Biehl et al., 2005; Maclean et al., 2008). The latter
mechanism appears to be widely conserved in eukary-
otes, because Drosophila nuclear genes for mitochon-
drial respiration and the mitochondrial (mt)OGE
machinery share a common sequence element, the
“nuclear respiratory gene” element (Sardiello et al.,
2005). Thus, in animal mitochondria and plant chlo-
roplasts, the transcriptional coordination of nuclear
OEP and OGE gene expression seems to follow similar
regulatory principles.
Here, we have analyzed in the model plant Arabi-

dopsis the transcriptional regulation of nuclear and
organelle genes for OEP and OGE proteins, together
with proteins for chloroplast tetrapyrrole biosynthesis.
By considering eight different categories of environ-
mental and genetic conditions, focusing particularly
on those that are known to influence organelle func-
tion or signaling, we identified sets of genes that
responded in a coherent manner to various genetic
and environmental conditions or perturbations. This
enabled us to define coexpression networks within
genetic compartments. Strikingly, transcriptional co-
regulation in nucleus and organelle was found to
coordinate the expression of cpOEP and cpOGE genes
and to be functionally dominant over intracompart-
mental coexpression networks under certain condi-
tions. In addition, we identify candidate cis-elements
involved in the transcriptional regulation of nuclear
genes coding for organellar proteins as well as novel
tentative target genes of s factors.

RESULTS

Selection of Gene Sets

To identify instances of transcriptional coregulation
at the intracompartmental and intercompartmental
levels, appropriate sets of genes residing in the three
genetic compartments in Arabidopsis were selected.
The four major sets chosen contained all known genes
for chloroplast and mitochondrial proteins (see “Ma-
terials and Methods”), located either in the nu-
cleus (cpalln and mtalln Þ or the relevant organelle ðcpallorg and
mtallorg). Nine subsets were derived from these four main
classes by extracting genes with functions in pho-
tosynthesis (cp

photo
n and cp

photo
org ), chloroplast tetrapyrrole

biosynthesis (cp
tetpy
n ), mitochondrial respiration (mt

resp
n

and mt
resp
org ), and OGE (cpOGE

n , cpOGE
org , mtOGE

n , and mtOGE
org ;

Table I; Supplemental Table S1). In addition, three con-
trol sets of randomly selected nuclear genes were used,
consisting of 20 (ctrl20n ), 100 (ctrl100n ), and 1,500 (ctrl1500n )
members and equivalent in size to the corresponding
nuclear gene sets (which range from 37 to 1,476 genes;
Table I).

Selection of Conditions

mRNA expression data derived from plants that
carried mutations affecting functions in organelles
or at the whole-cell level, or that had been subjected
to environmentally induced perturbations, were re-
trieved from public Arabidopsis databases (see “Ma-
terials and Methods”). The perturbations considered
and conditions imposed were assigned to eight major
categories of environmental or genetic stimuli (Table
II; Supplemental Table S2), which are known or as-
sumed to be relevant for chloroplast and/or mito-
chondrial functions and retrograde signaling.

Chloroplast

A wealth of evidence shows that mutants affecting
certain chloroplast functions give rise to changes in the
transcription of nuclear and chloroplast genes (for
review, see Pfannschmidt, 2003; Pogson et al., 2008).
Therefore, we have considered microarray data from
mutants for chloroplast proteins, for which effects on
gene expression at the transcription level have been
reported, including the thylakoid Ser/Thr protein
kinase mutant stn7 (Bonardi et al., 2005; Bräutigam
et al., 2009), photosystem I subunits D and E (psad1
and psae1) mutants that affect electron flow through
PSI (Pesaresi et al., 2009), and a transposon-tagged
albino mutant (Tian et al., 2007).

Genomes Uncoupled Signaling

This category includes microarray data that reveal
the effects of treatments and mutations thought to
specifically alter plastid-to-nucleus signaling. This in-
cludes the application of the herbicide norflurazon
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(which damages plastids and induces photobleaching)
or lincomycin (an inhibitor of OGE); both agents pre-
vent the expression of nuclear genes that encode pho-
tosynthesis-related proteins (Oelmüller andMohr, 1986;
Gray et al., 2003). In the genomes uncoupled (gun) mu-
tants, the expression of several nuclear photosynthesis
genes is maintained in the presence of norflurazon and
lincomycin (Susek et al., 1993; Gray et al., 2003).

Reactive Oxygen Species

The pool of reactive oxygen species (ROS), such as
singlet oxygen, superoxide, and hydrogen peroxide,
is also thought to provide signals relevant for organ-
elle-to-nucleus communication (Apel and Hirt, 2004;
Pogson et al., 2008; Kleine et al., 2009b). Therefore,
microarray data that reflect the consequences of in-
creased ROS accumulation induced either by the ap-
plication of an inhibitor (methyl viologen to steadily
produce superoxide in the light; Mehler, 1951) or by
down-regulation of peroxisomal catalase, a ROS scav-
enger, were considered. In the latter case, data were
collected from plants grown under ambient growth
conditions and after exposure to high light, which
exacerbates the effects of defective ROS scavenging
(Vanderauwera et al., 2005). Because the alternative
oxidase (AOX) of plant mitochondria prevents ROS
formation from an overreduced ubiquinone pool,
microarray data from a study that showed that a
decrease in AOX activity induces oxidative stress in
chloroplasts (Umbach et al., 2005) were integrated into
this category. Moreover, mRNA profiles from mutants
for transcription factors that play a central role in ROS
and abiotic stress signaling in Arabidopsis, like the

zinc finger transcription factors ZAT10 (Rossel et al.,
2007) and ZAT12 (Davletova et al., 2005), were in-
cluded. Because exposure of the Arabidopsis fluores-
cent mutant to light generates singlet oxygen in
plastids (Meskauskiene et al., 2001), an effect that
provided the basis for analyses that led to the conclu-
sion that hydrogen peroxide antagonizes singlet oxy-
gen-mediated signaling and that the corresponding
signaling pathways interact (op den Camp et al., 2003;
Laloi et al., 2007), the corresponding microarray data
were assigned to this category also.

Light Signaling

Light regulates chloroplast function and develop-
ment by promoting the expression of nuclear chloro-
plast genes (Ohgishi et al., 2004). The expression of
nuclear photosynthesis genes is induced by red/far-red
and blue light photoreceptors: the phytochromes
and cryptochromes, respectively (Ohgishi et al., 2004;
Larkin and Ruckle, 2008). Light and plastid signaling
are closely connected (Larkin and Ruckle, 2008). Thus,
long hypocotyl1 (hy1) and hy2, as well as cryptochrome1
(cry1) mutant alleles, were isolated in gunmutant screens
(Mochizuki et al., 2001; Ruckle et al., 2007), and plastid
signals influencing photomorphogenesis are dependent
on GUN1 and cry1 (Ruckle and Larkin, 2009). Conse-
quently, microarray data from plants subjected to dif-
ferent light treatments, frommutants defective either in
photoreceptors or their downstream transcription fac-
tors, like HY5 and HY5 homolog, and mutants display-
ing defects in photomorphogenesis or deregulation of
nuclear photosynthesis genes in certain light condi-
tions, were considered in this category.

Table I. Overview of sets and subsets of genes

The designation of gene sets refers to the subcellular location and function of the gene product and indicates the location of the gene; for example,
cp

photo
n refers to nuclear (n) genes for chloroplast (cp) proteins with a function in photosynthesis (photo). Accordingly, mt stands for mitochondrion,

resp for respiration, and org (organelle) indicates that the gene is located in chloroplasts or mitochondria. A complete list of the genes analyzed is
provided in Supplemental Table S1. Note that 96 genes are represented in both cpalln and mtalln gene sets, because of dual targeting of their gene
products. Also note that for each of the three control sets, ctrl20n , ctrl100n , and ctrl1500n , all nuclear Arabidopsis genes were considered and mean values
of 100 repetitions were analyzed.

Designation Description No. of Genes

cpalln All known nuclear chloroplast genes 1,476
cp

photo
n Subset of cpalln involved in photosynthesis 129

cpOGE
n Subset of cpalln involved in OGE 90

cp
tetpy
n Subset of cpalln involved in tetrapyrrole biosynthesis 39

cpallorg All organellar chloroplast genes 80

cp
photo
org Subset of cpallorg involved in photosynthesis 45

cpOGE
org Subset of cpallorg involved in OGE 30

mtalln All known nuclear mitochondrial genes 1,323
mt

resp
n Subset of mtalln involved in respiration 110

mtOGE
n Subset of mtalln involved in OGE 37

mtallorg All organellar mitochondrial genes 98

mt
resp
org Subset of mtallorg involved in respiration 18

mtOGE
org Subset of mtallorg involved in OGE 7

ctrl20n 20 randomly selected nuclear genes 20
ctrl100n 100 randomly selected nuclear genes 100
ctrl1500n 1,500 randomly selected nuclear genes 1,500
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Hormones

Multiple interactions between the retrograde sig-
naling pathway and hormone signaling, especially ab-
scisic acid (ABA) signaling, have been described
(Penfield et al., 2006; Shen et al., 2006; Koussevitzky
et al., 2007; Kim et al., 2009). In contrast to brassino-
steroids and gibberellins, which repress photo-
morphogenesis and negatively regulate chloroplast
development (Li and Chory, 1999; Alabadı́ and
Blázquez, 2009), cytokinins promote the etioplast-to-
chloroplast transition and the formation of the electron
transport chain (Cherniad’ev, 2000) and control the
expression of nuclear chloroplast genes (Schmülling
et al., 1997). In response to ethylene, nuclear photosyn-
thesis genes are generally down-regulated. Moreover,
ethylene signaling appears to interact with auxin-
related signal transduction processes (Zhong and
Burns, 2003). Given the important role of ABA, auxin,
ethylene, gibberellins, brassinosteroids, and cytoki-
nins in regulating the expression of nuclear chloroplast
genes, a collection of microarray data from hormone-
treated plants and hormone-related mutants were
included in this category.

Sugars

In this category, microarray data for plants treated
with Suc or Glc, for instance, and of mutants affected
in carbohydrate metabolism or subcellular partition-
ing, like hexokinase1 (hxk1) and triosephosphate trans-
locator (tpt), were investigated. Sugars act as signaling
molecules to control the expression of nuclear genes
involved in photosynthesis, glyoxylate metabolism,
respiration, starch, and Suc synthesis. Increased levels
of Glc or Suc, the end products of photosynthesis,
repress photosynthetic gene expression (Rolland et al.,
2006). HXK1 is crucial for sensing and responding to
intracellular Glc signals (Cho et al., 2006). The TPT
functions primarily as a dihydroxyacetone phosphate/
phosphate exchanger to maintain Suc synthesis in the
cytosol (Flügge, 1999). Interestingly, the tpt and gun
mutations provoke similar alterations in the nuclear
chloroplast transcriptome (Biehl et al., 2005).

General Stresses and Nutrient Supply

The remaining two conditions include mutations
or treatments that have major effects on general cell
functions. We included, for instance, microarray data
from drought- and cold-stressed plants in the “general
stresses” category and data for plants grown under
limiting nitrogen and sulfate conditions in the cate-
gory “nutrient supply,” because these latter conditions
impinge on photosynthesis and the expression of
photosynthesis genes (Jung et al., 2003; Zhang et al.,
2004; Peng et al., 2007; Pinheiro and Chaves, 2011).

All

Because the specific stimuli for plastid signaling
considered in each of the eight categories are often
interconnected, the effects of individual stimuli are
sometimes difficult to separate. Thus, interactions
between light and hormone signaling pathways exist.
For instance, HY5, which was included in the category
“light signaling,” also acts as a signal integrator that
connects the light and hormone pathways (Lau and
Deng, 2010). Moreover, singlet oxygen-mediated plas-
tid signaling affects plastid development in seedlings
and depends on the recruitment of ABA during seed-
ling development (Kim et al., 2009). As a third exam-
ple, AOX has been suggested to link several processes
in mitochondria and chloroplasts to optimize photo-
synthetic performance (Strodtkötter et al., 2009). There-
fore, to test whether transcriptional responses are
specific for certain conditions (or categories), we also
performed our analyses with the whole set of micro-
array data considered for the eight categories.

Overall, data from 101 genome-wide Affymetrix
ATH1 oligonucleotide array analyses, encompassing
1,290 independent hybridization experiments (Table
II; Supplemental Table S2), were analyzed.

Transcripts of Genes for OEP and OGE Are Generally
Highly Abundant

For each microarray experiment, normalized abso-
lute gene expression values were extracted from the
downloaded files. To compensate for potential quan-
titative differences between microarray experiments,
for instance differences in absolute hybridization levels,
gene expression data were subjected to z-score trans-
formation (see “Materials andMethods”). Positive scores
indicate transcript levels above average and negative
scores indicate transcript abundances below average for
the relevant control ensemble.

Comparison of the mean z-scores, as a measure for
absolute gene expression levels, revealed clear differ-
ences between the eight different conditions, with “gun
signaling” and “chloroplast” conditions eliciting the
lowest and highest transcript abundances, respectively
(Supplemental Fig. S1A). Even more pronounced dif-
ferences were observed between the different gene sets
(Fig. 1A; Supplemental Fig. S1A). Under all conditions
considered, organellar mitochondrial genes represented

Table II. Overview of conditions

”All” refers to the combination of all eight categories. A complete
list of conditions is given in Supplemental Table S2. Data sets refer to
different experimental series that contained up to 60 array experi-
ments.

Category of Condition Data Sets Arrays

Chloroplast 3 25
gun signaling 5 38
Light signaling 18 247
Hormones 25 349
ROS 14 104
General stresses 15 312
Sugars 13 139
Nutrient supply 8 76
All 101 1,290

Transcriptional Control of Organellar Function

Plant Physiol. Vol. 157, 2011 389



the least expressed group of genes, always giving
slightly negative z-scores, indicative of transcript abun-
dances below average with respect to the total Arabi-
dopsis transcriptome (Fig. 1A; Supplemental Fig. S1A).
Organellar chloroplast genes, together with nuclear
photosynthetic genes, represented the most highly ex-
pressed gene classes. Mean expression levels for the
cp

photo
n and mt

resp
n subsets were 4-fold higher than the

means for the corresponding master sets cpalln and mtalln ,
respectively. Similarly, mtOGE

n genes were expressed
at markedly higher levels than mtalln , in contrast to
cpOGE

n and cp
tetpy
n genes, which behaved similarly to cpalln .

Taken together, these analyses revealed that tran-
scripts encoding chloroplast proteins were generally
present in very high abundances, irrespective of
whether the corresponding gene is located in the nu-
cleus or the organelle. Moreover, nuclear OEP genes,
as well as nuclear mtOGE genes, were also expressed
at significantly higher levels than the average for the
corresponding master set (all nuclear chloroplast or
mitochondrial genes).

Similarities in Expression Responses within Gene Sets

A transcriptional signature common to most nuclear
chloroplast genes (master switch) was previously pro-
posed based on the characterization of the nuclear

chloroplast transcriptome under 35 environmental
and genetic conditions (Richly et al., 2003). To critically
evaluate this hypothesis on the basis of a sufficiently
comprehensive data set and to test whether also others
of our predefined gene sets of nuclear and organellar
genes for chloroplast and mitochondrial proteins are
specifically coregulated, expression responses within
gene sets were investigated. To determine the level of
expression similarity within a given gene set, the mean
Pearson correlation coefficient (PCC) was calculated
from the PCCs (see “Materials and Methods”) of all
possible gene pairs within the gene set (Fig. 1B; Sup-
plemental Fig. S1B). Once again, the three sets of
randomly selected nuclear genes ctrl20n , ctrl100n , and
ctrl1500n and the two master sets of all organellar chlo-
roplast (cpallorg) and mitochondrial (mtallorg) genes served
as controls. As expected, the three nuclear control
groups exhibited PCCs close to zero (Fig. 1B), although
the conditions “sugars” and “ROS” also elicited some
degree of coexpression in randomly selected nuclear
genes (PCCs from 0.15 to 0.20; Supplemental Fig. S1B).
The organellar genes exhibited the highest degrees
of coregulation (cpallorg, 0.52; mtallorg, 0.53); interestingly,

“chloroplast” conditions were associated with a lesser
degree of organellar gene coexpression. With the ex-
ception of mtalln , which for most conditions showed
only marginally higher PCCs than randomly selected

Figure 1. Absolute mRNA expression levels of
gene sets and expression similarities. A, Mean
z-scores are given over all categories of condi-
tions. SE values were always less than 3%. The
designation of gene sets follows Table I. Data for
nuclear control groups are given as white bars. B,
Mean PCCs are given for each gene set over all
conditions. Values between 0 and 1 indicate
increasing positive correlation of expression pro-
files; 0 to –1 stand for increasing negative corre-
lations. All nuclear gene sets show significantly
higher expression similarities than do random
control sets in Monte Carlo simulations (Sup-
plemental Table S3). For a detailed analysis of
the individual categories, see Supplemental Fig-
ure S1.
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nuclear genes, all sets of nuclear chloroplast or mito-
chondrial genes showed increased coregulation to
varying degrees. Thus, cp

photo
n (PCC = 0.46) and cpOGE

n
(PCC = 0.39) were the most highly coregulated nuclear
gene sets (Fig. 1B), and again “chloroplast” conditions
decreased the level of coregulation, as in all other
nuclear chloroplast gene sets (Supplemental Fig. S1B).
Nuclear mtOGE genes were the most highly coex-
pressed gene subset among the nuclear mitochondrial
genes; here, “chloroplast” conditions provoked the
highest level of coexpression (PCC = 0.53), as indeed
for nuclear mitochondrial genes as a whole. Monte
Carlo simulations confirmed that almost all nuclear
gene sets were significantly more highly coregulated
than corresponding random control groups (Supple-
mental Table S3).

Coregulation of Different Gene Sets in the Same

Genetic Compartment

Pairwise comparisons of the mRNA expression of
genes in different gene sets allowed us to identify
expression similarities between gene sets. Whereas al-
ready all nuclear chloroplast genes exhibited a certain
level of coregulation (see above; Supplemental Fig.

S1B), the combinations cp
photo
n /cpOGE

n , cp
photo
n /cp

tetpy
n , and

cpOGE
n /cp

tetpy
n displayed even higher degrees of coregu-

lation over all conditions (Fig. 2A). This implies that
coordination of the expression of nucleus-encoded
photosynthetic proteins, the expression of chloro-
plast-encoded photosynthetic proteins via the OGE
machinery, and the synthesis of the tetrapyrrole chlo-
rophyll, three processes that are all necessary for
efficient assembly of the photosynthetic machinery, is
controlled, at least in part, at the level of mRNA
expression in the nucleus. For mitochondria, the com-
bination mt

resp
n /mtOGE

n also exhibited a certain level of
coexpression (Fig. 2A), implying that the coregulation
of the transcription of nuclear mtOGE and respiration
discovered in animals (Sardiello et al., 2005) also ex-
tends to photosynthetic eukaryotes. Strikingly, under
“chloroplast” conditions, the coregulation generally
observed in the combinations cp

photo
n /cpOGE

n and cp
photo
n /

cp
tetpy
n breaks down, whereas the same conditions

enhance coregulation of the mt
resp
n /mtOGE

n sets (Sup-
plemental Fig. S2A). At the level of organellar genes,
cpOGE

org /cp
photo
org or mtOGE

org /mt
resp
org were no more highly

coexpressed than the corresponding control sets of
all organellar genes (Fig. 2B; Supplemental Fig. S2B).
However, their levels of coregulation were still higher
than those of any gene class or pair of nuclear gene
sets.
We also tested whether coregulation between nu-

clear chloroplast and mitochondrial genes occurs.
Indeed, nuclear OGE genes (cpOGE

n /mtOGE
n ) were mod-

erately coregulated under most conditions, while the
different OEP genes (cp

photo
n /mt

resp
n ) could even display

a moderate negative correlation coefficient (i.e. be
regulated in opposite senses; Fig. 2C). For organellar

OGE (cpOGE
org /mtOGE

org ) and OEP (mt
resp
org /cp

photo
org ) genes,

moderate coregulation was evident only under two
conditions (“light signaling” and “sugars”; Supple-
mental Fig. S3A).

Coregulation between Different Compartments

We then compared the expression profiles of gene
sets for proteins with similar function that are distrib-
uted to different genetic compartments. For mitochon-
drial proteins, genes for respiration (mt

resp
n /mt

resp
org ) or

OGE (mtOGE
n /mtOGE

org ) were not coexpressed at all, ex-
cept under “chloroplast” and, less obviously, “ROS”
conditions (Fig. 2D; Supplemental Fig. S3B). At the
chloroplast level, a modest degree of coregulation was
already noted at the level of all nuclear and organellar
chloroplast genes (cpalln /cpallorg). More pronounced levels
of nucleus-organelle coregulation were observed
for photosynthesis (cp

photo
n /cp

photo
org ) and cpOGE (cpOGE

n /
cpOGE

org ) genes (Fig. 2D). Here, “general stresses” and
“nutrient supply” conditions, which should affect the
general energy status of the cell, resulted in maximal
intercompartmental coregulation, whereas coregu-
lation was markedly reduced under “chloroplast”
conditions (Supplemental Fig. S3B), implying a differ-
entiated transcriptional response to adjust the photo-
synthetic process.

Therefore, coregulation of nuclear and organellar
genes is especially characteristic for chloroplast func-
tions. Only under conditions that perturb chloroplast
function or ROS homeostasis does a certain level of
intercompartmental coexpression ensue between nu-
clei and mitochondria.

Dynamics of Transcriptional Networks

The results of our pairwise comparisons indicated
that coregulation between different gene sets can vary
in different conditions. Therefore, to obtain an overall
picture of expression similarities, we performed hier-
archical clustering of gene set expression for all eight
individual categories of conditions as well as over
all conditions (Fig. 3). The coregulation in the com-
binations cp

tetpy
n /cpOGE

n andmtOGE
org /mt

resp
org was very robust

and was found in all eight categories. Coexpression
in the combinations cp

photo
org /cpOGE

org and mt
resp
n /mtOGE

n was
found in seven of the eight categories. Nuclear photo-
synthesis genes were coexpressed with cp

tetpy
n /cpOGE

n
in six categories (Fig. 3).

The three categories “gun signaling,” “light signal-
ing,” and “sugars” generally increased coexpression
among gene sets, as indicated by the shorter branch
lengths. Nucleus-organelle coregulation was more
robust for chloroplasts (six categories) than for mito-
chondria (four categories) and was particularly per-
turbed by “light signaling” and “sugars” conditions,
which resulted in organelle-organelle coregulation.
In contrast, “general stresses” and “chloroplast” pro-
voked the strongest coregulation of nuclear and chlo-
roplast photosynthesis genes (Fig. 3).
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Coregulation between Different Genetic Compartments

at the Gene Pair Level

The PCC analysis was further exploited to identify
coregulated gene pairs from among gene sets encoded
in different compartments that specified proteins with
similar functions. This includes (1) as an instance of
organelle-organelle coregulation, OGE (mtOGE

org /cpOGE
org )

and OEP (mt
resp
org /cp

photo
org ) genes from mitochondria and

chloroplasts, which were moderately coregulated
under “light signaling” and “sugars” conditions (Sup-
plemental Fig. S3A); (2) as an example for nucleus-
organelle coregulation at the mitochondrial level,
genes for OGE (mtOGE

n /mtOGE
org ) and respiration (mt

resp
n /

mt
resp
org ), which were coexpressed under “chloroplast”

conditions (Supplemental Fig. S3B); and (3) at the
chloroplast level, the pronounced nucleus-organelle
coregulation observed for cpOGE (cpOGEn /cpOGEorg ) and

photosynthesis (cp
photo
n /cp

photo
org ) genes already under “all”

conditions (Fig. 2D).
Therefore, the PCCs of gene pairs of the combina-

tions mentioned above under the respective condi-
tions were calculated (Supplemental Table S5). As a
control, all-against-all Pearson correlation matrices
from 23,913 Arabidopsis genes were computed for
each condition. From these correlation matrices, the
background distributions of pairwise expression sim-
ilarities were determined. Gene pairs exceeding the
90% and 95% quantile of the distribution (correspond-

ing to P = 0.1 and P = 0.05, respectively) were then
considered as “coregulated” and “significantly coreg-
ulated,” respectively, under the respective conditions.
Whereas no instance of negative coregulation was
detected among the gene pairs and conditions inves-
tigated, 12 cases of significant positive coregulation
and 151 cases of positive coregulation were detected
(Supplemental Table S5). Representative cases are dis-
cussed in the following.

mtOGE
org /cpOGE

org (“Light Signaling” and “Sugars”)

For this combination, the genes encoding mtRPL16
and mtRPS3 are represented by the same Affymetrix
array element and are coregulated with two (“light
signaling”) and four (“sugars”) chloroplast genes,
respectively, including the gene for cpRPL20 under
both conditions (Supplemental Table S5, A and B).

mt
resp
org /cp

photo
org (“Light Signaling” and “Sugars”)

In this case, the mitochondrial genes encoding
ATPase subunit 6, NADH dehydrogenase subunits
3 and 4, and apocytochrome b in “light signaling”
conditions and the mitochondrial genes encoding the
NADH dehydrogenase subunit 4 and ATP synthase
subunit 8 in “sugars” conditions were coregulated
with chloroplast genes, in particular genes encoding
the PSII reaction center proteins D1 and CP43 and the

Figure 2. Expression similarities be-
tween different gene sets. A and B,
Genes in the same genetic compart-
ment and products in the same organ-
elle. C, Genes in the same genetic
compartment and products in different
organelles. D, Genes in different ge-
netic compartments. For comparison,
some expression similarities within
gene sets (gray bars) or nuclear control
sets (white bars) are provided. A de-
tailed analysis for the eight conditions
is provided in Supplemental Figures S2
and S3, and results of Monte Carlo
simulations are provided in Supple-
mental Table S4.
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Figure 3. Different layers of transcriptional control regulate the expression of genes for organellar proteins. A, Hierarchical
clustering of the expression profiles of gene sets. Results over all conditions and for each condition are provided. The distance
between profiles has been calculated as 1 – PCC. The bar indicates a distance unit of 1. Bootstrap values of P $ 80% and P $

95% are indicated as one and two asterisks, respectively. Black asterisks stand for approximately unbiased P values and gray
asterisks for P values from standard bootstrap resampling. B, Scheme summarizing the results from A. Highly coregulated gene
sets (intracompartmental or nucleus-organelle) are symbolized by sectors, and moderately coregulated gene sets (nucleus-
organelle or organelle-organelle) are enclosed by boxes. The color code is as in A. x. y indicates that mode x of transcriptional
coregulation prevails over mode y.
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NAD(P)H dehydrogenase subunits J and K (Supple-
mental Table S5, C and D).

mtOGE
n /mtOGE

org (“Chloroplast”)

In this combination, the highest degree of core-
gulation (PCC = 1; P = 0) was found for the gene
pairs AT2G07675/ATMG00980 and AT2G07715/
ATMG00980 (Supplemental Table S5E). AT2G07675
encodes a ribosomal protein of the S12/S23 family,
AT2G07715 a nucleic acid-binding protein with an
oligonucleotide/oligosaccharide binding-like fold, and
ATMG00980 the ribosomal protein L2 (mtRPL2). In
addition, the mitochondrial genes for mtRPS3, mtRPS4,
mtRPL5, and mtRPL16 constituted a subset of mtOGE

org ,
which was significantly coregulated (four cases) and
coregulated (13 cases) with various genes from mtOGE

n .

mt
resp
n /mt

resp
org (“Chloroplast”)

Here, six cases of significant coregulation and 27
cases of coregulation were found (Supplemental Table
S5F). In particular, mitochondrial genes encoding
ATPase subunits (atp1 [ATMG01190], atp6-1 [ATMG00410],
atp6-2 [ATMG01170], and atp9 [ATMG01080]), cyto-
chrome oxidase 1 (cox1 [ATMG01360]), and NADH
dehydrogenase subunit 9 (nad9 [ATMG00070]) were
coregulated with nuclear genes for ATPase subunits
like atpC (AT2G07671) and atpG (AT4G26210).

cpOGE
n /cpOGE

org (“All”)

Only one clear example of nucleus-organelle coreg-
ulation of cpOGE genes was found: this involved the
nuclear gene EMBRYO DEFECTIVE2369 (AT4G04350)
and the chloroplast gene for cpPRPS16 (ATCG00050;
Supplemental Table S5G).

cp
photo
n / cp

photo
org (“All”)

In contrast to the paucity of coregulation between
nuclear and chloroplast genes for OGE, 77 pairs of
photosynthesis genes were coregulated. For instance,
chloroplast genes encoding subunits of the ATP syn-
thase (atpB [ATCG00480] and atpE [ATCG00470]) or the
cytochrome b6/f complex (petB [ATCG00720]) were
coregulated with nuclear genes encoding diverse Ru-
bisco small chain subunits (AT1G67090, AT5G38410,
AT5G38420, and AT5G38430), Rubisco activase (RCA
[AT2G39730]), and several proteins of the light-
harvesting complexes of PSI and PSII (Supplemental
Table S5H).

A Case Study: Absolute mRNA Expression, Expression
Similarities, and Coregulation of Class I, II, and III

Chloroplast Genes

In higher plants, chloroplast transcription is per-
formed by three different plastid RNA polymerases: a
multimeric plastid-encoded plastid (PEP) and two
monomeric nucleus-encoded plastid (NEP) RNA poly-

merases (Lerbs-Mache, 2011; Liere et al., 2011). In
principle, most plastid genes can be transcribed by
both types of RNA polymerases. However, a subset of
plastid genes, including PSI and PSII genes, are tran-
scribed from PEP promoters only (class I genes),
whereas some genes that are related to plastid tran-
scription are transcribed exclusively by NEP (class III
genes; Hajdukiewicz et al., 1997). Nonphotosynthetic
and housekeeping genes are mostly transcribed by both
PEP and NEP (class II genes; Swiatecka-Hagenbruch
et al., 2007). In plastids, the specificity of promoter
recognition by PEP is achieved by the nucleus-encoded
s factors SIG1 to SIG6.

To obtain insights into the regulation of class I, II,
and III genes, the absolute mRNA expression and the
expression similarities of chloroplast genes were ana-
lyzed (Supplemental Fig. S4). Comparison of the ab-
solute gene expression levels revealed that the
expression of class III genes was in general two times
lower compared with class I and II and the rest of the
chloroplast genes not yet classified (Supplemental Fig.
S4A). Generally, “gun signaling” and “ROS” provoked
the lowest transcript abundances in class I and II and
in class III genes, respectively. Whereas the expression
similarities within the three different gene classes was
high in “all” conditions (PCCs from 0.46 to 0.55;
Supplemental Fig. S4B), under “ROS” conditions, class
II and III genes displayed low expression similarities,
with PCCs around 0.3 and 0.2, respectively. To obtain a
more comprehensive picture of the coregulation of
chloroplast genes, we performed hierarchical cluster-
ing of chloroplast gene expression over “all” condi-
tions and included also the nuclear SIG1 to SIG6 in this
analysis (Supplemental Fig. S4C). SIG1, SIG2, SIG3,
SIG4, and SIG6 clustered together, whereas SIG5 did
not cluster with any of the investigated genes. Class I
and II genes were distributed all over the clustering
tree but formed some subclusters, for instance one
containing the class I genes psaA, psbC, psbD, psbH, and
ndhA. The class III genes rpoC1, rpoC2, and accD
clustered together, whereas rpoA and rpoB were found
in a different cluster. Generally, genes encoding ribo-
somal proteins clustered together.

Classification of the Genes According to Their Extent of
Differential Expression

Of the microarray experiments considered in our
analysis, 413 experiments represented comparisons
either between treated and nontreated plants or be-
tween mutant and wild-type samples. All the genes
coding for chloroplast or mitochondrial proteins that
we investigated displayed at least a 2-fold difference
in expression in at least two of the 413 experiments. A
set of 127 genes showed such a differential response in
at least 103 (or one-fourth) of the 413 experiments and
were classified as “very highly responsive” (Supple-
mental Table S6). Except for the chloroplast gene
ATCG01010 encoding the chloroplast NAD(P)H dehy-
drogenase subunit F (NdhF), all very highly respon-
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sive genes were found to be located in the nucleus or
mitochondrion. Numerous genes coding for auxin-
responsive proteins and P-glycoproteins were found
among the very highly responsive genes. In addition,
many genes associated with stress responses were
identified, including nuclear genes for chloroplast
(AT2G29500 and AT4G27670) and mitochondrial
(AT1G52560, AT4G25200, and AT5G51440) heat shock
proteins, alternative oxidases 1C and D (AOX1C and
-D [AT3G27620 and AT1G32350]), early light-induc-
ible proteins 1 and 2 (ELIP1 and -2 [AT3G22840 and
AT4G14690]), cold-regulated 15B protein (COR15B
[AT2G42530]), and the 9-cis-epoxycarotenoid dioxy-
genase (NCED) genes NCED2, -3, and -5 (AT4G18350,
AT3G14440, and AT1G30100) encoding subunits of the
key enzyme in ABA biosynthesis. Related genes like
NCED4 and -9, or AOX1A and -B, which were not in
the very highly responsive category, were found in the
next category (“highly responsive” [differentially reg-
ulated in 71 to 102 experiments]; Supplemental Table
S6). Genes for photosynthesis and tetrapyrrole biosyn-
thesis were mainly found among the “moderately
responsive” genes (2-fold differential in 36 to 70 ex-
periments) and the “weakly responsive” genes (2-fold
differential in six to 35 experiments).
One hundred twenty (or 4%) of the investigated

genes were classified as “very weakly” responsive
genes, with differential expression in only two to five
experiments (Supplemental Table S6). All of these
were nuclear genes, and no known biological function
could be assigned to approximately 25% of them.
Examples from the collection of very weakly respon-
sive genes are those for subunits of the mitochon-
drial ATP synthase (AT2G33040, AT5G08670, and
AT5G08690), the genes TRANSLOCON AT THE
OUTER ENVELOPE MEMBRANE OF CHLORO-
PLASTS34 (AT5G0500) and TRANSLOCON AT THE
INNER ENVELOPE MEMBRANE OF CHLORO-
PLASTS40 (AT5G16620), three EMBRYO-DEFECTIVE
genes (AT4G26300, AT5G02250, and AT5G24400), and
GLOBULAR ARREST1 (AT5G41480).

Common cis-Elements in Coregulated Gene Sets

Because all nuclear chloroplast genes (cpalln ) exhibi-
ted a certain level of coregulation (see above; Sup-
plemental Fig. S1B), in particular genes from the
cp

photo
n , cpOGE

n , and cp
tetpy
n sets, and their combinations

(Figs. 1B, 2A, and 3), the 500-bp promoter sequences
of these coregulated gene sets were assessed for the
occurrence of 21 known plant transcription factor
binding sites by PScan (Zambelli et al., 2009; Fig. 4A),
and scanned for novel cis-elements by the Amadeus
program (Linhart et al., 2008; Fig. 4C). Employing
PScan, binding sites for the basic leucine zipper (bZIP)
proteins EmBP-1, bZIP910, bZIP911, and TGA1A, the
Myb transcription factor ARABIDOPSIS RESPONSE
REGULATOR10 (ARR10), and the AP2 MBD-like
transcription factor ABA INSENSITIVE4 (ABI4) were
found to be overrepresented in cpalln and cp

photo
n and,

with the exception of ARR10, also in cpOGE
n . However,

in cp
tetpy
n promoters only, the binding motifs for EmBP-1

and ARR10 were enriched, suggesting that a distinct
mode of transcriptional regulation exists for this
gene set.

The use of Amadeus allowed us to identify three
8-bp elements containing the ACGT element in the
three gene sets, which were 2-fold enriched compared
with the genome-wide frequency in Arabidopsis
500-bp promoters and which were already identified
by PScan as being associated with binding of EMPB-1,
TGA1A, bZIP910, and bZIP911. In addition, two novel
motifs, NGAAYRYY and BSKTATCY, designated
cpCoReg1 and cpCoReg2, were identified, which were
even more highly overrepresented than the ACGT-
containing motifs (average enrichment factors in all
three gene sets of 4.1 and 3.2, respectively; Fig. 4C).
Thus, within the promoter sequences of the genes
present in cp

photo
n , cpOGE

n , and cp
tetpy
n , cpCoReg1 was

found in 17 (or 12.8%), 14 (or 15.1%), and 11 (or 26.2%)
promoters, respectively, whereas the genome-wide
average was 4.6%. In the case of cpCoReg2, the motif
was found in 46 (or 34.6%), 26 (or 28%), and 12
(or 28.6%) of the promoter sequences of the genes
contained in cp

photo
n , cpOGE

n , and cp
tetpy
n , respectively, but

only in 2,881 (or 10.1%) of all 28,446 Arabidopsis
promoter sequences. When thematrix library collected
in TRANSFAC (Wingender et al., 1996) was searched
by Amadeus for known transcription factors binding
to sequences similar to cpCoReg1 and -2, the mam-
malian mitochondrial transcription factor A (mtTFA;
Litonin et al., 2010) and the Drosophila heat shock
factor (HSF; Jensen et al., 2008) were identified as best
hits.

For mitochondria, mt
resp
n and mtOGE

n and their combi-
nation exhibited a certain level of coexpression (Figs.
1B, 2A, and 3). Examination by PScan for known
binding sites of transcription factors, using as a control
the gene set mtalln (which displayed very little coregu-
lation), resulted in a much more complex picture than
the one obtained for nuclear chloroplast gene sets (Fig.
4B). Binding sites for seven transcription factors were
found to be overrepresented in mtalln . Of these, only
ABI4 and MNB1A (DNA-binding with one finger1
[Dof1]) displayed significant P values for the mt

resp
n

gene set. For mtOGE
n , no overrepresented transcription

factor-binding site could be identified. The Amadeus
program was then used to identify novel 8-bp consen-
sus sequences overrepresented in the 500-bp promoter
regions of the mt

resp
n and mtOGE

n gene sets (Fig. 4D). Two
hits with enrichment factors of 2.3 and 2.8, respectively,
were obtained. Both resembled the AAAG-binding
element common to MNB1A, Dof2, and Dof3 and
already detected by PScan. In addition, GMNAANMY,
designated in the following as mtCoReg1, was found as
the most significant common element within mt

resp
n and

mtOGE
n , with frequencies of 44.5% and 60%, respectively,

in the respective promoter sequences. These frequen-
cies represent a marked enrichment when compared
with the genome-wide average for mtCoReg1 (6,959 of
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28,446 promoters; 23.2%). Another cis-element identi-
fied in mt

resp
n and mtOGE

n was HCGGRYHD (mtCoReg2;
Fig. 4D), detected in 37.8% and 40% of the respective
promoters. Again, the element occurs much more fre-
quently than the genome-wide frequency would lead
one to expect (3,618 of 28,446 promoters; 12.7%).

DISCUSSION

In this study, the absolute and relative expression of
different sets of nuclear and organellar genes under
eight different categories of conditions was analyzed.
The comprehensive data collections and databases
available (e.g. http://www.ncbi.nlm.nih.gov/geo, http://
arabidopsis.org, and http://mapman.gabipd.org/web/
guest/mapman) made the classification of the gene
sets with respect to their functions in organellar gene
expression, energy-transducing processes, or tetrapyr-
role biosynthesis straightforward and unambiguous.
The definition of the eight categories of environmental
and genetic conditions relevant for organelle func-
tions, however, is of necessity ambiguous, because of
the complications introduced by the possible pleiot-
ropy of some treatments or genetic lesions, which may

trigger multiple signaling pathways and/or affect
both organelles. Further impurities were added to
the analysis by considering microarrays performed on
plant material of different developmental stages. Nev-
ertheless, we obtained clear evidence for specific re-
actions of the gene sets under certain categories of
conditions, implying that within our predefined cate-
gories certain stimuli were indeed enriched, allowing
us to recognize distinct transcriptional trends and
responses.

High Levels of Transcripts for Abundant Proteins Might

Reflect the Transcriptional Regulation of
Protein Abundance

Transcript abundance can reflect absolute protein
abundance, even in the presence of posttranslational
regulation (Kleffmann et al., 2004) and thus give first
insights into the actual level of activity of biological
processes. Our analyses revealed that transcripts
encoding chloroplast proteins, particularly ones in-
volved in photosynthesis, were generally highly abun-
dant, irrespective of whether the corresponding gene
is located in the nucleus or the organelle. Photosyn-
thesis proteins are also highly abundant; therefore, the

Figure 4. Known (A and B) and novel (C and D) cis-regulons identified in coregulated gene sets. P values were calculated based
on the whole-genome set of Arabidopsis. For the designation of the gene sets, see Table I.
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strong correlation between transcript and protein
levels for photosynthesis-related proteins might reflect
the highly dynamic nature of the photosynthetic ap-
paratus, insofar as it can rapidly adapt to metabolic
and light fluctuations even at the transcriptional level
(Eberhard et al., 2008). Only in the “gun signaling”
category, in which seedlings were treated with certain
inhibitors, was the absolute expression of the
cp

photo
n and cp

photo
org gene sets comparatively low (Supple-

mental Fig. S1A). This might be explained by the
generally lower expression of photosynthesis genes in
cotyledons (which were used for the analyses) com-
pared with leaves (data not shown; https://www.
genevestigator.com) and by the fact that the applica-
tion of these inhibitors prevents the expression of
many nuclear genes for photosynthesis not only in
wild-type plants but also, to a certain degree, in gun
mutants (Oelmüller and Mohr, 1986; Gray et al., 2003).

For proteins of the mitochondrial respiratory chain,
the corresponding nuclear genes were also expressed at
significantly higher levels than the genomic average,
although four times lower than the values for those
encoding photosynthesis proteins (Fig. 1A). As with
photosynthesis genes, this might indicate that a close
correlation between transcript and protein levels could
contribute to dynamic alterations of the activity of the
respiratory chain by transcriptional regulation. Such
alterations might be required to cope with increased
electron flux in the light without substantially increas-
ing mitochondrial ROS production. Indeed, it was
shown that light directly influences the transcription
of nuclear genes coding for components of the respira-
tory electron transport chain, probably to support pho-
tosynthetic metabolism (Escobar et al., 2004; Yoshida
and Noguchi, 2009). Strikingly, genes for mitochondrial
proteins located in the organelle, especially those cod-
ing for respiration, displayed very low abundance, even
lower than the genomic average (Fig. 1A; Supplemental
Fig. S1A). It was shown previously that, although
transcript synthesis in Arabidopsis mitochondria cy-
cled in a diurnal rhythm, steady-state transcript levels
were stable, implying that the available steady-state
transcript levels in plant mitochondria are sufficient to
provide the required translation capacity also at times
of peak respiratory and physiological demands (Okada
and Brennicke, 2006). This hypothesis based on the
analysis of diurnal rhythms can now be generalized to
the many conditions analyzed in our study and can
explain the negative correlation between mRNAs cod-
ing for mitochondrial proteins responsible for the same
process that are transcribed from nuclear and organ-
ellar genes (Fig. 2D).

Coregulation within Gene Sets and between Gene Sets in

the Same Genetic Compartment: Metabolic Implications

With the exception of mtalln , all sets of nuclear chloro-
plast or mitochondrial genes showed markedly higher
degrees of coregulation than did random controls (Fig.
1B), corroborating, for nuclear chloroplast genes, the

previous proposal of a transcriptional signature com-
mon to most nuclear chloroplast genes (master switch;
Richly et al., 2003). Moreover, both nuclear photosyn-
thesis and cpOGE genes displayed even higher levels of
coregulation, a finding that is in agreement with the fact
that they cluster in only two of the 23 regulons iden-
tified on the basis of the behavior patterns of some 3,000
different nuclear Arabidopsis gene transcripts under
101 conditions (Biehl et al., 2005). In addition, the cp

tetpy
n ,

mt
resp
n , and mtOGE

n gene sets each displayed levels of co-
regulation comparable to that in the cpalln set (Fig. 1B),
implying that coregulation at the transcript level also
encompasses nuclear genes for tetrapyrrole synthesis
(the pathway that provides the photosynthetic pig-
ments), for the respiratory chain, and for mitochondrial
gene expression. The negative effect of “photosynthe-
sis” conditions on the level of coexpression of genes for
chloroplast proteins (Supplemental Fig. S1B) can be
interpreted in the context of the complex metabolic
reprogramming that must occur in chloroplasts in
general (cpalln ) to compensate for changes in photosyn-
thetic activity and readjust the activity of photosynthetic
electron flow. In contrast, the more highly synchro-
nized expression of nuclear mitochondrial genes
under “photosynthesis” conditions might reflect a
general “emergency response” at the level of mito-
chondria to safeguard ATP supplies.

At the level of organellar genes, cluster analyses of
chloroplast genes conducted on transcriptomes from
mutants with severe effects on photosynthesis or from
plants exposed to stresses suggested that the accumu-
lation of plastid gene transcripts is regulated in response
to altered states of the chloroplasts (Cho et al., 2009). To
our knowledge, no comparable analysis has been con-
ducted on mitochondrial genes. Intriguingly, we show
here that all chloroplast and mitochondrial organellar
gene sets are highly coregulated, even more so than
their nuclear counterparts (Fig. 1B). Presumably, the
high degree of coregulation of mitochondrial gene sets
reflects a lack of transcriptional regulation, as steady-
state levels of their transcripts generally remain stable
(see above; Okada and Brennicke, 2006), whereas co-
regulation of the chloroplast gene sets has to be inter-
preted in the context of their coregulation with their
nuclear pendants (see below: retrograde signaling).

Coregulation of nuclear gene sets impinging on dif-
ferent functions in the same genetic compartment has
so far been shown only for cpOGE and photosynthesis
in Arabidopsis and was interpreted as an instance of
nuclear transcriptional control of plastid ribosome
abundance, contributing to the coordinated expression
of plastome- and nucleus-encoded proteins of the pho-
tosynthetic machinery (Biehl et al., 2005). Here, we have
shown that the two sets of nuclear genes for cpOGE and
tetrapyrrole biosynthesis, in particular, are coregulated
and that, in turn, the cp

tetpy
n /cpOGE

n module is coregu-
lated with nuclear photosynthesis genes. This implies
that coordination of the expression of nucleus-encoded
photosynthetic proteins, the expression of chloroplast-
encoded photosynthetic proteins via the OGE machin-
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ery, and the synthesis of chlorophyll, three processes
that are all necessary for the efficient assembly of the
photosynthetic machinery, are controlled, at least in
part, at the level of mRNA expression in the nucleus.
The coexpression of mtOGE and respiration was first
noted at the level of conserved nuclear promoter ele-
ments in Drosophila (Sardiello et al., 2005) but has not
previously been investigated at the transcript level in
any species.We now show that also in Arabidopsis, this
phenomenon serves to coordinate the accumulation of
nuclear transcripts coding for respiratory proteins and
mtOGE proteins (Fig. 2A). Moreover, also nuclear genes
for tetrapyrrole biosynthesis are coregulated with
cpOGE genes and photosynthesis genes, making per-
fect sense in a physiological context.
At the level of organellar genes, the extent of coor-

dination of OGE and photosynthesis genes in the
chloroplast and of OGE and respiratory chain genes
in mitochondria is higher than that of any gene class or
pair of nuclear gene sets but not higher than the cor-
responding master sets of all chloroplast or mitochon-
drial genes (Fig. 2B; Supplemental Fig. S2B). Therefore,
it remains unclear whether a specific mechanism
for coordinating the expression of genes for OGE
and energy-transducing elements also operates in
the organelles.

Negative Coregulation between Gene Sets from
Chloroplasts and Mitochondria: Implications for

Energy-Dissipating Processes?

The expression of genes for proteins that function in
chloroplasts and mitochondria needs to be coordi-
nated under certain conditions because of their well-
documented metabolic interdependence (Raghavendra
and Padmasree, 2003). For instance, photosynthetic
processes depend on a range of compounds syn-
thesized by mitochondria, but they also provide sub-
strates for mitochondrial respiration. Furthermore,
mitochondrial respiration protects photosynthesis
against photoinhibition by dissipating redox equiva-
lents exported from the chloroplasts (for review, see
Leister, 2005). The different OEP genes (cp

photo
n /mt

resp
n )

displayed a moderate negative correlation coefficient
(Fig. 2C). This can be tentatively explained by opposite
regulation under stress conditions, a hypothesis that
is supported by the observation that levels of tran-
scripts specifying energy-dissipating respiratory com-
ponents are increased under high light (Svensson and
Rasmusson, 2001; Yoshida et al., 2008) while nuclear
genes encoding photosynthesis proteins are mostly
down-regulated (Kimura et al., 2003), as are the levels
of their products, such as PSII antenna proteins (Melis,
1991).

Coregulation of Gene Sets in Different Compartments:
Implications for Retrograde and Anterograde Signaling

Organellar multiprotein complexes, such as 70S-
type ribosomes, photosystems, and the respiratory

chain complexes, are actually mosaics of subunits
encoded by nuclear and organellar genes. Hence, their
correct assembly obviously requires the coordination
of OGE andNGE at different levels, and the coordinate
expression of nuclear genes for photosynthesis and
cpOGE (see above) represents one level of control.
Regulation directly at the transcript level would pro-
vide another mode of regulation but would require
retrograde signaling from the organelles to the nucleus
to adjust NGE according to the demands of the organ-
elles. Whereas chloroplast-nucleus signaling has been
extensively investigated in plants (Rodermel and Park,
2003; Beck, 2005; Nott et al., 2006; Pogson et al., 2008;
Woodson and Chory, 2008), mitochondrial retrograde
signaling has been predominantly studied in yeast
(Liu and Butow, 2006), and relatively little is known
about mitochondrion-nucleus signaling in plants
(Rhoads and Subbaiah, 2007). Our analysis of the
coregulation of genes that code for proteins with
similar functions but are distributed between different
genetic compartments showed that nucleus-organelle
coregulation at the transcript level is characteristic for
chloroplast but not for mitochondrial functions (Fig.
2D). This conclusion is underpinned by the large
number of photosynthesis genes that are positively co-
regulated under all conditions examined (77 nucleus-
organelle gene pairs; Supplemental Table S5H). In
contrast, nuclear and organellar genes coding for
the respiratory chain or OGE even show some degree
of negative coregulation (Fig. 2D). This is in line with
the observation that, during mitochondrial biogenesis,
no coordination of the expression of nucleus- and
mitochondrion-encoded proteins at the transcript
level was found in response to sugar starvation and
refeeding, prompting the hypothesis that nucleus-
mitochondrion coordination under these conditions
occurs predominantly at the level of protein complex
assembly rather than mRNA synthesis (Giegé et al.,
2005). Our data corroborate the hypothesis that, in
general, nuclear-mitochondrial coordination does not
occur at the transcriptome level. However, we found
that under certain conditions (“chloroplast” and
“ROS”), which impinge upon the energy supply of
the cell, nuclear-organelle coordination of mtOGE or
mtOEP gene expression indeed occurs (Fig. 3; Supple-
mental Fig. S3B). Under these circumstances, some
gene pairs for components of mtOGE actually showed
the highest coregulation (two gene pairs with a PCC of
1) of all pairs investigated (Supplemental Table S5A).

The control of gene expression in the chloroplast is
generally thought to be dominated by posttranscriptional
(Somanchi andMayfield, 1999; Barkan andGoldschmidt-
Clermont, 2000; Rochaix, 2001) and translational autor-
egulatory and transregulatory mechanisms (Choquet
and Wollman, 2002), and also for nucleus-encoded pro-
teins, doubts have been expressed as to whether tran-
scriptional regulation plays a major role in modulating
their abundance (Kleffmann et al., 2004). However, the
high degree of nucleus-chloroplast coexpression of pho-
tosynthesis and cpOGE genes implies that transcriptional
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regulation in the organelle also has a part to play,
particularly under conditions such as “nutrient supply”
and “general stresses” (Supplemental Fig. S3B).

Different Layers of Regulation: Intranuclear
Versus Nuclear-Chloroplast Versus

Chloroplast-Mitochondrion Coregulation

The hierarchical clustering of gene set expression for
all eight individual conditions, as well as over all
conditions (Fig. 3), showed that the tightest coregula-
tion generally occurs for genes that are located in the
same genetic compartment and code for products tar-
geted to the same organelle. However, it also emerges
that coregulation between genetic compartments is
characteristic for chloroplasts and occurs at a basal
level also for mitochondria. In chloroplasts, nucleus-
organelle coregulation can actually predominate over
intracompartmental networks, as exemplified by the
coexpression of nuclear and organellar photosynthesis
genes under “general stresses” conditions (Fig. 3).

The general dominance of intranuclear and nuclear-
organelle coregulation of genes for chloroplast pro-
teins can be overridden under certain conditions. Thus,
organelle-organelle (i.e. chloroplast-mitochondrion) co-
regulation prevails under “sugars” conditions (Fig. 3).
This may be an incidental consequence of the fact that
the photosynthetic function of the organelle is essen-
tially idle under these conditions and, therefore, coor-
dination of photosynthesis gene expression regulation
would be superfluous, but it could imply that photo-
synthesis itself serves as a signal emitter (Pfannschmidt,
2003). A similar dominance of organelle-organelle co-
ordination is observed when the perception or trans-
duction of light signals is perturbed (“light signaling”)
but not in retrograde signaling mutants (“gun signal-
ing”). This suggests either that anterograde mecha-
nisms are mostly responsible for the nuclear-organelle
coregulation events described here or that additional
retrograde signaling pathways can compensate for the
loss of GUN functions.

Identification of Tentative Chloroplast Target Genes of s
Factors SIG1 to SIG6

Considerable advances have been made in elucidat-
ing the role of s factors for specific promoter recogni-
tion and selected transcription of some plastid genes
(Lerbs-Mache, 2011). However, the unambiguous
identification of target genes was hindered for two
reasons. (1) One s factor can have both specialized
roles (at certain promoters and certain times/tissues)
and overlapping redundant functions (at other pro-
moters, times, and situations; Schweer et al., 2010). (2)
The promoter of one plastid gene can be the target of
multiple s factors (Schweer et al., 2010; Lerbs-Mache,
2011). Our coregulation analysis of chloroplast genes
(Supplemental Fig. S4C) has the potential to provide
the basis to determine which s factors might be in-
volved in the transcriptional regulation of certain PEP-

transcribed chloroplast genes. Thus, the promoters of
rbcL and psbA are recognized by SIG2, whereas the
SIG3-PEP holoenzyme transcribes specifically psbN
and atpH (Lerbs-Mache, 2011). Indeed, rbcL and psbA
were found in adjacent clusters, and psbN and atpH
grouped in the same cluster. Therefore, it is tempting
to speculate that the transcription of genes present in
the same cluster like rbcL and psbA, such as ndhJ, psbG,
psaI, and orf31, is also regulated by SIG2; accordingly,
promoters of other genes from the psbN-atpH cluster
might be recognized by SIG3.

The Paucity of Marker Genes Might Emanate from the
Complexity of Intercompartmental Signaling

All genes investigated in this study were assigned to
different classes according to their extent of differen-
tial expression, ranging from “very low” to “very
high” responsiveness (Supplemental Table S6). Sets of
127, 170, or 120 genes were classified as “very highly,”
“highly,” or “very low” responsive, respectively. The
categories of “medium” and “low” responsiveness in-
cluded genes differentially regulated in 36 to 70 and
six to 35 experiments, respectively, and contained the
vast majority of genes (583 and 1,891 genes, respec-
tively). These two classes were exploited to identify
marker genes specifically regulated under certain
classes of conditions. However, not even one marker
gene could be identified, strongly suggesting that the
specific stimuli for plastid signaling considered in
each of the investigated eight categories are often
overlapping or interconnected. This supports the pre-
vious notion that the effects of individual stimuli on
transcription are difficult to separate and that the
pathways of communication between various organ-
elles of a plant cell are complex and interdependent
(Leister, 2005; Koussevitzky et al., 2007; Giraud et al.,
2009).

Toward the Identification of Transcription Factors That
Coordinate the Expression of Nuclear Genes for

Organellar Proteins

In our study, several Leu-zipper transcription fac-
tors were identified that might account for coregula-
tion of the three nuclear chloroplast gene sets and
belong to the group of transcription factors binding the
ACGT core element (Fig. 4). Proteins binding to this
element have been associated with light-dependent
regulation of the expression of photosynthesis genes
(Donald and Cashmore, 1990; Meier and Gruissem,
1994; Sun and Ni, 2011) and play a role in hormone
signaling (Liu and Lam, 1994). ARR10, the binding site
for which was overrepresented in several nuclear
chloroplast gene sets, binds the core sequence AGAT
(Hosoda et al., 2002) and belongs to response regula-
tors in His-to-Asp phosphorelays, which are involved
particularly in the response of hormones (Urao et al.,
2000). ABI4-binding sites were also enriched in nuclear
chloroplast gene sets. Accordingly, ABI4 was shown
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to bind the sequence CACCG in ABA and sugar
response genes in maize (Zea mays; Niu et al., 2002)
and was postulated to be a component of chloroplast
(Koussevitzky et al., 2007) as well as mitochondrial
(Giraud et al., 2009) retrograde signaling. Actually,
ABI4 is thought to bind to the CCAC element of the
promoter of the gene for the light-harvesting chloro-
phyll a/b-binding protein LHCB1.2 in response to
the GUN1-derived signal, which in turn prevents the
binding of G box-binding factors required for the light-
induced expression of nuclear photosynthetic genes
(Koussevitzky et al., 2007).
Binding sites for the transcription factors ABI4

and MNB1A were overrepresented in the mtalln and
mt

resp
n gene sets (Fig. 4). Indeed, binding of ABI4 to

the AOX1a promoter has been demonstrated by elec-
tromobility shift and yeast one-hybrid assays (Giraud
et al., 2009). Dof transcription factors, of which
MNB1A (Dof1) is one, are involved in tissue-specific
and light-regulated gene expression (Yanagisawa and
Sheen, 1998). MNB1A is associated with the expres-
sion of multiple genes involved in carbon metabolism
in maize (Yanagisawa and Sheen, 1998; Yanagisawa,
2000), but no further targets are yet known in plants.
Thus, the predicted target promoters of the mtalln and
mt

resp
n gene sets might represent a good starting point

for their identification. However, in contrast to the
nuclear chloroplast gene sets, no known transcription
factor-binding site common to all nuclear mitochon-
drial gene sets could be identified. The mtCoReg2
element identified here (HCGGRYHD; Fig. 4) strongly
resembles the site II element (TGGGCC/T), which is
the main determinant of the expression levels of the
three Arabidopsis COX6b genes for cytochrome c
oxidase subunit 6b (Mufarrege et al., 2009), the
COX5b-2 gene (Comelli and Gonzalez, 2009), and the
CYTC-2 gene, encoding an isoform of cytochrome c
(Welchen and Gonzalez, 2005). Only one of the COX6b
genes was found among the putative targets of
mtCoReg2, implying that the mtCoReg2-binding site
is an independent cis-regulatory element from the site
II element. Taken together, the newly identified
cpCoReg and mtCoReg elements and their putative
target genes (Supplemental Table S7) represent attrac-
tive targets for further studies on retrograde signaling
and the transcription factors involved in it.

CONCLUSION

The concept of retrograde signaling includes that
organelles convey information on their developmental
and metabolic state to the nucleus, thus enabling NGE
to be appropriately modified. On the contrary, chloro-
plast gene expression was thought to be mainly reg-
ulated by posttranscriptional mechanisms. However,
the notion that chloroplast gene expression is also
regulated at the transcriptional level in higher plants
became accepted more recently (Eberhard et al., 2008;
Lerbs-Mache, 2011). In this study, we show that all

chloroplast and mitochondrial organellar gene sets are
highly coregulated at the transcript level, even higher
than their nuclear counterparts. Moreover, the coreg-
ulation of genes that code for proteins with similar
functions but are distributed between different genetic
compartments has only been studied for a few in-
stances of singular genes, whereas our global analysis
clearly shows that nucleus-organelle coregulation at
the transcript level is characteristic for chloroplast but
not for mitochondrial functions. In contrast, nuclear
and organellar genes coding for the respiratory chain
or OGE even show some degree of negative coregula-
tion.

Retrograde signaling was discovered more than 30
years ago, but knowledge of the involved nuclear
transcription factors is still scarce. We provide here a
comprehensive list of conserved motifs in the pro-
moter regions of gene sets with a high level of co-
regulation, serving as a starting point to identify the
transcription factors involved.

MATERIALS AND METHODS

Gene Sets and Microarray Expression Data

Protein-coding Arabidopsis (Arabidopsis thaliana) genes located in plastids

or mitochondria were retrieved from Affymetrix ATH1 array elements (Table

I; Supplemental Table S1). The set of 1,476 nuclear genes encoding chloroplast

proteins was extracted from a previously compiled list of 1,808 chloroplast

proteins (Yu et al., 2008), selecting those proteins that had been reliably

assigned to chloroplasts and adding known chloroplast proteins not already

on the list. The set of 1,323 nuclear genes for mitochondrial proteins was

compiled by extracting mitochondrial proteins validated by the presence of at

least one EST in the SUBA (Heazlewood et al., 2007) and the MitoP2 (Elstner

et al., 2009) databases. Assignment of nuclear and organellar genes to the

functional subclasses OGE, photosynthesis, respiration, and tetrapyrrole bio-

synthesis was done according to Giegé et al. (2005) using the SUBA database

and the mapping files of MapMan (Thimm et al., 2004).

A total of 101 processed Affymetrix ATH1microarray data sets comprising

1,290 hybridization experiments and covering eight different categories of

genetic or environmental conditions/perturbations (Table II; Supplemental

Table S2) were down-loaded from ArrayExpress, the public expression data

repository (http://www.ebi.ac.uk/microarray-as/ae/browse.html?keyword-

s=arabidopsis).

Analysis of Absolute Expression Data

All computational analyses were either performed in the statistical pro-

gramming language R (http://www.r-project.org) or using custom-made

PERL scripts on a Sun Grid Engine cluster with 64-bit architecture running on

a Linux operating system. Gene identifiers were remapped to The Arabidopsis

Information Resource 9 annotation to ensure consistency of expression data

for each gene between the various experiments and groups (Poole, 2007).

Expression values were scaled to mean 0 and variance 1 by a z-transformation.

In this study, mean expression values for a gene set, whether a gene class, an

experimental group, or a combination of both, are defined as an ensemble

average (i.e. as a mean z-score of all genes contained in that class, group, or

combination). Monte Carlo simulations were employed to assess the signif-

icance of differences between the average background expression (the null

hypothesis) and expression levels of a particular combination. One thousand

samples, each containing the same number of genes as the respective com-

bination, were randomly and uniformly drawn from all genes without

replacement. A Mersenne-Twister implementation was used in the PYTHON

system package “random” for the random number generator to minimize

biased selections. Mean expression levels of these random samples were

calculated as described above and used to assess the background distribution.

Significance levels were estimated as the fraction of random samples with
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means greater than or equal to the mean of the gene class-experimental group

combination.

Analysis of Expression Similarities

Similarity between genes in expression response upon genetic/environ-

mental perturbation was quantified by computing the PCC of their z-trans-

formed absolute expression values. Expression similarity within gene sets was

defined as the mean of the PCCs of all possible gene pairs within a given gene

set. Expression similarity between gene sets was defined as the mean PCC of

all interset pairs derived from the cross-product of the two gene sets.

Significance was assessed by Monte Carlo simulations as described above

on the basis of 100 random samples.

Clustering

The R package pvclust (http://www.is.titech.ac.jp/~shimo/prog/pvclust/)

was used to carry out hierarchical clustering with average linkage (Suzuki and

Shimodaira, 2006). P values were either derived as approximately unbiased

P values from multiscale or as bootstrap probability P values from standard

bootstrap resampling. Both methods supported identical topologies and con-

clusions for all trees.

Identification of Coregulated Gene Pairs

The degree of correlation of transcriptional activity among genes from two

gene sets was calculated by computing the PCCs for pairs of genes chosen

from the different gene sets under the respective conditions. To identify

significantly coregulated gene pairs, all-against-all Pearson correlation matri-

ces from 23,913 Arabidopsis genes were calculated under each relevant

experimental condition, and the background distributions of pairwise expres-

sion similarities from the correlation matrices were determined.

Identification of cis-Elements

The program PScan (Zambelli et al., 2009) was used to locate binding sites

for known plant transcription factors. For the identification of novel cis-

elements, the expectation maximization-based Amadeus program (Linhart

et al., 2008), in which a list of 28,446 background promoters is implemented,

was used.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Absolute mRNA expression of gene sets and

expression similarities in all eight categories of conditions.

Supplemental Figure S2. Expression similarities between different gene

sets from the same genetic compartment that code for products destined

for the same organelle in all eight different condition categories.

Supplemental Figure S3. Expression similarities between different gene

sets from the same genetic compartment that code for products destined

for different organelles (A) or from different genetic compartment and

with products directed to the same organelle (B) in all eight categories of

conditions.

Supplemental Figure S4. Absolute mRNA expression, expression simi-

larities, and coregulation of class I, II, and III chloroplast genes.

Supplemental Table S1. List of all nuclear and organellar genes for

chloroplast and mitochondrial proteins.

Supplemental Table S2. List of all data sets and hybridization experi-

ments.

Supplemental Table S3. Monte Carlo simulation for expression similar-

ities within gene sets.

Supplemental Table S4. Monte Carlo simulation for expression similar-

ities between gene sets.

Supplemental Table S5. Gene pairs derived from different gene sets that

are coregulated under different conditions.

Supplemental Table S6. List of all differentially regulated genes and the

number of experiments in which they are regulated.
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Giegé P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear

and mitochondrial genome expression during mitochondrial biogenesis

in Arabidopsis. Plant Cell 17: 1497–1512

Giraud E, Van Aken O, Ho LH, Whelan J (2009) The transcription factor

ABI4 is a regulator of mitochondrial retrograde expression of ALTER-

NATIVE OXIDASE1a. Plant Physiol 150: 1286–1296

Gray JC, Sullivan JA, Wang JH, Jerome CA, MacLean D (2003) Coordi-

Leister et al.

402 Plant Physiol. Vol. 157, 2011



nation of plastid and nuclear gene expression. Philos Trans R Soc Lond B

Biol Sci 358: 135–144; discussion 144–145

Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases

encoded by the nuclear and the plastid compartments transcribe distinct

groups of genes in tobacco plastids. EMBO J 16: 4041–4048

Hanaoka M, Kanamaru K, Takahashi H, Tanaka K (2003) Molecular

genetic analysis of chloroplast gene promoters dependent on SIG2, a

nucleus-encoded sigma factor for the plastid-encoded RNA polymer-

ase, in Arabidopsis thaliana. Nucleic Acids Res 31: 7090–7098

Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007)

SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 35:

D213–D218

Hosoda K, Imamura A, Katoh E, Hatta T, Tachiki M, Yamada H, Mizuno T,

Yamazaki T (2002) Molecular structure of the GARP family of plant

Myb-related DNA binding motifs of the Arabidopsis response regulators.

Plant Cell 14: 2015–2029

Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori

M, Takeba G, Nakahira Y, Shiina T (2005) A nuclear-encoded sigma

factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast pro-

moters and regulates early chloroplast development in cotyledons.

Plant J 42: 133–144

Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in

plants. New Phytol 179: 257–285

Jensen LT, Nielsen MM, Loeschcke V (2008) New candidate genes for heat

resistance in Drosophila melanogaster are regulated by HSF. Cell Stress

Chaperones 13: 177–182

Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes

in gene expression in Arabidopsis leaves undergoing cold stress. Plant

Mol Biol 52: 553–567

Kim C, Lee KP, Baruah A, Nater M, Göbel C, Feussner I, Apel K (2009)
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