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Renewal theory of coupled neuronal pools: Stable states and slow trajectories
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A theory is provided to analyze the dynamics of delay-coupled pools of spiking neurons based on stability
analysis of stationary firing. Transitions between stable and unstable regimes can be predicted by bifurcation
analysis of the underlying integral dynamics. Close to the bifurcation point the network exhibits slowly changing
activities and allows for slow collective phenomena like continuous attractors.
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I. INTRODUCTION

Although information processing in biological neuronal
networks is often linked to exquisitely timed individual spikes
[1–3], cognitive phenomena, such as short-term memory
and decision making, are also reflected by slowly changing
neuronal firing rates [4,5]. To act as such rate encoders, neurons
have to be able to gradually and persistently elevate their
firing rate over some period of time. The mechanisms that
were identified to underlie such ongoing firing are manifold.
They reach from specific ion channels in the cell membrane
(e.g., [6]) to the wiring up of respective neuronal circuits
(e.g., [7]). Since the physiological impact of the neuronal
circuitry is more difficult to track down experimentally than
that of cellular mechanisms, theoretical models have to be
set up to validate network-based hypothesis of persistent
firing and to study the interplay between cellular and circuit
mechanisms.

A theoretical approach to study the rate encoding of
functionally equivalent subsets of neurons is to group them into
pools, thereby translating the description from the single cell to
the population level. Classically, pool dynamics are described
by a set of coupled ordinary differential equations [8–10].
These approaches have been, and still are, very successfully
applied to model neuronal processing in both cognitive and
sensory cortical areas (e.g., [11,12]). Such a temporally local
description, however, cannot account for intrinsic delays and
the dependence of spike probability on the spiking history.
Therefore relating simulations of spiking neurons to such
classical pool models is often very difficult.

These drawbacks are partially amended by pool dynamics
considering neuronal spiking as a renewal process [13–16].
These theories provide exact descriptions of the pool firing
rate if the number N of neurons in a pool tends to infinity. A
disadvantage of these models is that they are rather difficult
to analyze. In particular, a theory of how to analytically treat
the dynamics, if several of such renewal pools are coupled,
is not available so far. Introducing couplings is an important
next step since it opens the way to investigate more complex
network topologies in the future. In this paper, I propose
an extension of the stability analysis of stationary firing to
multiple coupled pools also allowing coupling delays. The
theory is semianalytically treatable and asymptotically correct
for large pool sizes N → ∞, which distinguishes it from most
other approaches that are based on simulations of spiking
neurons. Finally, to demonstrate the inner working of the

theory, it is applied to three well-studied example cases in
which collective dynamical phenomena are known to arise.

II. MODEL

Let us consider d pools of neurons. Each pool i = 1, . . . ,d

is fully and homogeneously connected and consists of a
homogeneous population of neurons receiving identical input.
The synaptic connections between the pools are determined
by the synaptic weights Wij . The neuronal properties across
pools may be different, although this degree of freedom will
not be made use of in this paper.

Following [13,16], the pool dynamics is formulated on the
level of a renewal process in which a hazard functionpi(t |t ′)
determines the conditional probability pi(t |t ′) �t that a neuron
in pool i fires in the infinitesimally short interval [t,t + �t), if
its last spike occurred at time t ′. This conditional probability
allows one to construct the survivor function

Si(t |t ′) = �(t − t ′) exp

[
−

∫ t

t ′
ds pi(s|t ′)

]
(1)

that provides the probability that a neuron in pool i does not
fire in the interval [t ′,t) if its last spike occurred at time t ′.
Here, and elsewhere, � denotes the Heaviside step function
�(t) = 1 for t � 0, and �(t) = 0 otherwise.

By splitting up the joint probability ρi(t,t ′) that a neuron
fired its last spike at time t ′ in a conditional and a marginal
distribution, one defines the firing probability density (or firing
rate) Ai(t ′) as

ρi(t,t
′) = Si(t |t ′) Ai(t

′). (2)

In what follows, the firing rate vector �A = (A1, . . . ,Ad )T

will be considered as the macroscopic dynamical variable of
interest (although strictly speaking it is no dynamical variable).

Since ρi as a probability is normalized, the integral equation

Ni(t) =
∫ t

−∞
dt ′ Ai(t

′) Si(t |t ′) ≡ 1 (3)

is valid for all times t , and so defines the dynamics of the
firing rates Ai(t) via a self-consistency equation [13,16]. For
the purpose of numerical simulation, the dynamics can be
made explicit by taking the derivative of Eq. (3) with respect
to time t .

To facilitate the analysis of the integral dynamics from
Eq. (3) for d coupled pools, I consider a specific model for the
conditional firing probability density pi(t |t ′) that realizes the
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renewal property in the simplest nontrivial way. This model
consists of three constituents: a synaptic coupling kernel, a
gain function, and refractoriness.

First the activities Aj of the pools are assumed to be
convolved (∗) by a synaptic coupling kernel

κ ∗ Aj (t) =
∫ t

−∞
ds Aj (s) κ(t − s). (4)

If multiplied with the synaptic weight Wij the convolution in
Eq. (4) models the contribution of the activity of pool j to the
postsynaptic potential of neuron i in the spirit of spike response
models [14]. Without loss of generality, synaptic kernels are
assumed to be normalized,

∫ ∞
0 ds κ(s) = 1. All examples in

this paper are derived with an exponential kernel

κ(s) = �(s − �) β e−β (s−�), β > 0. (5)

The two parameters β and � are interpreted as the inverse time
constant of the postsynaptic potential and the synaptic delay,
respectively.

Second, the filter output is assumed to instantaneously
influence the firing rate of the postsynaptic neuron. This
instantaneous action is modeled by an exponential gain
function

fi[κ ∗ �A(t)] = ν0 exp[ �wi · (κ ∗ �A(t)) + Ii(t)], (6)

with Ii quantifying the external inputs and ν0 taking the role
of the spontaneous firing rate. The vectors �wi describe the
synaptic strength with which the other pools are connected to
pool i. The corresponding synaptic weight matrix Wij can thus
be derived from the elements of the individual weight vectors
as Wij = ( �wi)j .

Third, refractoriness is modeled by a multiplicative proba-
bility term

g(t) = �(t − τ ) (7)

that incorporates an absolute refractory time τ , implying that
two consecutive spikes of a neuron have to be separated at
least by this interval.

In summary, these ideas lead to the following model for the
firing probability density:

pi(t |t ′) = fi(κ ∗ A1(t), . . . ,κ ∗ Ad (t)) g(t − t ′)
= :fi(κ ∗ �A(t)) g(t − t ′). (8)

III. THEORY OF LINEAR STABILITY

The pool dynamics defined by the integral equation (3) can
generally only be treated numerically. To also allow analytical
treatment, Eq. (3) is linearized around stationary states.

A. Stationary states

In this paper only constant stationary states are considered,
i.e., the firing rate solution �A(t) = �A∗ = const is constant in
time. This of course also restricts the study to constant inputs
Ii(t) = Ii = const (which can be relaxed a bit by considering
piecewise constant inputs). In such a regime, according to
Eq. (8), the firing probability density pi and hence the survivor
function only depend on the time difference t − t ′ to the last

spike. Particularly, one finds

S∗
i (t − t ′) = �(t − t ′) exp[−fi( �A∗) G(t − t ′)] (9)

with

G(s) = �(s − τ ) (s − τ ). (10)

From the dynamical equation (3), one readily obtains the
fixed-point condition

(A∗
i )−1 =

∫ ∞

0
ds exp[−fi( �A∗) G(s)] = τ + (fi( �A∗))−1,

(11)
which is solved by

A∗
i = fi( �A∗)

1 + τ fi( �A∗)
. (12)

In Fig. 1, the fixed-point states from Eq. (12) are compared
to simulations of neurons firing according to the renewal
process from Eq. (8). For the specified model, excitatory-
coupled pools exhibit bistability, in which the two stable fixed
points are separated by an unstable one [Figs. 1(A)–1(C)].
However, if several pools are coupled, the stability properties
of the fixed points are not readily available from inspecting
the isoclines [Figs. 1(D)–1(F)]. Thus it is necessary to
derive a formal stability criterion based on linear perturbation
theory.

B. Perturbations

Stability analysis of the stationary states �A∗ is done by
linearizing the integral equation (3). For small perturbations

�α(t) = �A(t) − �A∗ (13)

one obtains the linear relation

0 =
d∑

j=1

∫ t

−∞
dt̃

δNi(t)

δAj (t̃)
αj (t̃) , i = 1, . . . ,d. (14)

Equation (14) thus imposes a condition for permitted per-
turbations �α(t). Since �A∗ is a stationary solution, �α(t) = 0 is
always permitted, so the search has to be restricted to nontrivial
perturbations �α(t) �= 0.

To allow further analysis of Eq. (14), one requires an explicit
expression of the functional derivative, which, for the present
model, is

δNi(t)

δAj (t−x)
= S∗

i (x) δij − A∗
i

∫ ∞

0
du S∗

i (u)
∫ t

t−u

ds
δpi(s|t − u)

δAj (t − x)

= S∗
i (x) δij − A∗

i Wij fi( �A∗)
∫ ∞

0
du S∗

i (u)

×
∫ u

0
ds g(s) κ(x−u+s) . (15)

This expression reveals that the functional derivative has no
explicit dependence on time t , which justifies to introduce the
abbreviation �ij (x) := δNi (t)

δAj (t−x) . The integrals in Eq. (14) are
thus convolutions and the problem can be analyzed more easily
in the Laplace domain.

To this end, one assumes that the perturbations have
exponential time dependence and, without loss of generality,
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FIG. 1. (Color online) Multistability of excitatory-coupled pools. (A) Spike raster plot of one simulated pool with 100 neurons (W = 30,
I = 2). The thick blue bar on the time axis indicates the time interval at which the neurons received an additional stimulus. (B) Rate A(t)
derived from simulation in (A). Red dashed lines indicate the predicted stationary states, which are (C) the points of intersection between the
identity (thin line) and the right hand side of Eq. (12) (thick line). Red discs correspond to the stable states from B. (D) Same as (A) for two

pools with W = ( 30 −10
10 30 ), and I = (2,1)T. (E) Same as (B) for �A(t) from (D). (F) Isoclines for A1 (black) and A2 [green (gray)]. Red discs

indicate stationary solutions from (E).

start at time t = 0;

�α(t) = �(t) exp(−z t) �̂α(z). (16)

Note that according to this definition, and though in contrast
to most other approaches on linear stability analysis, a positive
real part of z indicates a stable perturbation, whereas a
negative real part of z indicates instability. Using Eq. (16),
the convolution integrals in Eq. (14) read∫ t

−∞
dt̃

δNi(t)

δAj (t̃)
αj (t̃) =

∫ t

0
dt̃ �ij (t − t̃) αj (t̃)

=
∫ t

0
dt ′ �ij (t ′) αj (t − t ′)

= α̂j (z) e−z t

∫ t

0
dt ′ �ij (t ′) ez t ′ . (17)

As a consequence, if �ij is integrable, the convolution integral
on the left-hand side exists independently of z and t . The
integrability conditions for the �ij s imply that for t → ∞, the

integral over such � is bounded by∣∣∣∣ ∫ t

0
dt ′ �(t ′) − L1

∣∣∣∣ < L2 e−tλ , (18)

for some maximal constant λ > 0. Stability of the stationary
solution is then determined by the integral on the right-hand
side of Eq. (17) for t → ∞. Two cases have to be discerned:

(1) If Re(z) − λ � 0, the integral diverges like L2 et(Re(z)−λ).
This divergence is balanced by the exponential prefactor
e−z t , such that the overall convolution integral converges
like e−λ t independently of z. As a result, Eq. (14) does
not impose any constraint on z and all perturbations with
Re(z) − λ � 0 are permitted. Since in particular Re(z) > 0, all
those perturbations are stable. As an intuitive interpretation,
Re(z) � λ means that the perturbations die out faster [at rate
Re(z) > 0] than the integral (at rate λ > 0) and thus do not
contribute in the limit t → ∞.

(2) If Re(z) − λ < 0, the integral on the right-hand side
exists for all t . One thus can properly define the Laplace trans-
form �̂(z) = ∫ ∞

0 dx�(x) exz, and, requiring independence of
time (i.e., disregarding the prefactor ezt ), Eq. (14) turns into a
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FIG. 2. (Color online) Complex roots. (Top) Real and imaginary part [color (gray) coded] of det �̂(z) for uncoupled pools W = 0. Thick
black lines indicate respective nullclines. Right: roots of det �̂(z) (black squares) are determined by the intersection of the nullclines (red for
real part, blue for imaginary part). (Bottom) Introducing synaptic self-coupling W = 30 limits the range of slow real parts to Re(z) < β = 0.05.
Left: The singularity in κ̂(z) guarantees a zero crossing of the real part at Im(z) = 0 (the two right-most panels are equivalent to top).

linear matrix equation,

0 = �̂(z) �̂α(z). (19)

Being a homogeneous linear equation for α̂(z), the existence
of nonzero perturbations imposes the condition

det[�̂(z)] = 0. (20)

The roots z of Eq. (20) determine the possible perturbation
modes α̂(z) �= 0 at the respective fixed point. The real part
Re(z) determines the stability of the mode: Re(z) > 0 accounts
for a stable mode, whereas Re(z) < 0 identifies an unstable
mode. A nonvanishing imaginary part Im(z) �= 0 indicates
an oscillatory perturbation, with period 2π/Im(z). Since
Re(z) − λ < 0, stable perturbations decay more slowly than
the convolution integrals in Eq. (14). I thus call them slow
modes.

Using the specific model assumptions for the functions f

and g one finds explicit forms for the survivor function,

Ŝ∗
i (z) = 1

fi( �A∗) − z

(
fi( �A∗)

ezτ − 1

z
+ 1

)
(21)

and the matrix

�̂ij (z) = δij Ŝ
∗
i (z) − A∗

i Wij κ̂(z)

fi( �A∗) − z
. (22)

The feasibility condition from Eq. (20) is hence equivalent to

det

[(
fi( �A∗)

ezτ − 1

z
+ 1

)
δij − κ̂(z) Mij

]
= 0 (23)

with (M)ij = Mij = A∗
i Wij . Let us next consider two special

cases in which Eq. (23) becomes particularly simple.

No refractoriness. If the refractory time is chosen τ = 0,
the neurons are allowed to fire with infinite rate. In that case,
the first term in Eq. (23) simplifies to the unit matrix 1 and the
feasibility condition can be translated to

det(κ̂(z)−1 1 − M) = 0. (24)

This equation can be readily solved for those values of z at
which κ̂−1(z) equals an eigenvalue μ of M . For the specific
choice of an exponential coupling kernel, one finds

κ̂(z) = e� z

1 − z/β
(25)

and thus the feasibility condition reads

e−� z (1 − z/β) = λ ∈ σ (M). (26)

It is shown in the Appendix that (1) Eq. (26) has exactly
one root for real positive eigenvalues μ of M . Moreover, it
is shown that (2) if the modulus |μ| < 1, a root z has always
positive real part and the perturbation is stable, and (3) z has a
nonzero imaginary part only if also μ has a nonzero imaginary
part. Imaginary parts of the eigenvalues thus directly indicate
oscillatory behavior of the perturbations.

No coupling. If pools are considered as uncoupled, i.e.,
W = 0, then the feasibility conditions from Eq. (23) maps to

d∏
i=1

(
fi( �A∗)

ezτ − 1

z
+ 1

)
= 0. (27)

Hence the roots z of this condition are given by

ezτ − 1

z
= −f −1

i ( �A∗), i = 1, . . . ,d. (28)
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FIG. 3. (Color online) Population oscillations. (A1−5) Population rate from network simulations for five different inhibitory synaptic
coupling strengths |W |. (B1−5) Roots (squares) of the feasibility conditions for the weights from A. Color (gray) code corresponds to Fig. 2,
top right. (C) Empirical firing rate (black dots) and stationary state (red solid line) from the fixed point equation (12). (D) Real part of the root
of Eq. (23). (E) Imaginary part (divided by 2π , red) of the root of Eq. (23) and empirical oscillation frequency (black dots).

For each value of fi( �A∗) Eq. (28) can have multiple complex
roots, as shown in the upper panel of Fig. 2.

General case. In general, neurons are refractory τ > 0 and
coupled W �= 0 and hence the feasibility condition can only be
evaluated numerically. Most notably also for arbitrarily small
positive weights Wij > 0 the pole of κ̂ at z = β [Eq. (25)]
introduces a slow root with Re(z) < β (Fig. 2, bottom).
This shows that positive feedback, no matter how small,
always introduces a slow time scale. Since the integrability
of the Laplace transform of � requires Re(z) < β, the roots
of the uncoupled network are no longer effective in that case
and the network dynamics permits all (stable) perturbations at
time scales faster than 1/β.

Here and unless otherwise mentioned the following pa-
rameters are used: the decay rate of the coupling kernel
β = 1/(20 ms), indicating a neuronal integration time constant
of 20 ms; the refractory time τ = 3 ms, imposing a maximal
firing rate of 333 Hz; the synaptic delay � = 2 ms.

IV. APPLICATIONS

Our understanding of dynamical systems is dominated by
concepts derived from studying ordinary differential equa-
tions, such as, e.g., phase space trajectories and fixed points.
Integral dynamics such as the one presented here do not allow
using these intuitive ideas, at least in the strict sense. In this
section, I will introduce three examples of collective neuronal

phenomena that have been (partly extensively) studied in the
past to illustrate how the theory presented here applies to them.
Interestingly, the slow stable modes turn out to be quite well
reflected by the classical concept of a phase space.

A. Gamma rhythm d = 1

As an example for a homogeneously coupled population
of neurons (a single pool, d = 1), I reconsider inhibitory
networks that generate oscillations in the gamma range
(30–100 Hz). All neurons receive the same positive drive
I = 50, and the synaptic weight W is used as a parameter
to control the population oscillation. In line with a multitude
of previous studies (e.g., [16–19]), Fig. 3(A) shows that
oscillation frequency of a simulated pool of N = 4,500
neurons decreases with increasing inhibitory weight |W |.

In the language of the present theory, the dependence
of oscillation frequency on synaptic coupling is reflected
by the corresponding roots of the feasibility condition from
Eq. (23). All roots have a negative real part and a nonvanishing
imaginary part [Fig. 3(B)] indicating that the stationary
states are unstable and that the unstable perturbations exhibit
oscillatory nature. A comparison between the stationary rate
A∗ from Eq. (12) and the mean spike rate of the simulations
shows excellent agreement [Fig. 3(C)] despite the fast speeds
of divergence from the asynchronous state, as indicated by the
strongly negative real parts of the roots in Fig. 3(D). Only for
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from Eq. (23).

very low values of |W | does the stationary rate overestimate
the simulation results, as the strict upper bound of the firing
rate induces a bias.

The |W | dependence of the mean rate suggests that
the dynamics is still governed by the asynchronous
(unstable) stationary state. It is thus justified to also
compare the oscillation frequency of the simulated network
with the imaginary part of the root of Eq. (23): For small
modulus of the weight |W | (fast oscillations) the imaginary
part turns out to be a good predictor [Fig. 3(E)]. However, as
the modulus |W | increases, the empirical oscillation frequency
becomes only about half of the predicted one, indicating that
the stability analysis only qualitatively captures the network
dynamics in this regime.

B. Line attractors d = 2

Irregular-asynchronously firing pools of neurons can only
encode inputs by their mean firing rate. It is therefore
interesting to study if the linear perturbation theory can
predict whether two pools can fire with a continuum of firing
rates. A dynamical system that exhibits such a continuum
of stable states is called a line attractor. In neurobiology, line

attractors are considered to be necessary for integrating stimuli
and keeping the integral value in short-term memory for a
sufficiently long period of time. Line attractors have been
suggested to stabilize eye position [7] and to perform path
integration [20].

Here a line attractor is considered to consist of two pools
with positive self-coupling and negative cross coupling. The

specific choice of the coupling matrix is W = 50 ( 1 −ρ
−ρ 1 ), in

which ρ measures the ratio between inhibitory and excitatory
coupling strength (I/E ratio). In addition, the pools receive
homogeneous excitatory drives �I = (2,2)T.

The stationary states are then analyzed in dependence on
the I/E ratio ρ (Fig. 4). For weak inhibition (small ρ) the
system exhibits five stationary solutions: two stable oscillatory
solutions for which one of the pools is silent and the other pool
fires at maximal rate, a symmetric stable solution in which
both pools fire at the same low rate, and two unstable solutions
that separate the basins of attraction of the stable solutions
[Fig. 4(A1)]. At some critical I/E ratio ρc the symmetric
stationary solution loses stability, i.e., the real part of the root
of Eq. (23) becomes zero and the isoclines become parallel
at the stationary point [Fig. 4(A2)]. For ρ > ρc the symmetric
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FIG. 5. (Color online) Slow transients. (A),(C),(E) Firing rates of three coupled pools from stochastic simulations. Pool 1 received a
strong stimulus of amplitude I1 = 6.5 between 450 and 500 ms. The coupling strength k between the first and the second pool is k = 30 [in
(A)], k = 20 [in (C)], and k = 15 [in (E)]. The rates are averaged over 10 ms. (B),(D),(F) Two different projections (blue lines with dots)
of the activity variables from the simulations in (A),(C),(E). The arrow in the left graphs indicate the time course. The temporal separation of
the dots is 10 ms. Theoretically obtained fixed points are plotted as orange squares (stable) and yellow discs (unstable). The arrows indicate
the direction and magnitude of the slow stable and unstable modes. Arrows are drawn black if the imaginary part of the corresponding root of
Eq. (23) is zero. Red (gray) arrows indicate oscillatory modes with nonzero imaginary part of the root. Here, the refractory time is τ = 10 ms,
and the coupling kernel has a time constant of 1/β = 30 ms.

stationary state is unstable and spawns two new neighboring
stable solutions [Fig. 4(A3)]. The resulting bifurcation diagram
[Figs. 4(C) and 4(D)] thereby reminds one of a pitch fork
bifurcation.

Linear perturbation analysis thus predicts that at the critical
I/E ratio ρc the system should behave as a line attractor. This
prediction was tested by three simulations for ρ < ρc, ρ ≈ ρc,
and ρ > ρc. The setting was such that after an initialization
phase of 500 ms, the pools received four additional current
stimuli �I (k) = a (1, − 1)T,k = 1, . . . ,4, with amplitude a =
0.25 for small time intervals of 20 ms at times t stim(k) = k ·
500 ms. For ρ < ρc (where the symmetric stationary state is
stable), the firing rates of the pools always decays back to
the symmetric state [yellow in Fig. 4(B1)], i.e., the system
did not show considerable short-term memory. For ρ > ρc,
where the symmetric stationary state is unstable, the firing rates
drift away from the symmetric stationary state and approach
one of the stable asymmetric states [orange in Fig. 4(B3)].
Only at the critical I/E ratio ρ = ρc, the firing rates remain
at different levels for a duration that considerably exceeds

the coupling time constant of 20 ms: In the vicinity of the
symmetric stationary state, the system acts as a continuous
attractor [Fig. 4(B2)].

To conclude, linear perturbation theory is able to also
quantitatively identify network states in which the system
integrates a stimulus. These continuous attractor states are
particularly sensitive to noise. The pools thus have to be either
large (as in the present example), or the intrinsic time constants
(e.g., 1/β) have to be long.

C. Trajectories in activity space d = 3

The example of the line attractor shows that pool dynamics
can act on time scales that are much slower than the intrinsic
cellular processes such that the temporal evolution of pool
firing rates is a true network phenomenon. One thus may ask
whether such coupled pools may also be able to represent
long time intervals themselves, making use of the time it
takes to follow a specific trajectory, such as a limit cycle
or a slow transient sequence of activity states. Such activity

031935-7



CHRISTIAN LEIBOLD PHYSICAL REVIEW E 84, 031935 (2011)

sequences have been investigated in various flavors in the past,
e.g., [21–23]. These models consider sequential activation
of neuron populations either as a complex spatiotemporal
memory trace that is stored in the network, or as a short-
term memory buffer for sensory stimuli. To the best of my
knowledge, no model so far was able to provide a macroscopic
description of activation sequences of recurrently coupled
pools that is rigorously derived from microscopic networks
of spiking neurons in continuous time.

In this section, an implementation of such a slow trajectory
is presented for the example of three coupled pools. The first
pool thereby represents a bistable switch (cf. Fig. 1) that acts
as a short-term memory buffer for a brief (50 ms) input pulse.
Once activated, the first pool excites a second pool, which
exhibits a slow buildup in rate that acts as a time delay. Finally,
a third inhibitory pool is driven by the second pool. The third
pool inhibits the first pool and stops the short-term memory
buffer. As a result, the dynamical system is set back into a
low-activity stable state. The dynamics is realized using the
weight matrix

W =
⎛⎝70 0 −20

k 35 0
0 50 0

⎞⎠ , (29)

in which we use the weight k between the first and the
second pool as parameter to analyze the system behavior.
Additionally, all pools receive a constant drive �I = 3

2 (1,1,1)T .
Typical trajectories from cellular simulation are shown in
Fig. 5.

The duration of the transient burst of activity can be
adjusted by the coupling strength k. If k is large the delay
between activation of the first and the second pool is relatively
short and so is the burst duration. The “trajectory” in the
�A space is dominated by two stationary states with high

rates. For large k > k(1)
c these stationary states do not actually

exist, although their “ghosts” still mediate slow trajectories
[Figs. 5(A) and 5(B)]. At some critical k = k(1)

c the high-rate
stationary states appear [Figs. 5(C) and 5(D)] and the dynamics
slows down further for k < k(1)

c . Below a second critical value
k < k(2)

c < k(1)
c , one of the stationary states becomes stable and

thus the transient behavior disappears [Figs. 5(E) and 5(F). In
this regime, the dynamics is dominated by the bistability of
the first pool.

To conclude, linear stability analysis of the normalization
condition from Eq. (3) allows qualitative statements about the
dynamics of the high-dimensional dynamical system, similar
to classical systems of ordinary differential equations [24],
although, strictly speaking, the notion of phase spaces and
trajectories is incorrect for an integral dynamics. For example,
trajectories may intersect as the dynamics is not local in
time and, similarly, the arrows in Fig. 5 do not represent
a flow field but the direction of slow stable and unstable
modes.

V. DISCUSSION

This paper presents a theoretical approach to analyze
the firing of coupled pools of neurons. A stability criterion
is derived for stationary states, which requires finding the
complex roots of a matrix determinant. These roots indicate

slow stable and unstable modes, i.e., activity features that
go beyond the single-cell time scales and as such represent
collective dynamical phenomena.

The theory is applied to well-studied examples, which
particularly reveal slow dynamical features. It is important
to understand which collective mechanisms can underly such
slow time scales, because they are not readily accessible
to experimental measurements. Slow cellular time scales,
however, are much easier to track down experimentally, and
thus possible additional network mechanisms are often not
recognized.

So far, the presented theory only applies to simple (one-
dimensional) neuron models, that cannot extend to relevant
intrinsic behaviors such as adaptation or slow positive self-
feedback. Particularly, such interplay between cellular and
network mechanisms may be important to understand slow
neuronal processing [7]. An extension to high-dimensional
neuron models has been achieved for a pool model without
explicit renewal property [25]. For the present theory such
extensions are not yet available as they require extending the
renewal assumption, one of the corner stones of the approach.
Yet it seems possible but tedious to generalize the dynamical
equation (3) to many previous spike times.

Slow time scales of neuronal network activity have been
described in many contexts. Aside from the ones mentioned
(integration of retinal slip and path integration), such activity
patterns are generally assumed to occur for most short-term
memory tasks. A well-studied example is decision making,
where a slow time evolution of firing rates has been observed
in the prefrontal cortex preceding the decision [4,26]. More
recently, short-term memory has also been connected to short-
term synaptic plasticity [27,28], which means that there the
memory is not represented by long-lasting firing, but by cell-
(or synapse)-intrinsic dynamical processes. In order to study
the interaction of the two mechanisms (synaptic and network),
future work requires also incorporating synaptic short-term
plasticity into the renewal pool description presented in this
paper.
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APPENDIX

In the case of nonrefractory neurons τ = 0 the permitted
slow stable and unstable perturbations are determined as the
roots z = x + i y of(

1 − z

β

)
e−� z = μ = |μ| eiarg(μ) (A1)

with μ being an eigenvalue of the matrix Mij = Ai Wij .
Moreover, integrability of the Laplace transform requires
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Re(z) < β. Equation (A1) can be split up into modulus and
phase. For the modulus one obtains

y±(x) = ±β

√[
|μ|2 e2x � −

(
1 − x

β

)2 ]
, (A2)

which defines two functions y+(x) > 0 and y−(x) =
−y+(x). Note that y± are only defined for real parts at
which (

1 − x

β

)
< |μ| ex �. (A3)

For |μ| < 1, the possible x values are thus restricted to positive
values and the perturbations are stable. If the eigenvalue μ is
real and positive, μ = 1 yields the solution z = 0 and thus

marks the verge of stability, separating unstable (μ > 1) and
stable (μ < 1) perturbations.

The phase part of Eq. (A1) yields the implicit equations

�y±(x) + arctan

(
y±(x)

β − x

)
= −arg(μ). (A4)

More specifically, as complex eigenvalues of real matrices M

always come in pairs of complex conjugates, for any solution
with imaginary part y there is also one with imaginary part
−y (corresponding to the complex conjugate eigenvalue).
The phase equation (A4) also reveals that, since � > 0,
the imaginary part y± of the solution vanishes only for
arg(μ) = 0 and then the real part is uniquely determined by
1 − x/β = μe�x . Nonzero imaginary parts of μ always also
result in imaginary parts of z.
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J. Phys. A 40, 11045 (2007).
[26] C. K. Machens, R. Romo, and C. D. Brody, Science 18, 1121

(2005).
[27] C. Leibold, A. Gundlfinger, R. Schmidt, K. Thurley, D. Schmitz,

and R. Kempter, Proc. Natl. Acad. Sci. USA 105, 4417 (2008).
[28] G. Mongillo, O. Barak, and M. Tsodyks, Science 319, 1543

(2008).

031935-9

http://dx.doi.org/10.1002/hipo.450030307
http://dx.doi.org/10.1126/science.1159775
http://dx.doi.org/10.1038/nature09633
http://dx.doi.org/10.1016/S0959-4388(03)00050-3
http://dx.doi.org/10.1016/S0959-4388(03)00050-3
http://dx.doi.org/10.1016/0959-4388(94)90059-0
http://dx.doi.org/10.1016/0959-4388(94)90059-0
http://dx.doi.org/10.1016/j.neuron.2006.01.036
http://dx.doi.org/10.1016/j.conb.2004.10.017
http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://dx.doi.org/10.1007/BF00288786
http://dx.doi.org/10.1103/PhysRevE.82.051903
http://dx.doi.org/10.1162/neco.2007.07-06-297
http://dx.doi.org/10.1016/j.neuron.2009.03.028
http://dx.doi.org/10.1103/PhysRevE.51.738
http://dx.doi.org/10.1162/089976600300015899
http://dx.doi.org/10.1162/089976601750399254
http://dx.doi.org/10.1162/089976601750399254
http://dx.doi.org/10.1103/PhysRevLett.93.208104
http://dx.doi.org/10.1162/neco.1996.8.8.1653
http://dx.doi.org/10.1162/neco.1996.8.8.1653
http://dx.doi.org/10.1023/A:1008925309027
http://dx.doi.org/10.1038/nrn1932
http://dx.doi.org/10.1209/0295-5075/4/10/021
http://dx.doi.org/10.1073/pnas.84.9.2727
http://dx.doi.org/10.1073/pnas.84.9.2727
http://dx.doi.org/10.1103/PhysRevLett.87.068102
http://dx.doi.org/10.1088/1751-8113/40/36/005
http://dx.doi.org/10.1126/science.1104171
http://dx.doi.org/10.1126/science.1104171
http://dx.doi.org/10.1073/pnas.0708711105
http://dx.doi.org/10.1126/science.1150769
http://dx.doi.org/10.1126/science.1150769

