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of Unobserved Heterogeneity
in Multivariate Failure Times

Ulrich Hornsteiner * , Alfred Hamerle * and Paul Michels **

Abstract

Two contrary methods for the estimation of a frailty model of multivariate
failure times are presented. The assumed Accelerated Failure Time Model
includes censored data, observed covariates and unobserved heterogeneity. The
parametric estimator maximizes the marginal likelihood whereas the method
which does not require distributional assumptions combines the GEE approach
(Liang and Zeger, 1986) with the Buckley-James (1979) estimator for censored
data. Monte Carlo experiments are conducted to compare the methods under
various conditions with regard to bias and efficiency. The ML estimator is found
to be rather robust against some misspecifications and both methods seem to
be interesting alternatives in uncertain circumstances which lack exact solutions.
The methods are applied to data of recurrent purchase acts of yogurt brands.

Key words: Multivariate failure times; accelerated failure time model; cen-
sored data; unobserved heterogeneity; generalized estimating equations; marginal
maximum likelihood estimation; misspecification; simulation study; individual
purchase behavior.

1 Introduction

Multivariate failure time data may occur in the context of economics, sociology,
medicine or other sciences — either when we observe different but related elementary
units and investigate the time it takes for each of them until a certain event takes place
— or when we observe the units for a rather long space of time and are interested in
the time intervals between events of various kinds or between recurrent events of the
same kind. In addition to the proper handling of censored data, multivariate failure
time data require appropriate models and methods to take into account that the failure
times within one family, one unit or one "block” are correlated. Usually it is supposed
that a set of variables which are constant within one block but differ from one block
to the other and which are not observed (the "unobserved heterogeneity” or "frailty”)
influences the failure times and so is responsible for the correlation. Some standard
texts on the statistical theory of failure time data include sections about multivariate
failure time data such as Kalbfleisch and Prentice (1980), Lawless (1982), Andersen,
Borgan, Gill and Keiding (1993) and Fahrmeir, Hamerle and Tutz (1996).
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U. Hornsteiner is supported by the Deutsche Forschungsgemeinschaft, SFB 386.
**A.C. Nielsen GmbH, Frankfurt/Main.



2 2. THE MODEL

There is a series of recently published articles on various treatments of unobserved
heterogeneity in multivariate failure times, particularly of recurrent events (Nielsen,
Gill, Andersen and Sgrensen, 1992, Davies, 1993, dos Santos, Davies and Francis, 1995,
Pickles and Crouchley, 1995, Haider and Davies, 1996). As nobody knows the real
distribution of frailties, they all in principle make contributions to the controversy if it
is better to model the frailty nonparametrically or to assume a perhaps incorrect family
of distributions. The answers are partly contradictory, depend on the analysed datasets
and on the decision if heterogeneity is treated as a nuisance (for better estimations of
the regression parameters) or as a value of interest per se. A common conclusion is
that in a particular application one should consider if it is more important to model
the hazard nonparametrically and to assume a frailty distribution or vice versa (Pickles
and Crouchley, 1995, p. 1458, dos Santos, Francis and Davies, 1995, p. 125).

Our intention in this paper is to refer to another approach (Hornsteiner and Hamerle,
1996) which treats both the frailty and the hazard nonparametrically by combining
the "generalized estimating equations” (Liang and Zeger, 1986) with the handling of
censored data like Buckley and James (1979) and to compare it with a fully parametric
method, the marginal maximum likelihood estimation. For the latter we assume a
normally distributed frailty and three versions of the hazard distribution. Some Monte
Carlo experiments shall give additional answers to the question described above.

The remainder of the paper is organized as follows. In section 2 we present a general
extension of an Accelerated Failure Time Model for recurrent events including unob-
served heterogeneity. An estimation method which manages without any distributional
or structural assumptions, the combined GEE/Buckley-James method, is described in
section 3. In contrast, we derive the fully parametric procedure in section 4. The
main part of the paper is the simulation study in section 5 where estimation results
for simulated data according to various "true” distributions are reported. In section 6
the methods are applied to German household panel data on recurrent yogurt purchase
behavior based on home scanners. Section 7 concludes with a summarizing discussion.

2 The model

We consider an extension of an Accelerated Failure Time Model for recurrent events.
All the methods in this paper can also be applied to failure times which are correlated
because of belonging to groups of different but related elementary units. The restriction
to recurrent events is just for simplicity.

We have observed N elementary units (n = 1,..., N) with a varying number of K,
spells per unit (k= 1,..., K,). The logarithm of every failure time

Ynk = lﬂ(Tnk) = l’;kﬁ + 00y, + 0cEnk

depends linearily on a vector x,; of P covariates (including a 1 for the intercept) —
which may partly be constant within the block and partly vary from spell to spell -
and a P-dimensional vector of regression parameters 3 = (8y,...,0p), p=1,..., P.
The stochastic component consists of a frailty term «,, which absorbs non-observed
covariates which are constant for all the spells of one unit and an error term ;. The a,,
are assumed to be independently and identically distributed. The distribution of ¢, is
assumed to be one of the distributions used in Accelerated Failure Time Models. More



concrete specifications of the distributions including consequences of misspecifications
will be the main topic of the simulation studies in section 5.
Instead of T, we observe
Znke = min(Tog, Cuk)

where ¢, is a censor value, together with an indicator variable

I I T Y AN

In the case of recurrent events usually there is no censor value given for each spell but
it is the limited total observation period ), which is responsible for censoring. C,, may
be determined by the design of the study or may result from death or drop-out of the
observed unit. We assume for simplicity that the beginning of the observation period
coincides with an event, in other words there are no left-censored spells. That yields

k—1
an:Cn—ZTnl ‘v’nzl,...,N \V/kzl,...,[(n.

=1

Thus the last spell of each unit is censored almost surely.

3 The GEE/Buckley-James method

Recently published literature on modelling multivariate failure time data with unob-
served heterogeneity varies a lot in distributional assumptions of both the frailty and
the hazard and yields contradictory results on advantages and disadvantages of para-
metric and nonparametric approaches, see e.g. dos Santos, Davies and Francis (1995)
and Pickles and Crouchley (1995).

For these reasons our aim was to develop an estimator of the regression parameters
which is robust also if we can not be sure about the distributional assumptions of
frailty and hazard and about the correlation structure of the failure times within one
unit. The considerations resulted in a combination of the GEE approach for longitudinal
data (Liang and Zeger, 1986) with the nonparametric Least Squares method of Buckley
and James (BJ, 1979) for censored data (Hornsteiner and Hamerle, 1996).

The method is based on the generalized estimating equations

N
>NV — XaB) =0,
n=1

where X, is the matrix containing the lines 2/ ,, k=1,..., K,, and
Yt = (Ynys---»Ung, ) consists of the pseudo variables

N

Thus for uncensored spells y*, = y,x, whereas for censored spells the conditional expec-
tation of y,. given survival up to the censor time is substituted by the nonparametric
product limit estimator (Kaplan and Meier, 1958).

Furthermore V,, = R, (v)/®, where Rk, () is a working correlation matrix, v a
vector that fully characterizes the correlation structure, and 1/¢ = Var(ys,) := v is



4 4. MAXIMIZING THE MARGINAL LIKELIHOOD

assumed to be constant. The most suitable working correlation structure when there
is no further information about the residuals is the equicorrelation structure ("equ”)
with v = Corr(yl,,vy5), and ¢ := Cov(yl,,ys) = v - . An alternative for purpose
of comparison is the very simple specification v = ¢ = 0, the independence structure
("ind”).

We implemented an iterative algorithm which consists of three steps in each itera-
tion. We get an initial estimation simply by B(O) = ()N(’)N()_I)N(’yN where X and § solely
include the uncensored spells. The u'® iteration (u = 1,2,...) is a sequence of the
renewal of the Buckley-James pseudo variables, the moment estimation of v and v, and
finally a modified Fisher scoring for 3,

-1

(u) _ AV ayn al 1Y7r=17 Alu—1) * 1 Alu—1)
B ZX “Ng) | ZXVIE) (- xse) )

n=1

The algorithm has to be broken off successfully not only in the case of convergence but
also if it has become stabilized in a loop of several values, see e.g. Miller (1981), p
152 and Currie (1996). In this case the averages of the relevant values are taken as
estimators.

The asymptotic covariance matrix of the parameter estimates and the standard error
of the pth parameter, respectively, are estimated by the robust "sandwich” formula

w\ "L N w\ "L
COU (Z X’Vn laayﬁ”) (Z X’ 1001} (yr) n_an) (Z_;Xéf/n_laay;)

n=1

and

N I

5(3) = (diag(Cov( ),
where Cov(ys) = (v — 2,,8) (y; — 2,,8)'.

4 Maximizing the marginal likelihood

In contrast to the nonparametric method of the previous section we now add some
restrictive assumptions to the model of section 2 about the distributions of the error
terms and their dependence structure. These assumptions are:

- The «,, are independent and normally distributed with mean 0 and variance 1.
- The ¢, are independent and identically distributed by any known distribution.
- «a, and &, are independent.

This enables us to ”integrate out” the unknown heterogeneity and to maximize the
likelihood which is then marginal relative to the heterogeneity deviation parameter.
Some comments on these assumptions are to be stated. The normal distribution
assumption for the heterogeneity is not the usual one in the context of survival analysis.
If a distributional assumption is made, it is generally that exp(ca,) is for mathematical
or computational reasons gamma distributed (see e.g. Lancaster and Nickell, 1980,

Follmann and Goldberg, 1988, Meyer, 1990, Clayton, 1991, Schneider, 1997, Scheike and



Jensen, 1997), but nowhere arguments are given which are derived from the application
context. Normally distributed frailties are considered by Kiefer (1983), Davies (1993),
Crouchley and Pickles (1995), Pickles and Crouchley (1995), dos Santos, Davies and
Francis (1995), Haider and Davies (1996).

Without loss of generality we have to fix mean and variance, as other values are
absorbed by the intercept 3; and the heterogeneity deviation o, respectively.

Assuming the ¢, to be independent is analogous to the equicorrelation structure
in the GEE approach. The behavior of the estimators under alternative correlation
structures (see Spiefl, Nagl and Hamerle, 1997) is not a topic of this paper.

The distribution of ¢, has to be specified for further computation and implemen-
tation what is equivalent to modelling the hazard rate given observed covariates and
unobserved heterogeneity. There are rarely concrete reasons for a specific distribution
but common settings are the normal, logistic or extreme value distribution which lead
to the lognormal (N), the log-logistic (L) or the Weibull (W) model, respectively. We
have implemented these three versions.

The log-likelihood has the form

0(B,00,0: | Xiyeooy XNy 2115 oy N Kyy 011, - - - s ON Iy ) = cOnst+
N 00 Kn
Z In / exp (Z (nk - In frr(2nk) + (1 — dng) - In Snk(an))) ~p(a) da,
n=1 0o k=1

where the density f,x and the survivor function S, are specified according to the model
assumption (Fahrmeir, Hamerle and Tutz, 1996, pp. 310-312):

(N)

ka(an) =

OcZnk Oc

1 Inzy — 2,0 — o,
¥ )

Snk(an) =1- (I) ( o.
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3
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6 5. SIMULATION STUDIES

The appearing integral cannot be solved analytically. We approximate the log-likelihood
and its deviations by Gauf-Hermite quadrature (Bock and Lieberman, 1970, Butler and
Moffit, 1982, Spiel, 1995, Spiel and Hamerle, 1995). Applied to the present problem

we have

2

_ [o fla) - p(a) da = %2_ [O flayesp(=5)da ~ - 5w (V2h),

where G is the number of evaluation points h,, and w, is the weight given to the gt
evaluation point, g = 1,...,G (Stroud and Secrest, 1966, pp. 217-252).

To maximize the log-likelihood the Newton-Raphson method together with a line
search method for global convergence is used (Dennis and Schnabel, 1983). Provided
that the model is specified correctly and enough evaluation points are included, the
maximum likelihood estimator is consistent and asymptotically normally distributed.
As the required number of evaluation points is not discussed in this paper, for all
simulations and empirical analyses the sufficient number of GG = 64 is used.

5 Simulation studies

To study the properties of the developed estimation methods in finite samples under
correct as well as incorrect specification, simulation and estimation programs have been
written in SAS/IML, version 6 (SAS Institute Inc., 1989, 1990). The studies reported
here intend to show the behaviors in large sample sizes (N = 500) when the distribution
of the heterogeneity is varied. We do not discuss here other interesting topics such as
the required number of evaluation points, the computation time, the behavior in small
sample sizes, the behavior in the case of time-varying but wrongly as time-constant spec-
ified covariates, the dependence on the correct specification of the correlation structure,
on the type of censoring, or on the censor rate.

In one running of the program S = 200 data sets are simulated. In every simulation,
N = 500 blocks of covariates and failure times are produced. The design matrices
consist of the column of ones and four stochastic regressors, two of them (x2 and x3)
constant within one unit, the second two (x4 and x5) varying from spell to spell. In each
of the two cases, one of the two is a metric, normally distributed variable having mean
and variance one (x2 and x4), the other one is a dichotomous variable taking the two
values zero and one with probability 0.5 each (x3 and x5). The regression coefficients
B2, ..., 05 as well as the intercept 3 are specified as 0.5 each.

The distribution of the heterogeneity «,, is varied (see later in the text) so that the
effects on the estimation results can be studied. The distribution of the error term
Enk 18 specified as normal. Misspecification concerning the hazard can be studied by
applying the ML method specifying the log-logistic or Weibull model.

The total observation period (), decides about the number of spells K, and about
the censoring of the last spell. Given the covariates and the parameters, the observation
period has been chosen as C),, = C' = 16.9 so that the overall average number of spells
resulted in about three per unit and the censor rate in about 0.33.

Finally, the estimation parts of the programs require convergence criteria, a maxi-
mum number of iterations, and — in the case of GEE/BJ estimation — the specification
of the type of the working correlation matrix (ind or equ) as described in section 3, or



— in the case of ML estimation — the model specification (N, L or W), the number of
evaluation points and initial values for the parameters to be estimated.
The output contains the mean of the estimated parameter vectors,

— 1 S

ﬁzggﬁv

and the root mean squared error

RMSE(3,) = (5 1253( )2)1/2

s=1

and the standard deviation

N o ﬂp))m

of each estimated parameter (p = 1,..., P), estimated over the S simulations. The

latter is used as quality criterion in comparison with the mean of the estimated standard
deviations of 3,,

~

o1 = 4 3 (4(3)),.

In addition to the numerical assessment of these values we apply statistical tests
to control normality and bias of the parameter estimates. The SAS procedure PROC
UNIVARIATE provides us with the p-values of the Shapiro-Wilk statistics testing each
component of the estimated parameter vector if it is a random sample from a normal
distribution. To test if a bias can be explained by the random character of the simula-
tions or if it is significant, ¢-tests for the null hypotheses E(Bp) =08, p=1,...,P, are
implemented in the IML program.

Table 1 shows the estimation results of the various methods in the case of correct
specified frailty, that means the datasets are indeed generated by «, ~ N(0,1) with
o, = V0.05 = 0.2236. As already mentioned, €,; and o. have the same specifica-
tions. Thus the ML(N) estimator additionally specifies the hazard correctly whereas
it is misspecified by the ML(L) and ML(W) estimators. As the standard deviations of
the ”standard” logistic and extreme value distributions differ from 1, the differences of
the estimated 0. are systematic, and root mean squared errors concerning this param-
eter would be senseless. Moreover, the extreme value distribution is shifted from the
expectation 0 which is absorbed by the intercept term.

The deviations of the estimated regression parameters from the true value 0.5 and
particularly the p-values of the ¢-tests show that the GEE/BJ estimator using the inde-
pendence assumption of nearly all parameters is clearly biased, whereas the hypothesis
of unbiased estimators is not rejected on the 1% level of significance when we use the
equicorrelation working structure. Of course, the correctly specified ML(N) estimator
is not biased in this case of a relative large sample size. Misspecifying the hazard by
the log-logistic model does not result in any biased parameters. However, the assump-
tion of the Weibull model produces biases particularly of the parameters [y and (3
concerning the block-constant covariates. This is not surprising when we consider that
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Table 1: Comparison of GEE/BJ and ML in the case of correct specification of the frailty
but “correct” vs. "incorrect” specification of the hazard (o, ~ N(0,1), e, ~ N(0,1),
0, = 0. = V/0.05 = 0.2236): Means, rmse and standard deviations of the parameter

estimations, means of the estimated standard deviations and p-values over S = 200
stmulations
GEE/BJ ML
ind equ | (N) (L) (W)
B =0. .. 4566 4961 | 5005 4997 6111
By=0. ... 5053 4990 | 4990 4992 4951
By =0. ... 5066 4997 | 4994 4998 4946
By=0. .. 5023 5016 | 4997 4997 4988
35 =0. ... 5006 4997 | 4981 4986 4977
0o = 0. ... 2229 2234 2343
6.=0. ... 2229 1255 1857
0 =0. ... 0751 0751
¢=0. ... 0369
RMSE(BI) =0..... 0533 0266 | 0262 0263 -
RMSE(BQ) =0.... 0167 0137 | 0136 0136 0148
RMSE([%) =0..... [ 0308 0275|0274 0277 0278
RMSE(@) =0.... [ 0114 0098 | 0088 0088 0092
RMSE([%) =0.... [0175 0157 | 0148 0150 0174
RMSE(6,) = 0. .... 0119 0116 0156
RMSE(6.) = 0. .... 0060 - -
3(51) =0. ... 0310 0264 | 0262 0263 0268
3(52) =0. ... 0158 0136 | 0136 0136 0140
s(Bs) = 0. ... 0301 0275 | 0274 0277 0273
3(34) =0. ... 0112 0097 | 0088 0088 0091
3(55) =0. ... 0175 0157 | 0147 0149 0173
5(0,) =0. ... 0119 0116 0114
s(6.) = 0. ... 0059 0033 0056
&(31) =0. ... 0299 0292 | 0239 0240 0244
&(32) =0. ... 0175 0170 | 0137 0137 0141
&(Bg) =0. ... 0329 0320 | 0262 0263 0268
&(34) =0. ... 0110 0099 | 0083 0083 0083
&(35) =0. ... 0211 0186 | 0158 0158 0157
G(0,) =0. ... 0117 0117 0112
g(o.) =0. ... 0063 0040 0056
p-values Hy
pr=p1 (0.....) | 0000 0368 | 8062 8550 -
p2 =Py (0.....) | 0000 2784|2782 3911 0000
ps = Fs (0.....) | 0023 8626 | 7665 9065 0055
pa = PB4 (0.....) 0039 0173|6095 6776 0601
s = PBs (0.....) | 6158 7949 | 0677 1816 0564




the normal and the logistic distributions are more similar compared to each other than
to the extreme value distribution.

Despite of these findings, the deviations of the parameter estimates from the true
values are so moderate that the root mean squared errors in no case differ much from
the standard deviations. They both are well estimated by the ML method independent
from the hazard specification whereas they are overestimated by the GEE/BJ procedure
(see also Hornsteiner and Hamerle, 1996, pp. 8-11).

In no case we found any significant deviations of the regression parameter estimates
from the normal distribution.

Finally, the various methods can be compared to each other with respect to effi-
ciency. Starting from the GEE/BJ estimator using independence assumption there is
an obvious decrease of the rmse applying any of the other methods considered. The
rmse of the GEE/BJ(equ), the ML(N) and the ML(L) estimators of the parameters
concerning block-constant covariates are nearly identical. We observe little additional
gain of efficiency applying the ML(N) or ML(L) method on the parameters 3, and (s
which correspond to the spell-varying covariates. On the other hand, misspecifying the
hazard by the Weibull model results in slightly higher rmse for some parameters.

To study the behavior of the ML estimator under misspecified frailty distribution in
comparison to the GEE/BJ estimator, we simulated data sets under the same conditions
as in table 1 except the frailty distribution. On the background of the application in
section 6, there was the idea of a bimodal frailty. We could interpret this as follows.
The population is separated into two parts. We cannot observe to which part a certain
unit belongs but this membership influences the risk of failure. Additionally we assume
an overlayed continuous variable which also has influence but is unobserved.

For the simulations in table 2 we assume two parts of the same size that means a
symmetric bimodal heterogeneity distribution. To be more concrete, it is a mixture of
two normal distributions, each taken by a probability of 0.5, one of them has mean 0.2,
the other —0.2, both have a standard deviation of 0.1. When o, is specified as 1, the
resulting distribution has mean 0 and standard deviation 1/0.05.

Again, the GEE/BJ estimator using the independence assumption is clearly biased.
But now the improvement by the equicorrelation assumption is not as satisfying as it
was in the case of normally distributed frailty.

Surprisingly, all the three ML specifications result in estimates which seem to be
unbiased for nearly all parameters concerning the t-tests although the ML(N) estimator
assumes an incorrectly distributed frailty and the ML(L) and the ML(W) estimators
assume both an incorrect frailty and an incorrect hazard. The Shapiro-Wilk tests again
do not reject the hypotheses of normally distributed estimates. The standard deviations
and the root mean squared errors are again well estimated by the ML specifications and
overestimated by the GEE/BJ method. With respect to efficiency, the GEE/BJ(equ)
estimator performs much better than the independence version and nearly as well as
all the ML estimators.

For the simulations in table 3 we also assumed a separation into two parts — in
contrast to table 2 asymmetrically and without overlayed continuous distribution. Ex-
actly, the heterogeneity is created by a Bernoulli distribution with p = 0.9472, and the
resulting 0/1 variable is for purpose of comparison shifted by —p so that the resulting
variable has mean 0 and standard deviation +/0.05. The intention was a distribution
which differs from the theoretical normal assumption particularly by curtosis.
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Table 2: Comparison of GEE/BJ and ML in the case of "incorrect” specification of
the frailty I: Mixture of two normal distributions (see text for further explanation),
enk ~ N(0,1), 0. = v0.05 = 0.2236: Means, rmse and standard deviations of the
parameter estimations, means of the estimated standard deviations and p-values over
S = 200 simulations

GEE/BJ ML
ind equ | (N) (L) (W)
B =0. .. 4547 4892 | 4958 4959 6058
By=0. ... 5069 5022 | 5020 5020 4985
By =0. ... 5092 5028 | 5021 5020 4985
Bi=0. ... 5025 5024 | 5004 5003 4997
Bs=0. ... 5027 5034 | 5013 5014 5007
0o =0. ... 2227 2243 2345
6.=0. ... 2232 1256 1860
0 =0. ... 0738 0739
¢=0. ... 0321
RMSE(Bl) =0. ... 0530 0280 | 0259 0260 -
RMSE(BQ) =0. ... 0171 0139 | 0138 0138 0141
RMSE([%) =0. ... 0304 0274 | 0269 0271 0269
RMSE(@) =0. ... 0104 0098 | 0089 0090 0097
RMSE([%) =0.... | 0179 0165 | 0159 0161 0175
RMSE(6,) = 0. .... 0100 0099 0146
RMSE(6.) = 0. .... 0065 - -
3(51) =0. ... 0276 0259 | 0255 0257 0259
3(52) =0. ... 0157 0137 | 0136 0137 0140
3(53) =0. ... 0290 0272 | 0268 0270 0269
3(34) =0. ... 0101 0096 | 0089 0090 0097
3(55) =0. ... 0177 0162 | 0159 0160 0175
5(0,) =0. ... 0099 0099 0097
s(6.) = 0. ... 0065 0037 0062
&(31) =0. .... 0287 0284 | 0239 0240 0243
&(32) 0. ... 0169 0169 | 0137 0137 0142
&(33) =0. .... 0316 0317 | 0262 0264 0269
&(34) =0. .... 0109 0098 | 0083 0083 0083
&(35) =0. .... 0210 0186 | 0158 0158 0157
G(0,) =0. ... 0119 0118 0113
g(o.) =0. ... 0063 0040 0057
p-values Hy
pr=p1 (0.....) 0000 0000|0199 0242 -
p2 =Py (0.....) | 0000 0265|0418 0400 1448
ps = Fs (0.....) | 0000 1493 | 2765 2941 4174
pa = B4 (0.....) 0006 0005|5322 6818 6459
s = Ps (0.....) 0328 0035 | 2664 2332 5518
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Table 3: Comparison of GEE/BJ and ML in the case of "incorrect” specification
of the frailty II: Two strongly different clusters (see text for further explanation),
enk ~ N(0,1), 0. = +/0.05 = 0.2236: Means, rmse and standard deviations of the
parameter estimations, means of the estimated standard deviations and p-values over
S = 200 simulations

GEE/BJ ML
ind equ | (N) (L) (W)
Bi=0. .. 4295 5100 | 5051 5049 6103
By=0. ... 5087 5047 | 5011 5019 4966
By =0. ... 5186 5101 | 5062 5070 5014
Bi=0. ... 5028 4999 | 5009 5009 4998
Bs=0. ... 5017 4982 | 5001 5000 4994
0o =0. ... 2723 2705 2652
6.=0. ... 2176 1223 1838
0 =0. ... 1212 1216
¢=0. ... 1607
RMSE(Bl) =0..... | 0855 0301 | 0263 0261 -
RMSE(BQ) =0.... [ 0331 0174 | 0164 0164 0161
RMSE([%) =0..... | 0559 0317 | 0299 0299 0289
RMSE(@) =0.... | 0139 0121 | 0087 0088 0094
RMSE([%) =0.... | 0270 0217 | 0168 0167 0174
RMSE(6,) = 0. .... 0520 0504 0459
RMSE(6.) = 0. .... 0086 - -
3(51) =0. ... 0483 0284 | 0258 0257 0263
3(52) =0. ... 0320 0167 | 0164 0163 0157
3(53) =0. ... 0527 0300 | 0292 0291 0289
3(34) =0. ... 0136 0121 | 0086 0087 0094
3(55) =0. ... 0270 0216 | 0168 0167 0174
5(0,) =0. ... 0182 0185 0193
s(6.) = 0. ... 0062 0036 0061
&(31) =0. .... 0510 0300 | 0267 0266 0256
&(32) =0. .... 0325 0201 | 0154 0154 0148
&(33) =0. .... 0609 0371 | 0300 0298 0291
&(34) =0. .... 0137 0114 | 0083 0083 0082
&(35) =0. .... 0266 0210 | 0157 0157 0156
G(0,) =0. ... 0114 0115 0116
g(o.) =0. ... 0058 0037 0054
p-values Hy
pr=pF1 (0.....) ] 0000 0000 | 0058 0081 -
p2 =Py (0.....) 0001 0001 | 3280 0956 0025
ps = Ps (0.....) | 0000 0000 | 0028 0008 5051
pa =Py (0.....) | 0036 9482 | 1241 1684 7965
s = Ps (0.....) 3694 2525|9321 9789 6391




12 6. APPLICATION TO YOGURT PURCHASE BEHAVIOR

Many of the results of tables 1 and 2 are repeated with the following exceptions.
There is are clear difference in the behavior between the intercept and the parameters
concerning block-constant covariates on the one hand and the parameters concerning
spell-varying covariates on the other hand. The formers are estimated with a bias which
is distinct in the GEE/BJ cases and moderate in the ML cases, the latters are estimated
without bias throughout. The standard deviations of the parameters of spell-varying
covariates in this case are not overestimated by the GEE/BJ(equ) method. In terms of
rmse, the ML estimates are all more efficient than the GEE/BJ(equ) estimates.

6 Application to yogurt purchase behavior

The described methods are applied to data collected by the A.C. Nielsen purchase and
TV panel Single Source. In 1994, 6000 panel households scanned the barcodes of their
purchases of fast moving consumer goods using electronic scanners. In a subsample of
864 households also TV behavior is measured by so-called people meters by collecting
data on who is watching what program at what time. This is an excellent basis for
measuring the effects of TV advertising on sales of particular brands. The data have
been analysed by Michels and Briine (1996) using binary logistic regression models for
the dependent variables y; = 1 if a household buys brand no. i (given a purchase in the
product category), y; = 0 if the household buys one of the other brands, i = 1,...,4
(analyses of four brands have been reported). The independent variables in this logistic
regression are (all of them categorized to dichotomous indicators)

- the age of the primary shopper

- the household net income

- 7children in the household”

- exposure to the spots of brand no. 2

- exposure to spots of competitors of brand no. ¢

- "household bought brand no. ¢ in the preceding purchase act”.

This method is a modified and improved version of the so-called STAS concept (Short
Term Advertising Strength) of Jones (1995) where "exposure to the spots of brand
no. ¢ is the only variable that explains the purchase probability of brand no. 7. In
practice, this is the variable of main interest also in the extended logistic analysis. The
corresponding odds ratio is interpreted as success of advertising.

From a statistical point of view, there are several approaches that could be under-
taken to form a more precise model for the very precise data.

i) It should be taken into account that the purchase acts of one household over the
year are correlated responses. Marginal ML estimation or GEE techniques would
be appropriate to the correlated binary response (Spiefl, 1995, Spieff and Hamerle,
1995).
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ii) It is somewhat unsatisfactory to estimate four binary models of four brands using
the same data base. In reality, every purchase act is a multinomial response
variable — the categories are the brands. Qualified methods are the multinomial
logistic model, see e.g. Fahrmeir, Hamerle and Tutz (1996, p. 262-271), and the
extension of GEE techniques on correlated multinomial responses, see e.g. Miller,

Davis and Landis (1993) and Fieger, Heumann and Kastner (1996).

iii) Panel models for correlated responses usually assume equi-distant observation of
the variables in time and do not take into account that different periods of time
pass until one or the other brand is bought. We think that there is an interesting
difference between two households X and Y, both of them only watching TV spots
of brand no. 7, X buys brand no. 7 (and only ¢) once a month whereas Y buys
yogurt twice a week changing between ¢ and 7. So we are in the field of failure
time analysis methods.

For clarification, in this paper we are far from solving all the listed problems and from
estimating a model of correlated failure times in multi-categorical states including an
effect of advertising. But we try some steps in this direction by applying the model of
section 2 and the estimation methods of sections 3 and 4 on the yogurt purchase data.
As it is a model for recurrent events of the same kind, it does not allow for the analysis
of multiple states i.e. the simultaneous treatment of all interesting brands. So we have
to estimate as many models as we have brands in the dataset — comparable to the STAS
analysis. The other, more serious lack is that the estimation methods presented in this
paper do not take into account covariates which vary during the spells — they may
be time-varying only in the sense of varying from spell to spell. The problem is that
watching TV spots produces a covariate which varies decisively during the spell between
two purchase acts. So the analyses in this paper only include the covariates age, income,
and children in the household, do not give evidence of the effect of advertising, but can
be seen as some preparatory work. Further research is already pursued to handle models
of recurrent events and multi-state-multiple-spell models with unobserved heterogeneity
and time-varying covariates.

The analyses are presented in two steps. Firstly, we do not consider brands at all.
Instead, we try to explain the sequence of yogurt purchase acts by a household on the
whole by the covariates

Al =1 if the primary shopper is younger than 40, else = 0,
E1l =1 if the household net income is less than 3000 DM, else = 0,
KI =1 if there are children in the household, else = 0.

36 of the 864 TV households did not buy yogurt at all in the reported year, the other
828 households had 20071 yogurt purchase acts. As we do not deal with left-censored
spells, we drop for each household the time from January, 15, 1994, until the date of the
first yogurt purchase. The spells from the last purchase act in the year until January,
1%¢, 1995, are included as right-censored spells. The number of days between every two
yogurt purchases of a household are the lengths of the not-censored spells. So each
purchase enters into the analysis as the beginning of a spell. Additionally we include
the 36 households that did not buy yogurt at all as censored spells with an observed
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Table 4: Sizes of datasets and censor rates

number of purchase acts  households without number censor rate
households  (this brand) purchases of yogurt/ of spells e=a/d
brand (a) (b) this brand (c) d=b+c (%)
all brands 864 20071 36 20107 4
A 864 2132 488 2620 33
B 864 1596 483 2079 42

length of C,, = ¢,1 = 366 days. That yields a total of 20107 spells, 864 of them (4%)
are censored (see table 4).

The other kind of analysis is done brand by brand. The forming of spells is the
same as described above but only purchases of brand no. 7 are relevant. We report the
results of two brands, referred to as brand A and brand B (corresponding to Michels
and Briine, 1996). For numbers of purchases, spells, and censor rates see table 4.

In table 5, there are given the results of the first step (all brands): the estimations
of the regression parameters and their standard errors, in the case of ML estimation
the standard deviations of the heterogeneity and the residuals with their standard
errors, and the maximum value of the log-likelihood, in the case of GEE/BJ estimation
the moment estimation of the variance and the covariance, and p-values testing the
hypotheses 3, = 0 for all included regression parameters. CO means the intercept.

In the analysis of all yogurt purchases the estimated parameters are of roughly the
same values for all the five methods, except the higher estimated standard errors in the
case of GEE/BJ estimation. From the simulation study we know that this is at least
partly due to a general over-estimation of the standard errors which is characteristic of
this method. Further, the equicorrelation working matrix in GEE/BJ estimation results
in absolutely higher estimated effects in comparison to the independence structure. For
this, there is no corresponding observation in the simulations. But the equicorrelation
assumption seems to be advisable as the heterogeneity deviation parameter in all ML
estimations is significantly different from zero. On the other hand, the heterogeneity
is moderate with approximately the same deviance as the residual error. The effects of
age and net income are significant on the 5% level in all cases (except the independence
working matrix). The children indicator is significant using ML and specifying the
lognormal or the Weibull model, but is not significant in the log-logistic model or using
GEE/BJ estimation. This observing is consistent as if we do not know anything about
the distributions, the nonparametric method should not give a more exact statement
than any of the parametric methods. On the other hand, if there were any reasons for
assuming the lognormal or the Weibull model in this case, we could claim a significant
effect of having children despite the GEE/BJ result.

Because unobserved heterogeneity is proved to be present and the simulations
showed that the GEE/BJ method with independence working matrix does not work
well in this case, we neglect the GEE/BJ(ind) column for the substantial interpretation
of the regression parameters. The GEE/BJ(equ) results may be interpreted as follows.
The expected interval length between two yogurt purchases of a household with all
covariates equalling zero — that means the primary shopper older than 40 years, having



Table 5: Estimation results — all brands
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GEE/BJ ML
ind equ (N) (L) (W)
3 CO| 2.03 2.51 2.56 2.48 3.17
[&(3)] [0.0430]  [0.0451] | [0.0356] [0.0341] [0.0435]
Al 0.123 0.143 0.221 0.105 0.204
[0.0599]  [0.0701] | [0.0454] [0.0476] [0.0455]
El 0.0787 0.180 0.224 0.193 0.117
[0.0810]  [0.0820] | [0.0675] [0.0468] [0.0471]
KI | —=0.0129 —0.0822 | —0.163 —0.0303 —0.179
[0.0593]  [0.0660] | [0.0421] [0.0422] [0.0383]
o 0.819 0.733 0.985
[6(64)] [0.0208] [0.0192] [0.0199]
Oe 0.893 0.499 0.853
[6(6:)] . : [0.00471]  [0.00308]  [0.00460]
0 1.15 1.15
¢ . 0.398 : : :
p-values | Al 0.040 0.041 0.000 0.027 0.000
El 0.331 0.028 0.001 0.000 0.013
Kl 0.827 0.213 0.000 0.474 0.000
[ —64863 —64678 —66271
no children and a net income of more than 3000 DM - is about ¢?*®! = 12.3 days.

Positive regression parameters cause lengthened purchase intervals, that means rarer
purchase acts. Here, being younger or earning less have a multiplicative effect of about
%143 = 1,15 or %180 = 1.20, respectively, on the interval lengths. On the other hand,
the interval-shortening effect of having children is estimated as %22 = (.92, The
three ML columns show rather similar regression parameter estimations. Note that
the intercept estimated by the Weibull model is not directly comparable to the other
methods because of the shifted expectation of the distribution. The children effect is
709393 = 0,97 in the log-logistic model but ¢! = 0.84 in the Weibull model.

The data situation changes of course when we analyze particular brands. More
than half the households do not buy brand A or B all year long; the households that
do buy brand A or B at least once the year in average contribute only about four to
five purchase acts, and censor rates are about one third (as in the simulation studies)
or higher.

There is much more unobserved heterogeneity than in the analysis of all yogurt
purchases (see &, in tables 6 - 8). Almost every household buys yogurt. Thus the fact
of being a yogurt eater does not discriminate the sample very much. Having a high
affinity to a certain brand is a much stronger classification of households reflecting their
likes and dislikes. This interpretation would point to a dichotomous variable which is
not observed, and this was the incentive to the kind of simulation studies reported in
tables 2 and 3. In spite of a possibly misspecified frailty distribution the results of these
simulations encourage us not to reject completely the ML, methods in the brand-specific
analysis but only to interpret the results with some caution. The regression parameters
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Table 6: Estimation results — brand A

GEE/BJ ML
ind equ (N) (L) (W)
3 CO| 337 495 | 6.54 6.49 6.91
[5(3)] [0.353]  [0.260] |[0.157] [0.142]  [0.148]
Al | —0.299 —0.0494 | 0.253  0.310  0.302
[0.515]  [0.386] |[0.0916] [0.0816] [0.0885]
El | 0.854  0.364 | 2.09 2.13 2.15
[0.505]  [0.450] |[0.132] [0.128]  [0.121]
KI | 0.810  0.0570 | 0.426  0.411  0.405
[0.485]  [0.374] |[0.0889] [0.0789] [0.0900]
5o 3.18 3.18 3.21
[6(64)] [0.102]  [0.0948] [0.0962]
5. 1.14 0.634  1.02
[5(5.)] . . [0.0208] [0.0133] [0.0191]
b 4.30 3.59
¢ . 1.67 . . .
pvalues | AL | 0.561  0.898 | 0.006  0.000  0.001
El | 0.091 0419 | 0.000  0.000  0.000
KI | 0.095  0.879 | 0.000  0.000  0.000
] —7502  —7473  —7583

are perhaps slightly over-estimated. On the other hand, because of the higher censor
rates, the GEE/BJ method is expected to result in over-estimated standard errors and
probably in not-recognized effects.

In the analysis of brand A (table 6) the regression parameter estimates of GEE/BJ
estimation are absolutely lower in the equicorrelation than in the independence case,
and all the GEE/BJ estimated parameters are not significant on the 5% level. On
the other hand, the three ML specifications compared to each other produce nearly
the same estimates of parameters and their standard errors, and the effects are all
highly significant. The ML results suggest that households with older primary shoppers
and particularly with higher net income buy brand A more often than others. As we
already know, they generally buy more yogurt. But brand A is the favourite of childless
households — having children lengthens the brand A purchase intervals by a factor

0.41

of about e ~ 1.5. However, this result is not corroborated by the nonparametric

method.

The data situation (number of spells and censor rate) is similar in the analysis of
brand B, but there is another constellation of significant parameters (table 7). Age
and income are not significant in GEE/BJ estimation as well as in ML estimation with
lognormal model. Tt is the same case as the not clear children effect in the analysis of all
yogurt purchases: The nonparametric method does not give a significant result when
any of the parametric models does not. The children effect of brand B, on the other
hand, is significant, independent of the method. Having children shortens the brand B
purchase intervals to a third or a fourth of the time.



Table 7: Estimation results — brand B

GEE/BJ ML
ind equ (N) (L) (W)
3 CO| 5.11 6.20 7.82 7.88 8.27
[5(3)] [0.566] [0.356] | [0.259] [0.203]  [0.212]
Al | —0.00652 —0.0525 | —0.00175 —0.378  —0.216
[0.423] [0.354] | [0.247] [0.136]  [0.129]
E1 | 0.141 0.205 0.559 0.384 0.464
[0.585)] [0.515] | [0.379] [0.154]  [0.210]
KI | —1.42 137 | —1.39 ~1.07  —1.07
[0.571] [0.448] | [0.226] [0.145]  [0.197]
EN 271 2.70 2.37
[6(64)] [0.101] [0.0945]  [0.0778]
6. 1.24 0.696 1.04
[6(6.)] : : [0.0286]  [0.0180]  [0.0248]
b 3.81 4.11
¢ . 1.67 . . .
p-values | AL | 0.938 0.882 0.994 0.005 0.095
El1 | 0.810 0.691 0.141 0.013 0.027
KI | 0.013 0.002 0.000 0.000 0.000
] —5673  —5657  —5H703

There are two reasons that encouraged us to do a re-analysis for brand A including
interaction effects (which was not a topic of the extended STAS analysis). The first
one is the common argument for interaction terms: The observed effects probably do
not act independently. The other one is the hope that the interactions may explain a
further part of the variability in the data, and unobserved heterogeneity will decrease.

The latter is not the case as the ML results in table 8 show. The estimated hetero-
geneity and residual deviations and the likelihood stay on the same level. The GEE/BJ
procedure with equicorrelation matrix has not come to an end after 90 iterations, and
the independence assumption does not give much evidence.

For interpretation, we keep to the ML results as they are rather uniform. Interac-
tions with the children effect are not significant at all. The spell-lengthening effect of
lower age is turned around in the case of lower income by the interaction A1*E1l. So
older childless households with higher income prefer brand Aj; it is bought least by older
households with children and lower income.

7 Discussion

The nonparametric GEE/Buckley-James method has been compared to the fully para-
metric marginal maximum likelihood estimation by simulation studies in section 5. The
results of these studies are valid for the specified conditions, especially the large sample
size, the medium censor rate, the assumed distributions, the moderate heterogeneity
and the kinds of covariates. These specifications have been made with the application
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Table &: Estimation

7. DISCUSSION

results — brand A — including interaction effects

GEE/BJ ML
ind equ (N) (L) (W)
3 CO 3.31 6.55 6.53 6.93
[5(3)] [0.379] [0.165]  [0.147]  [0.157]
Al —0.321 0.356 0.382 0.323
[0.872] [0.120]  [0.104]  [0.110]
F1 1.31 2.26 2.36 2.41
[0.841] [0.167]  [0.196]  [0.161]
Kl 1.28 0.546 0.496 0.465
[0.651] [0.135]  [0.115]  [0.143]
AT*E1 | 1.91 —1.22 ~1.68 —1.42
[1.05] (0.343]  [0.299]  [0.307]
ALT*KI | —0.422 ~0.197  —0.124 0.160
[1.07] [0.190]  [0.169]  [0.188]
E1*KI | —2.14 —0.270  —0.327  —0.439
[1.07] [0.263]  [0.267]  [0.268]
&, 3.21 3.23 3.24
[5(64)] [0.105]  [0.0970]  [0.102]
&. 1.14 0.633 1.02
[5(5.)] . [0.0208]  [0.0133]  [0.0191]
b 4.37 . .
p-values | Al 0.712 0.003 0.000 0.003
F1 0.120 0.000 0.000 0.000
KI 0.050 0.000 0.000 0.001
AT*ELl | 0.069 0.000 0.000 0.000
AL*KI | 0.694 0.299 0.461 0.397
E1*KI | 0.045 0.304 0.221 0.102
] 7499 7470 —75718

of section 6 in mind. Further research will be done either to generalize the results or to
differentiate them where necessary.

The experiments showed that the application of the generalized estimating equations
approach in combination with the method of Buckley and James is a feasible way for
handling censored data of multivariate failure times. If any correlation between the
failure times within the blocks can be assumed, the equicorrelation working matrix has
definitely to be prefered in comparison to the simple independence matrix. But because
of the actually more complex correlation structure between censored spells on the one
hand and uncensored spells on the other hand, also the GEE/BJ(equ) estimator leads
to uncontrolled — although moderate — biases of the regression parameter estimations
and in most cases tends to an overestimation of the estimation variance.

The main intention of the paper was to show that we need not necessarily mistrust
the fully parametric ML estimator when in an application we do not know the real
frailty distribution or even have reason to assume that we have misspecified it. Despite
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the extreme misspecifications which are reported in tables 2 and 3 the ML regression
parameter estimates mostly are less biased than the GEE/BJ(equ) estimates when
the hazard is specified correctly or when both the hazard and the frailty are specified
incorrectly. On the other hand there is a distinct bias of the ML(W) estimator in table 1
in the case of correctly specified frailty but incorrectly specified hazard.

In no case we found a strong or systematic difference between the standard devi-
ations of the ML estimates and the means of their estimated standard deviations. In
terms of root mean squared errors, the ML estimators mostly are at least as efficient as
the GEE/BJ(equ) estimator.

Further on, the simulation studies let us suppose that it would often be more impor-
tant to choose the correct hazard distribution than the correct frailty (see also Haider
and Davies, 1996). As in the application we really do not know anything about the
hazard distribution a priori, we encounter the problem by specifying three hazard dis-
tributions which are typical for failure time analysis and by comparing the outcomes.
In tables 5 and 7 we have the nice results that if there are significant parameter es-
timations in all the three ML cases, also the GEE/BJ(equ) estimation is significant.
So younger people and households with lower income definitely more often buy yogurt
than others, and brand B is definitely prefered by households with children. If any of
the ML estimates is not significant, the GEE/BJ(equ) estimate is not significant, too.

On the other hand, in table 6, all the ML estimates are significant but the
GEE/BJ(equ) estimates are not. In the case of the income variable the reason clearly
is the overestimated standard error of the GEE/BJ method. The GEE/BJ parameter
estimate 0.364 combined with the trusty ML standard errors of about 0.13 would also
result in significance. The estimation of the age and the children effect on brand A
remains unclear. Perhaps the ML estimation is in these cases sensitive to the frailty
misspecification and we should believe the GEE/BJ estimator — or the GEE/BJ esti-
mator is biased and we could believe the ML estimators.
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