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Phase precession is a relational code that is thought to be important for
episodic-like memory, for instance, the learning of a sequence of places.
In the hippocampus, places are encoded through bursting activity of so-
called place cells. The spikes in such a burst exhibit a precession of their
firing phases relative to field potential theta oscillations (4–12 Hz); the
theta phase of action potentials in successive theta cycles progressively
decreases toward earlier phases. The mechanisms underlying the gener-
ation of phase precession are, however, unknown. In this letter, we show
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through mathematical analysis and numerical simulations that synap-
tic facilitation in combination with membrane potential oscillations of a
neuron gives rise to phase precession. This biologically plausible model
reproduces experimentally observed features of phase precession, such
as (1) the progressive decrease of spike phases, (2) the nonlinear and often
also bimodal relation between spike phases and the animal’s place, (3) the
range of phase precession being smaller than one theta cycle, and (4) the
dependence of phase jitter on the animal’s location within the place field.
The model suggests that the peculiar features of the hippocampal mossy
fiber synapse, such as its large efficacy, long-lasting and strong facilita-
tion, and its phase-locked activation, are essential for phase precession
in the CA3 region of the hippocampus.

1 Introduction

Synapses typically change as a result of prior activation. Fully reversible
synaptic changes that decay within about a minute are called short-term plas-
ticity. This type of plasticity is prevalent in a variety of regions of the central
nervous system (Zucker & Regehr, 2002). Two major forms of synaptic
short-term plasticity have been described: short-term depression goes along
with an attenuation of the efficacy of synaptic transmission following the
arrival of a spike; short-term facilitation describes an increase of the efficacy.
Without further presynaptic activation, the efficacy recovers within charac-
teristically hundreds of milliseconds, but recovery time constants of tens of
seconds have also been reported, for example, for the hippocampal mossy
fiber synapse (Salin, Scanziani, Malenka, & Nicoll, 1996; Gundlfinger et al.,
2007).

Only a few hypotheses on the functional role of short-term plasticity are
available, despite the existence of various types of dynamical synapses
in the central nervous system. Short-term depression is proposed, for in-
stance, as a mechanism for an input-specific gain control (Abbott, Varela,
Sen, & Nelson, 1997), the detection of input coherence (Tsodyks & Markram,
1997; Senn, Segev, & Tsodyks, 1998), and encoding of stimulus features in
the visual cortex (Artun, Shouval, & Cooper, 1998; Buchs & Senn, 2002).
Short-term facilitation is discussed, for example, as a mechanism for tem-
poral integration of presynaptic input (Buonomano & Merzenich, 1995;
Maass, Natschläger, & Markram, 2002; Abbott & Regehr, 2004). Here we
propose that synaptic facilitation, for example, at the hippocampal mossy
fiber (mf) synapse, allows for generating a relational spike code. This
code might be important for one-shot learning and episodic-like mem-
ory, that is, the association of events in a behavioral sequence that oc-
cur on a timescale of seconds (Skaggs, McNaughton, Wilson, & Barnes,
1996; Silva et al., 1996; Brun et al., 2002; Fortin, Agster, & Eichenbaum,
2002; Kesner, Gilbert, & Barua, 2002; Mehta, Lee, & Wilson, 2002; Sato
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& Yamaguchi, 2003; Melamed, Gerstner, Maass, Tsodyks, & Markram, 2004;
Jensen & Lisman, 2005; Lengyel, Huhn, & Erdi, 2005; Dragoi & Buzsáki,
2006).

The hippocampal mossy fiber synapse is an extraordinarily large synapse
that connects granule cells of the dentate gyrus (DG) to pyramidal cells
of the CA3 region of the hippocampus (Henze, Urban, & Barrionuevo,
2000). This synapse therefore participates in the trisynaptic hippocampal
loop from the entorhinal cortex to the dentate gyrus, CA3, and CA1 (see
Figure 1A). One of the peculiar features of the mf synapse is its tremen-
dous short-term facilitation (see, e.g., Nicoll & Schmitz, 2005, for a review).
Following the arrival of a burst of spikes within a few seconds at the presy-
naptic terminal, the postsynaptic response amplitude can transiently in-
crease severalfold (Salin et al. 1996; Toth, Suares, Lawrence, Philips-Tansey,
& McBain, 2000) such that a single presynaptic input spike can fire the
pyramidal neuron in vitro (Jonas, Major, & Sakmann, 1993) and in vivo
(Henze, Wittner, & Buzsáki, 2002). Furthermore, the facilitation decays with
a time constant of about 10 seconds (Salin et al., 1996; Gundlfinger et al.,
2007). Although the mf synapse has features that are, at least in its com-
bination, unique in the central nervous system, its functional role in the
hippocampal circuitry is still under debate. The classical point of view is
that the mossy fiber synapse acts as a detonator that reliably transfers den-
tate activity into the cornu ammonis (McNaughton & Morris, 1987; Urban,
Henze, & Barrionuevo, 2001). This detonator property has been exploited
in models using the mossy fiber connections as teacher input (Treves &
Rolls, 1992) and to mediate context retrieval (Hasselmo & Eichenbaum,
2005).

Hippocampal learning is linked to the so-called theta rhythm, which is
a field potential oscillation in the frequency range of 4 to 12 Hz (see, e.g.,
Buzsáki, 2002, for a review). Theta oscillations are reliably observed when
an animal explores its environment or during REM sleep. The activity of
hippocampal neurons such as pyramidal cells of the Cornu ammonis (CA)
and granule cells in the DG is phase-locked to theta oscillations (Skaggs
et al., 1996). During the hippocampal theta state and when a rat is actively
moving, CA pyramidal cells as well as DG granule cells show place-specific
firing (O’Keefe & Dostrovsky, 1971; Jung & McNaughton, 1993; Skaggs et al.,
1996). A receptive field of that kind is referred to as a place field. As a rat
traverses a place field, the corresponding place cell emits a burst of spikes
that typically lasts for a second, with maximum discharge rates of up to a
few tens of spikes per second.

O’Keefe and Recce (1993) described a temporal fine structure in the
spike bursts of hippocampal pyramidal cells during place field traversals.
Determining the phases of the spikes in a burst with respect to theta os-
cillations of the field potential, the authors found that spikes in successive
oscillation cycles occur at progressively earlier phases. They called this
phenomenon hippocampal phase precession (see Figure 1B). A series of
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Figure 1: Hippocampal phase precession. (A) Trisynaptic hippocampal loop.
Activity from superficial layers of the entorhinal cortex is conveyed to dentate
gyrus (DG) granule cells via the perforant path (pp). Each granule cell contacts
about 10 to 15 CA3 pyramidal cells by giant mossy fiber (mf) boutons sitting
close to the soma. Axons of CA3 pyramidal cells give rise to recurrent connec-
tions within CA3, but also project via Schaffer collaterals (sc) to the pyramidal
cells of area CA1. These subfields and pathways comprise the hippocampal
trisynaptic loop (courtesy of Jörg Breustedt). (B) Phase precession in hippocam-
pal place cells in vivo. The firing or output phase � of a pyramidal cell is plotted
against the position p of a rat freely moving from left to right. To account for the
circular character of the firing phase �, two cycles are shown. Dots represent
single spikes. Boxes and arrows below the plots mark food locations and the cor-
ners of the triangular track used in the experiment, respectively. The horizontal
extension of spikes represents the place field of the cell. The distribution of spike
phases differs in the three cells. Phase precession can be bimodal (left panel) as
well as curved (middle) or more linear (right). Adapted, with permission, from
Skaggs et al. (1996).

subsequent papers has confirmed and refined this observation (e.g., Skaggs
et al., 1996; Yamaguchi, Aota, McNaughton, & Lipa, 2002; Harris et al., 2002;
Mehta et al., 2002; Huxter, Burgess, & O’Keefe, 2003; Dragoi & Buzsáki, 2006;
Maurer, Cowen, Burke, Barnes, & McNaughton, 2006a; Chen & Frank, 2007;
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see also the reviews by Maurer & McNaughton, 2007, and Yamaguchi et al.,
2007). Phase precession exists in both CA3 and CA1 pyramidal cells, but it is
much less pronounced in CA1 interneurons (Maurer, Cowen, Burke, Barnes,
& McNaughton, 2006b; Ego-Stengel & Wilson, 2007) and the dentate gyrus
(Skaggs et al., 1996; Yamaguchi et al., 2002). Recently phase precession has
been reported in layer II of the medial entorhinal cortex (Fyhn, Hafting,
Moser, & Moser, 2006), which provides input to the hippocampus. The
origin of phase precession is still unknown, despite elegant experiments
that aimed at unraveling underlying mechanisms (Ekstrom, Meltzer,
McNaughton, & Barnes, 2001; Huxter et al., 2003; Zugaro, Monconduit, &
Buzsáki, 2005), and despite reasonable effort to put forth mechanistic mod-
els (O’Keefe & Recce, 1993; Tsodyks, Skaggs, Sejnowski, & McNaughton,
1996; Jensen & Lisman, 1996; Wallenstein & Hasselmo, 1997; Bose &
Recce, 2001; Harris et al., 2002; Hasselmo, Canon, & Koene, 2002; Mehta
et al., 2002; Koene, Gorchetchnikov, Cannon, & Hasslemo, 2003; Lengyel,
Szatmary, & Erdi, 2003; Yamaguchi, 2003; Huhn, Orban, Erdi, & Lengyel,
2005; Scarpetta & Marinaro, 2005; Lisman, Talamini, & Raffone, 2005;
Hasselmo & Eichenbaum, 2005).

In this letter, we propose that synaptic facilitation in combination with
oscillations of the membrane potential of the postsynaptic neuron accounts
for phase precession. This novel and biologically plausible mechanism is
in accordance with available experimental findings. In the next section, we
illustrate the main idea through a minimal model. Section 3 formalizes this
approach, provides some analytical results, and generalizes these results
through numerical simulations. Section 4 explains the impact of various
types of noise in our model of phase precession. Finally, in section 5, we
simulate facilitating input impinging on conductance-based neurons during
place field traversals.

2 Precession of Firing Phases Through Facilitation of Synaptic
Response Amplitudes

The goal of this letter is to explain phase precession at the level of a single
neuron at which facilitation of synaptic input and subthreshold oscillations
of the membrane potential interact. In this section, we briefly outline the
basic mechanism and the intrinsic features of the facilitation hypothesis of
hippocampal phase precession.

2.1 Basic Mechanism. An important assumption of our model for phase
precession is that neurons exhibit an oscillating excitability. An oscillating
excitability is often taken into account through subthreshold oscillations
of the membrane potential of a neuron at a constant firing threshold. Al-
ternatively, one can assume a constant resting membrane potential and an
oscillating firing threshold. In section 5, we show under which conditions
both views are equivalent. For the time being and to explain the basic
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Figure 2: Phase precession evoked by synaptic facilitation. (A) We consider a
CA3 pyramidal cell displaying a theta-modulated firing threshold (thick line;
in units of the mean threshold). The cell receives DG input via a mossy fiber
(mf). Every other theta cycle, we elicit one input spike at phase ψ = 90◦. As
the mf synapse facilitates, the EPSP amplitudes increase, and the phases of the
evoked spikes (empty circles) decrease. Temporal summation of EPSPs has been
neglected. (B) All theta cycles indicated in graph A are mapped into one cycle.
(C) The firing phase � of spikes in CA3 is a decreasing function of the EPSP
amplitude A (solid black line). Note the discontinuous phase change at about
A = 1.4. The empty circles correspond to the ones shown in graphs A and B.
The gray shaded area in C marks the region of the (A, �) plane where we obtain
spikes if the input phase ψ is jittered over a range of 90 ± 36◦ (gray bars and
arrowheads in B and C).

mechanism of phase precession, we adopt the simplified view of an oscil-
lating threshold. We define the minima of a sinusoidally oscillating firing
threshold as 0 degree phase, which correspond to the maxima of a somatic
membrane potential oscillation.

Further important assumptions of the model are facilitating synaptic in-
put, the synaptic input being phase-locked to the oscillations, and synaptic
input being strong enough to elicit an output spike in the postsynaptic
neuron. Figure 2 sketches such a scenario for input that is phase-locked
at 90 degrees. As a result, the output phase � at which an excitatory
postsynaptic potential (EPSP) reaches the firing threshold strongly depends
on the EPSP amplitude A.
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To describe the basic mechanism of our model of phase precession, we
display EPSPs at various amplitudes in Figure 2B. The EPSP that is just
sufficiently large to cross the oscillating threshold accounts for an output
phase � close to, but below, the phase 360 degrees. A large EPSP, on the other
hand, evokes an output spike almost instantaneously, with only little off-
set between the input phase ψ = 90◦ and the output phase �. While the
EPSP amplitude A increases, the firing phase � monotonically decreases
(see Figure 2C). Note that in our example, with input phase ψ = 90◦, the
precession of � is discontinuous. How the choice of the input phase ψ and
all other model parameters affects phase precession is outlined below in
detail.

2.2 Hippocampal Phase Precession Through Mossy Fiber Facilitation.
We briefly review the biological feasibility of our main assumptions.
Membrane potential oscillations, phase-locked synaptic input, and synaptic
facilitation are the crucial components for the proposed mechanism of phase
precession. These features have been described in detail in the CA3 region of
the hippocampus. To be more specific, hippocampal pyramidal cells exhibit
membrane potential oscillations in the theta range, which reflect the elec-
troencephalogram (EEG) theta oscillations of the field potential. Intracellu-
lar theta oscillations have amplitudes of up to 10 mV in anesthetized ani-
mals (Kamondi, Acsady, Wang, & Buzsáki, 1998; Bland, Konopacki, & Dyck,
2005), and were also observed in behaving animals (Lee, Manns, Sakmann,
& Brecht, 2006). The maximum of the somatic membrane potential oscil-
lation corresponds to the minimum of the EEG in the stratum pyramidale
(Kamondi et al., 1998), which is defined as 0 degree in accordance with
Csicsvari, Hirase, Czurkó, Mamiya, and Buzsáki (1999) and Buzsáki (2002).

Granule cells in the DG, which project to CA3 pyramidal cells, fire phase-
locked to the theta rhythm (Ylinen et al., 1995; Skaggs et al., 1996). DG
granule cells are also characterized through burstlike activity when the
animal runs through their place fields (Jung & McNaughton, 1993; Wiebe
& Stäubli, 1999; Skaggs et al., 1996).

CA3 pyramidal cells receive input from DG granule cells via hippocam-
pal mf synapses, which show short-term facilitation that can increase EPSP
amplitudes severalfold (Salin et al., 1996; Nicoll & Schmitz, 2005), so that a
single EPSP can become large enough to trigger an action potential (Jonas
et al., 1993; Henze et al., 2002). Accordingly, the synapse has been referred to
as a detonator (McNaughton & Morris, 1987; Urban et al., 2001). Facilitation
decays on a timescale of 10 seconds (Salin et al., 1996; Gundlfinger et al.,
2007), which is longer than the time of about 1 second an animal takes to tra-
verse a place field. Facilitation therefore progressively increases during typ-
ical place field traversals. Hence, we think that the basic assumptions of our
model are reasonably well justified in the CA3 region of the hippocampus.

In other brain regions, for example, the entorhinal cortex (EC), phase
precession might be generated in a similar way, but the specific features
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of phase precession depend on the local properties of synaptic facilitation
and membrane potential oscillations. Although our model can be gener-
alized to other brain regions, we primarily refer to the CA3 region of the
hippocampus to illustrate phase precession.

In the following section, we define the above model for phase precession
in mathematical terms, which allows an in-depth analysis of how model
parameters affect its behavior, independent of any specific brain region.

3 Generic Solutions to the Threshold Model

In the previous section, we reported qualitative results obtained with a
threshold model of a neuron that receives input from a facilitating synapse.
To investigate in greater detail under which conditions this model can
account for the phenomenon of phase precession, we now provide a more
formal definition.

3.1 Definition of the Threshold Model. Oscillations of the resting
membrane potential of a neuron are interpreted as a modulation of its
firing threshold ϑ (see Figure 2). We write the threshold as

ϑ(ϕ) := ϑ0 − ϑ1 cos ϕ (3.1)

for ϑ0 > ϑ1 > 0 where ϑ0 is the mean threshold and ϑ1 is the amplitude of
the threshold oscillation. The phase ϕ = ω t equals time t multiplied by the
circular frequency ω = 2π/Tθ with the oscillation period Tθ .

The simulated input from a synapse to the model neuron is assumed to
evoke EPSPs that have a uniform shape but a variable amplitude A. In this
section we assume that EPSPs always start from zero resting potential. This
view is equivalent to considering the influence of a single EPSP only, that
is, EPSPs do not sum up; serial correlations are discussed in section 5. Here,
we define the EPSPs as

ε(ϕ) := AN (τm, τc)
[

exp
(

− ϕ

ωτm

)
− exp

(
− ϕ

ωτc

)]

(ϕ), (3.2)

where the amplitude A is to be changed through synaptic facilitation.
The shape of ε is determined by the current time constant τc > 0 and
the membrane time constant τm > τc , which are interpreted as time con-
stants of rise and decay of the EPSP, respectively. The factor N (τm, τc) =
[(τc/τm)τc/(τm−τc ) − (τc/τm)τm/(τm−τc )]−1 normalizes the EPSP such that its max-
imum value equals A. The function 
(x) denotes the Heaviside step func-
tion, 
(x) = 1 for x ≥ 0, and 
(x) = 0 otherwise.
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An EPSP ε that is elicited at some input phase ψ evokes an output spike
in the model neuron at the firing phase � at which the firing threshold
ϑ > 0 is reached for the first time. In other words, the condition

ϑ(�) = ε(� − ψ) (3.3)

must be satisfied. For generic choices of ε, equation 3.3 is transcendental
and thus can only be solved numerically. A current time constant τc = 0,
however, permits analytical solutions to equation 3.3, which we provide in
the next section. Numerical solutions for τc > 0 are outlined in section 3.3.

3.2 Solutions to the Threshold Model for τ c = 0. To analytically
solve phase precession within the framework of the threshold model in
equation 3.3, we set the current time constant τc to zero. The EPSP
in equation 3.2 then takes the shape of a decaying exponential ε(ϕ) =
A exp[−ϕ/(ωτm)]
(ϕ) with amplitude A. From Figure 2 we can guess that
especially the input phase ψ is a crucial parameter. In what follows, we
specify three characteristic input phases ψmin, ψd−c, and ψmax that separate
three regions of qualitatively different behavior of phase precession (see
Figure 3).

3.2.1 Minimum Input Phase ψmin. For input phases ψ below some mini-
mum input phase ψmin, phase precession cannot be observed. Let us there-
fore consider an EPSP that is elicited at the earliest possible input phase
ψ = 0◦, that is, at the minimum of the oscillating firing threshold. Accord-
ing to equation 3.3, EPSPs that are large enough to reach the threshold
always do so at an output phase � = 0◦, whatever A. Figure 3A motivates
the existence of some input interval [0, ψmin], where phase precession is
impossible because EPSPs decline too rapidly ever to reach the threshold
in their decaying part. For ψ = ψmin, an EPSP that is just large enough to
reach the threshold instantaneously at � = ψ also just reaches the threshold
at a second phase � = �max > ψ . In this way, we define the maximum fir-
ing phase �max. The minimum phase ψmin cannot be given explicitly since
equation 3.3 and ε(�max) = A exp[−(�max − ψmin)/(ωτm)] only lead to the
implicit expression

exp[ψmin/(ωτm)] ϑ(ψmin) = exp[�max/(ωτm)] ϑ(�max), (3.4)

which allows numerically deriving the minimum phase ψmin, given a fixed
value of �max.

3.2.2 Maximum Input Phase ψmax. Phase precession is impossible for ψ

above ψmax. The phase ψmax is identical to the maximum output phase �max

that we just have defined as the phase where an exponentially decaying
EPSP ε reaches, but does not cross, the threshold ϑ (see Figure 3A). Formally,
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Figure 3: Phase precession for a current time constant τc = 0. Each graph
shows an oscillating firing threshold (thick solid lines), exponentially decay-
ing EPSPs (thin solid lines), phases of synaptic input (arrowheads), and the
phases at which the EPSPs reach the threshold (empty circles). Dashed lines
indicate the course of EPSPs beyond the point at which they have reached the
threshold. (A) An EPSP that is just sufficiently large to reach the threshold in
its decaying part evokes a spike at the maximum firing phase �max. All other
EPSPs that at least partly share this exponential function (dashed line) also
reach the threshold at �max. The earliest intersection between the exponential
and the threshold (left-most empty circle) defines the minimum input phase
ψmin. (B) For input phases ψ with ψmin < ψ < ψd−c, for example, ψ = ψ−, the
output firing phase � is a discontinuous function of the EPSP amplitude; see
also Figure 2C for finite τc . (C) For an input phase ψ = ψd−c, we observe the
largest range of continuous phase precession. (D) For input phases ψ with
ψd−c ≤ ψ < ψmax, for instance, ψ = ψ+, we have continuous phase precession.
Further model parameters are τm = Tθ and ρ = ϑ1/ϑ0 = 0.5.

�max is characterized by two conditions: the values and slopes of ε and ϑ

are equal. From these conditions, the maximum firing phase is derived in
appendix A as

�max = 2π − arcsin{[ρ
√

1 + (ωτm)2]−1} + arctan[1/(ωτm)], (3.5)

with ρ := ϑ1/ϑ0 > 1/
√

1 + (ωτm)2. We note that �max is independent of the
input phase ψ because EPSPs that just reach the threshold in their decaying
part share the same exponential function, regardless of the input phase (see
Figure 3A). Phase precession is therefore impossible for EPSPs initiated at
phases ψ ≥ �max. Thus, �max is identical to the maximum input phase ψmax

that allows phase precession, that is, ψmax ≡ �max.

3.2.3 Switch from Discontinuous to Continuous Phase Precession at Phase
ψd−c. The interval ]ψmin, ψmax[ of input phases ψ that allow phase preces-
sion is divided into two intervals in which precession is either discontin-
uous or continuous. The two intervals are separated by the characteristic
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Figure 4: Continuous and discontinuous phase precession for three different
modulation depths ρ and for τc = 0. If the input phase ψ is between ψd−c

(dashed line) and ψmax (solid line), the output phase � is a continuous func-
tion of the EPSP amplitude A (darker gray). Phase precession is discontinuous
(lighter gray) for ψ between ψmin (dot-dashed line) and ψd−c (dashed line).
The width of the two phase intervals increases with increasing both τm/Tθ and
ρ := ϑ1/ϑ0. Outside the gray-shaded regions, phase precession is impossible.
The minimum membrane time constant τmin

m from equation 3.7, below which
the three characteristic phases do not exist, is marked by a solid vertical line.
There we have ψmax = ψd−c = ψmin = 3/2 π + arctan[1/(ωτmin

m )].

phase ψd−c. Figure 3B indicates that for ψmin < ψ < ψd−c, the output phase
� is a discontinuous function of the EPSP amplitude A. In contrast, for
ψd−c ≤ ψ < ψmax, the output phase � is a continuous function of A (see
Figures 3C and 3D). The phase ψd−c is determined similarly to ψmax; we
require that the values as well as the slopes of ε and ϑ be equal but that they
are differently curved (see Figure 3C). In appendix A we show that these
conditions lead to

ψd−c = π + arcsin{[ρ
√

1 + (ωτm)2]−1} + arctan[1/(ωτm)] (3.6)

for ρ
√

1 + (ωτm)2 ≥ 1.
In summary, the case τc = 0 demonstrates that phase precession crucially

depends on the input phase ψ . Phase precession is impossible for 0 ≤ ψ ≤
ψmin and ψmax ≤ ψ < 2π . Phase precession is discontinuous for ψmin < ψ <

ψd−c and continuous for ψd−c ≤ ψ < ψmax. In Figure 4 we have plotted
ψmin, ψmax ≡ �max, and ψd−c as a function of τm for three values of the
modulation depth ρ. The gray areas depict regions of the parameter space
where phase precession can occur.

3.2.4 Minimum Values for τm and ρ Are Required for Phase Precession. Let us
assume, for the moment, that the modulation depth ρ and the period Tθ are
fixed. Figure 4 shows that the membrane time constant τm needs to exceed
some minimal value τmin

m to allow phase precession. For τm > τmin
m , we

obtain a nonvanishing interval [ψmin, ψmax] of feasible input phases ψ . To
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calculate τmin
m , we recall that phase precession needs dissimilar values for

ψmin, ψd−c, and ψmax, which is guaranteed if the argument of the arcsin in
equations 3.5 and 3.6 is within the open interval ]0, 1[; that is, we require
ρ

√
1 + (ωτm)2 > 1. From this condition, we find that τm needs to exceed

τmin
m :=

√
1 − ρ2

ω ρ
. (3.7)

In other words, every positive ρ < 1 is associated with a lower bound τmin
m

of the membrane time constant τm; only for τm > τmin
m is phase precession

possible. As a corollary, we find that given τm and ρ, the period Tθ needs
to be below Tmax

θ := 2π τm ρ/
√

1 − ρ2. In a similar way we find that the
modulation depth ρ needs to exceed the value

ρmin := 1√
1 + ω2τ 2

m

. (3.8)

3.2.5 Iso-ψ Lines and Phase Offset � − ψ . Let us connect the analytical
results obtained so far to Figure 2C where the firing phase � was plotted
as a function of the EPSP amplitude A for a constant input phase ψ . Such a
graph is called an iso-ψ line in the following.

Figure 5A shows numerically determined iso-ψ lines for five different
values of ψ , all for τc = 0. As expected, the three examples with input
phases ψ between ψmin and ψmax exhibit a maximum firing phase �max

that is close to 360 degrees. The example with ψmin < ψ < ψd−c indicates
discontinuous phase precession, and the other two examples with ψd−c ≤
ψ < ψmax demonstrate continuous phase precession. Figure 5A also verifies
that the iso-ψ lines are constant for large enough amplitudes A.

A remarkable property of iso-ψ lines is that they can intersect. At the
point of intersection of two iso-ψ lines, the output phase � and the ampli-
tude A are identical, whereas the input phases ψ are different. At slightly
lower amplitudes, the EPSP that is elicited at the earlier input phase trig-
gers a spike at a later firing phase; compare, for example, the iso-ψ lines for
ψ = 270◦ and 207◦ at amplitudes A/ϑ0�1 in Figure 5A. Since for large
enough amplitudes the firing phase � is always identical to the input
phase ψ , iso-ψ lines intersect at some intermediate amplitude.

To sum up the salient features of phase precession in one graph, we
finally consider the phase offset � − ψ , which is the difference between
output and input phase. Figure 5B depicts � − ψ (in gray values) as a
function of both the EPSP amplitude A and the input phase ψ for τc = 0.
We find regions with no or only little phase precession, a transition from no
phase precession to discontinuous phase precession at ψmin, and a transition
from continuous to discontinuous phase precession at ψd−c.



Phase Precession Through Synaptic Facilitation 1297

Figure 5: Iso-ψ lines and phase offset � − ψ in the threshold model for τc = 0.
(A) Iso-ψ lines, that is, the firing phase � as a function of the EPSP amplitude A
(in units of the mean threshold ϑ0). The inset contains an example EPSP with in-
stantaneous rise and exponential decay. We indicate the minimum input phase
ψmin below which phase precession is impossible (see equation 3.4), the latest
possible firing phase �max (see equation 3.5), and the minimum input phase
for continuous phase precession ψd−c (see equation 3.6). (B) Phase offset � − ψ

(gray coded) as a function of the input phase ψ and the EPSP amplitude A.
For each input phase ψ , there exists a minimum amplitude below which the
firing threshold ϑ is not reached (lower white region) and a maximum am-
plitude above which we always find � = ψ (upper lightest gray region); for
intermediate amplitudes, gray values and contour lines every 22.5 degrees in-
dicate the value of the phase offset � − ψ . Phase precession occurs only for
ψmin < ψ < ψmax. The phase offset � − ψ as a function of the amplitude A has
a discontinuity (“jump”) for input phases ψmin < ψ < ψd−c, whereas it is con-
tinuous for ψd−c ≤ ψ < ψmax. The maximum phase offset amounts to about
251 degrees and is reached at ψ = ψmin. Arrowheads mark the input phases of
the iso-ψ lines in graph A. Other parameters are τm = Tθ and ϑ1 = 0.5 ϑ0.
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To summarize, the special case τc = 0 of the oscillating-threshold model
allowed us to derive conditions on the model parameters ψ , τm, ρ, and
Tθ . These conditions considerably restrict the range of parameters at which
we can observe phase precession through synaptic facilitation. Below we
confirm that these restrictions can be transferred, at least qualitatively, to
more complex models. As a next step, let us consider the case τc > 0.

3.3 Numerical Solutions to the Threshold Model for τ c > 0. Important
features of phase precession for a current time constant τc = 0 are preserved
for τc > 0. To demonstrate the common features, we discuss numerical
solutions of the threshold condition in equation 3.3 for τc > 0 and again
leave membrane time constant τm = Tθ and the threshold parameters ϑ0 = 1
and ϑ1 = 0.5 ϑ0 fixed.

For τc = 0.075 Tθ , Figure 6A contains iso-ψ lines for the same five input
phases ψ that were used in Figure 5A for τc = 0. In both cases, iso-ψ lines
exhibit a variety of different shapes with a strong dependence on ψ ; we
show an example with little phase precession for early ψ and examples
with discontinuous as well as continuous phase precession. For the four
largest values of ψ , the latest firing phase �max is close to 360 degrees, and
the earliest firing phase is close to the input phase ψ . Finally, iso-ψ lines can
intersect.

The cases τc = 0 in Figure 5 and τc = 0.075 Tθ in Figure 6, however, also
exhibit marked differences. For τc > 0, phase precession is always at least
partly mediated by the rising part of the EPSP. This effect can be verified
for large enough EPSP amplitudes A; with increasing A, the firing phase �

slowly converges to the input phase ψ , which is reached only in the limit
A → ∞.

Increasing τc delays the peak of the EPSP, that is, shifts it to the right.
This shift broadens the range of input phases ψ that allow phase precession
and also extends the maximum range of phase precession (given by the
maximum phase offset). Moreover, increasing τc leads to a smoothing of the
iso-ψ lines, that is, an extension of the range of continuous phase precession.

The phase offset � − ψ in Figure 6B substantiates the existence of the
characteristic phase ψd−c for τc > 0, although its value can be determined
only numerically. The minimum and maximum input phases ψmin and
ψmax, however, do not exist for τc > 0. We can find an analog to the min-
imum input phase if we redefine ψmin to be the input phase where con-
tinuous phase precession switches to discontinuous phase precession (see
appendix B). Then, for generic choices of ε, the phase offset � − ψ for
0 < τc 	 Tθ is homeomorphic to the case τc = 0. More precisely, there ex-
ists a continuous invertible mapping between the surfaces of phase offsets
�(ψ, A) − ψ from Figures 5B and 6B such that the “minimum” input phases
ψmin and the input phases ψd−c are mapped onto each other. The topolog-
ically invariant, and also most interesting, features of phase precession in
our model can thus be understood in the case τc = 0.
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Figure 6: Iso-ψ lines and phase offset � − ψ for τc = 0.075 Tθ . (A) Iso-ψ lines
for the same input phases ψ as in Figure 5. The inset depicts an example EPSP.
For ψ = 25◦, the small amount of phase precession between the latest firing
phase of about 50 degrees and the earliest firing phase of about ψ = 25◦ is
entirely mediated by the rising part of the EPSP. The iso-ψ line for ψ = 90◦

shows discontinuous phase precession, whereas in Figure 5A for τc = 0, the
same input phase led to only a constant firing phase � = ψ . For ψ = 110◦, we
see continuous phase precession, whereas for the same ψ but τc = 0, we had
discontinuous phase precession. (B) Phase offset � − ψ (gray coded). Regions
of continuous phase precession as well as discontinuities can be identified. The
maximum phase offset of 317 degrees is reached at ψ ≈ 30◦. Input phases ψ

that generate the iso-ψ lines in graph A are marked by arrowheads. Further
parameters are τm = Tθ and ϑ1 = 0.5 ϑ0.
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To conclude, we have outlined how the main features of phase preces-
sion depend on the parameters of a model in which progressively facilitat-
ing EPSPs intersect a sinusoidally oscillating firing threshold. Considering
exponentially decaying EPSPs with a current time constant τc = 0 enabled a
quantitative analysis. Results for τc = 0 also hold in the case of small τc . For
τc = 0, the output phase � is a decreasing function of the EPSP amplitude
A if the membrane time constant τm and the modulation depth ρ of the
firing threshold exceed some minimum values. We also saw that the output
phase � is always between the input phase ψ and some maximum firing
phase �max, which was typically close to 360 degrees. Phase precession
thus depends critically on the input phase ψ . Varying ψ revealed a tran-
sition from continuous to discontinuous phase precession at the minimal
input phase ψmin and a transition from discontinuous back to continuous
phase precession at the phase ψd−c. To display further properties of phase
precession, we now consider the influence of noise.

4 Impact of Noise on Phase Precession

To account for features of in vivo phase precession, we evaluate the influ-
ence of different sources of noise in the threshold model as defined in the
previous section. In particular, we model noise in the input phase ψ , noise
in the time course of the intracellular oscillation ϑ , and noise in the mean
firing threshold ϑ0.

4.1 Noise in the Input Phase ψ . Let us return to the specific example of
phase precession in the CA3 region of the hippocampus. The activity of DG
granule cells has been demonstrated to be theta-modulated, that is, spikes
are phase-locked to the theta oscillations with some jitter (Ylinen et al., 1995;
Skaggs et al., 1996). DG granule cells provide direct input to CA3 pyramidal
cells via the mf synapses. Hence, the jitter of the firing phases of DG granule
cells reflects the phase jitter of the input phase ψ of mf EPSPs of our model.

Formally, we write the input phase jitter as ψ → ψ + ηψ , where ηψ is
a zero mean random variable, for instance, gaussian or uniform, with
standard deviation σψ . The resulting distribution of output phases � of
the model neuron can then be visualized through a combination of noise-
free iso-ψ lines. Figure 7A highlights the region of output phases that can
be reached by input phases ψ that vary between 90◦ − 36◦ and 90◦ + 36◦ (see
also Figure 2C). Output spikes evoked by the lowest EPSP amplitudes A,
for example A/ϑ0 = 0.8, occur close to 360 degrees with a relatively weak
dependence on the input phase; the distribution of output phases � is
narrower than the one of input phases ψ . For large EPSP amplitudes, for
instance, A > 1.7 ϑ0 (see Figure 7A), the output phase � converges to the in-
put phase, and consequently, the jitter of the output approaches the jitter σψ

of the input. For intermediate Anear the phase discontinuity at A/ϑ0 = 1.5,
we observe a complex shape of the distribution of �, which resembles
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Figure 7: Variability of the firing phase for three different sources of noise. The
three graphs show identical iso-ψ lines for ψ = 90◦ (solid lines), but different
regions (gray-shaded) where output spikes are possible given a specific type of
noise. (A) Noise in the input phase ψ with jitter σψ = 36◦. The jitter in the output
phase � is largest for large amplitudes A (identical to Figure 2C). (B) Noise in
the time course of the firing threshold ϑ . The threshold jitter η is uniformly
distributed in the interval [−0.05 ϑ0, 0.05 ϑ0] and updated at the sampling rate
100/Tθ . This noise reduces the phase discontinuity, and output phases below
360 degrees become possible. The dependence of the output jitter on A is weak.
(C) Noise in the mean firing threshold ϑ0. The threshold jitter ηϑ is uniformly
distributed in the interval [−0.125 ϑ0, 0.125 ϑ0] and updated once for an input
spike. The distribution of output phases is expanded horizontally in the direc-
tion of the amplitude A. Other parameters in the three graphs are τc = 0.075 Tθ ,
τm = Tθ , and ϑ1 = 0.5 ϑ0.

in vivo data (Skaggs et al., 1996; Yamaguchi et al., 2002; Mehta et al., 2002);
see also Figure 1B.

4.2 Noise in the Time Course of the Firing Threshold ϑ . Spiking activ-
ity of neurons is influenced by fluctuations in the intracellular oscillations.
Within the framework of the threshold model, a noisy oscillation is realized
through a noisy firing threshold,

ϑ(ϕ) = ϑ0 + ϑ1 cos(ϕ) + η(ϕ), (4.1)

where η is a random variable with zero mean and standard deviation
ση. In Figure 7B, the variable η is uniformly distributed in the interval
[−0.05 ϑ0, 0.05 ϑ0] and updated at the sampling rate of 100/Tθ , which cor-
responds to 1 kHz for Tθ = 100 ms. We chose these parameters to obtain a
jitter in the output phase � that is similar to the one obtained in Figure 7A
for small A. For large A, the situation is different; noisy oscillations then
have relatively little impact on the output jitter.

4.3 Noise in the Mean Firing Threshold ϑ0. A fluctuating mean thresh-
old ϑ0 of firing is another possibility to introduce noise into the model.
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Figure 8: Combination of different sources of noise and the influence of the in-
put phase on phase precession. Gaussian noise is concurrently added to the in-
put phase (σψ = 36◦), the theta oscillation (ση = 0.025 ϑ0, sampling rate 100/Tθ ),
and the mean firing threshold (σϑ = 0.125 ϑ0) of the threshold model. Gray
lines indicate the circular mean of output phase of spikes (dots). (A) Bimodal
phase precession is observed for an input phase ψ = 90◦. (B) Curved (nonlinear)
phase precession occurs for ψ = 110◦. (C) Linear phase precession is found for
ψ = 140◦. Further parameters of the threshold model are as in Figures 6 and 7:
τc = 0.075 Tθ , τm = Tθ , and ϑ1 = 0.5 ϑ0.

Formally, we add a zero mean random variable ηϑ with standard deviation
σϑ to the threshold,

ϑ(ϕ) = ϑ0 + ϑ1 cos(ϕ) + ηϑ . (4.2)

For every evoked EPSP, the mean firing threshold assumes a different ran-
dom value. In fact, equation 4.2 is a special case of equation 4.1 describing
a slow variation of the mean firing threshold. In Figure 7C, ηϑ is uniformly
distributed in the interval [−0.125 ϑ0, 0.125 ϑ0]; such a noisy threshold in-
troduces mainly a horizontal expansion of the phase distribution.

4.4 Influence of the Mean Input Phase on the Impact of Noise. So
far we have considered effects of only a single source of noise at a time.
Figure 8 shows spikes of the model neuron when the three different noise
sources are combined. To demonstrate the influence of the mean input phase
ψ on phase precession in the presence of noise, we discuss the examples
ψ = 90◦, ψ = 110◦, and ψ = 140◦. For these three input phases, the firing
phases � are distributed over almost the whole theta cycle, whereas the
mean firing phase changes about 180 degrees. Note that the change in the
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mean firing phase is also described by the phase offset � − ψ in section 3;
its maximum is the range of phase precession, and noise extends the range
of spike phases. The amount of this extension depends on the amplitude A.

In Figure 8, the output phase distribution expands vertically with in-
creasing amplitude A. Bimodality of the spike phase distribution, that is,
two spike clusters, can be seen for ψ = 90◦. A less bimodal spike distribu-
tion with a nonlinear, or curved, relation between phase and amplitude is
obtained for ψ = 110◦. Finally, for ψ = 140◦, we find almost linear phase
precession. Such variable shapes of phase-place distributions have also
been observed in vivo; see, for example, Figure 1B and O’Keefe and Recce
(1993), Skaggs et al. (1996), Yamaguchi et al. (2002), Mehta et al. (2002),
and Huxter et al. (2003).

In conclusion, our model indicates that the gross shape of phase distri-
butions is sensitive to the preferred phase of the input. Furthermore, phase
distributions are blurred by noise in a characteristic way. We note that a
variable shape of the EPSP and other cellular heterogeneities as well as
fluctuations in the oscillation frequency or amplitude can also contribute to
the shape of phase-amplitude distributions. Systematically evaluating the
latter dependencies is, however, beyond the scope of this letter. Instead, we
are now continuing by testing the robustness of our model; therefore, we
introduce a more involved description of a neuron, and we also connect the
amplitude of EPSPs to the spatial position of a simulated animal.

5 Conductance-Based Neurons and Place Fields

The threshold model of phase precession, as discussed in the previous sec-
tions, can explain features of experimental data in the CA3 region of the
hippocampus. The threshold model has, however, two restrictions. First, it
cannot account for serial correlations between CA3 spikes. Serial correla-
tions perturb the initial condition of postsynaptic integration, which might
destroy or at least deteriorate precession of the firing phase �. Second, the
input of the model does not resemble in vivo–like activity patterns of den-
tate gyrus granule cells during the traversal of place fields. To verify that
above restrictions are not crucial for our model of phase precession, we
utilize a conductance-based leaky integrate-and-fire neuron in section 5.1,
and introduce a Poisson model of place cell-like firing of DG granule cells
in section 5.2.

5.1 Phase Precession Despite Serial Correlations. The subthreshold
dynamics of the membrane voltage V of a leaky integrator is given by the
differential equation

dV
dt

= − V
τm

+ gmf(t)(Emf − V) + gθ (t)(Eθ − V) + IDC, (5.1)
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which introduces the reversal potentials Emf and Eθ as well as the synaptic
conductances gmf(t) and gθ (t) of the excitatory mf input and inhibitory input,
respectively (Troyer & Miller, 1997). The constant current IDC determines the
resting potential. An output spike is emitted when the membrane potential
V reaches the firing threshold ϑ . Immediately after a spike, the membrane
potential is set to a reset potential Vreset, which is chosen to equal the mean
of the membrane potential oscillation.

The inhibitory conductance gθ is assumed to be the origin of the theta
oscillations of the membrane potential. This conductance is therefore
modeled as

gθ (t) = γ0 + γ1 cos(ω t)

with parameters γ0 and γ1, which correspond to the parameters ϑ0 and
ϑ1 of the threshold model in equation 3.1, respectively. Similarly, the
conductance gmf(t) replaces the mf EPSP ε(ϕ) in equation 3.2. Assuming
Tθ -periodic granule cell firing at an input phase ψ , we describe the time
course of gmf by the differential equation

dgmf

dt
= − gmf

τc
+

F∑
f =1

γ
( f )
mf δ(t − ψ/ω − f Tθ ),

where γ
( f )
mf is the amplitude of the f th mf input and F is the number

of theta cycles within the place field. The symbol δ denotes the Dirac
distribution. Hence, the excitatory input to the integrate-and-fire neuron
consists of one spike per cycle. Furthermore, the conductance gmf is set to
zero immediately after an output spike of the neuron. We therefore avoid
multiple spikes of the model neuron in response to a single input spike.
This restriction allows a better comparison with the threshold model.

Facilitating mf input is modeled through a linear increase � of the am-
plitude for each input spike in addition to the baseline amplitude γ . The
f th amplitude then is γ

( f )
mf = γ + f �. Decay of the facilitation is neglected

since mf facilitation characteristically lasts for several seconds, that is, mf
facilitation decays on a timescale much longer than the traversal of a place
field. Depending on the number F of input spikes, γ and � are to be chosen
such that phase precession occurs over the whole place field.

Simulations of the conductance-based neuron substantiate that serial
correlations between successive output spikes do not prevent phase pre-
cession. Figure 9 depicts a sample trace of a solution to equation 5.1 in the
noise-free case. The parameters γ0 and γ1 are set such that the resulting
subthreshold oscillations of the membrane potential resemble the situation
in Figure 2A if we consider synaptic integration to start at the reset potential
Vreset = 0.6 ϑ . The phase of granule cell input has been set to ψ = 110◦. In
accordance with the simple threshold model in section 3, action potentials
elicited by EPSPs that are just sufficiently large to cross the threshold are
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Figure 9: Phase precession in a conductance-based neuron. The model neuron
receives one DG input spike per cycle at phase ψ = 110◦ (bottom). The mem-
brane potential of the simulated CA3 neuron and the evoked output spikes are
depicted in the middle and top panels, respectively. The firing phase � pre-
cesses as the synaptic input facilitates. Here, phase 360 degrees corresponds to
the peaks of the membrane potential oscillation without facilitating input in
the first four theta cycles. Other parameters are chosen such that the scenario is
similar to Figures 2 and 6. In detail, we have τc = 0.075 Tθ , τm = Tθ , Emf = 2ϑ ,
γ = 0.027, � = 0.003, γ0 = γ1 = 0.014, Eθ = −1/3 ϑ , IDC = 1.85 ϑ/τm.

located at the peaks of the intracellular subthreshold oscillations. These
peaks correspond to minimum inhibition and are defined as 360 degrees.
For strongly facilitated mf EPSPs, firing occurs with little offset between
input phase ψ and firing phase �. In the example with ψ = 110◦, spikes are
evoked in the troughs of the membrane potential oscillation.

Let us now investigate the influence of noise on phase precession in a
conductance-based neuron. In Figure 10, we added three sources of noise, as
described in section 4. Results resemble the ones shown in Figure 8: spikes
are distributed over the whole theta cycle, and the mean firing phase de-
creases over more than 180 degrees. Again, depending on the input phase ψ ,
we find bimodal (ψ = 90◦), curved (ψ = 110◦), or more linear (ψ = 140◦)
spike phase distributions. In single trials, however, phase precession might
be hard to detect (see Figure 10A).

In this section, we established that phase precession is robust not only to
temporal summation of inputs but also to serial correlations of spiking ac-
tivity in the model neuron. Stimulating a conductance-based integrate-and-
fire neuron with periodic input spikes and introducing noise, we obtained
results that are similar to the threshold model in the previous sections. The
stimuli applied so far, however, do not resemble granule cell activity during
the traverse of a place field. Furthermore, the relation between firing phase
and the spatial location of a simulated rat remains unspecified. Both issues
are addressed in the next section.
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Figure 10: Phase precession in a noisy conductance-based neuron. (A) Response
of the neuron to noisy DG input (ψ = 110◦, σψ = 36◦), a noisy oscillating cur-
rent conductance (ση = 0.01, sampling rate 1 kHz), and a random threshold
(σϑ = 0.02), that is changed after each input spike. The range of assumed thresh-
olds is depicted by the horizontal gray bar covering ±3σϑ . In all cases, noise is
gaussian. (B–D) Phase distributions for 40 repetitions of a noisy stimulus as in
A. (B) The mean input phase ψ = 90◦ leads to a bimodal distribution of phases.
(C) For ψ = 110◦, we obtain curved phase precession. (D) At ψ = 140◦, the phase
change is almost linear; see also Figure 1B. Parameters are as in Figure 9. Noise
in the intracellular theta oscillation is implemented as a noisy conductance, and
thus noise is low-pass-filtered by the leaky integrator. Thus, the power of noise
in the membrane potential is lower than that in the current or conductance.
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5.2 Phase Precession and Simulated Place Fields. Up to now, the spa-
tial variable in phase-place graphs as in Figure 1B has been associated with
the amplitude A of the mf EPSP or, equivalently, the time since the onset of
periodic DG input. To juxtapose our model results with in vivo data, it is
necessary to relate the EPSP amplitude A to the place x of a simulated rat.
We therefore define the shape of a place field G(x) of a DG granule cell to
be gaussian with width σG and amplitude one and periodically modulate
the cell’s activity to emulate the theta rhythm. Supposing that the running
speed vrun of the simulated rat is constant, we generate granule cell spikes
via an inhomogeneous Poisson process with density

λ(t) = λ0 G(vrun t)
+∞∑

n=−∞
exp

[ − (t − ψ/ω − n Tθ )2/
(
2σ 2

J

)]
. (5.2)

The temporal jitter σJ accounts for noise in the input phase ψ , as introduced
earlier. We consider only the first input spike within one cycle; additional
spikes generated by the process are neglected. The rate constant λ0 is then
chosen such that the mean number of spikes in a place field traversal is
about 10. The mf facilitation γmf again linearly increases with the number
f of granule cell spikes in a burst, that is, γ ( f )

mf = γ + f �. Using input spike
trains generated in this way (ψ = 110◦ ± 36◦), the distribution of firing
phases � in Figure 11A has a similar shape as the ones in the previous
sections (cf. Figures 8 and 10).

In contrast to some phase distributions obtained in vivo, the total phase
range of Figure 11A does not cover a whole theta cycle. This discrepancy can
be resolved by including burst firing of CA3 pyramidal cells. In Figure 11B,
CA3 bursts of up to three spikes in response to a mf input are generated as
follows: if the leaky integrator’s subthreshold membrane potential hits the
firing threshold and, hence, the neuron fires a spike, we randomly assign
an intraburst interval δt ≥ 0 via a Poisson density

λγmf (δt) = b(γmf) exp[−b(γmf) δt] (5.3)

that depends on the amplitude γmf of synaptic facilitation. For the simu-
lation depicted in Figure 11B, we chose b(γmf) = 2 Hz [(γmf − �)/γ ]5, so
that b(γmf) = 2 Hz on the first DG input ( f = 1). For a given randomly
drawn intraburst interval δt, we use as an additional constraint that a burst
is inserted into the CA3 firing pattern only if δt is smaller than a quarter
of the theta period Tθ . The second spike then occurs δt after the primary
spike. Moreover, if δt has been assigned a value smaller than a tenth of Tθ ,
the primary spike is followed by another two spikes separated by 0.1 Tθ .
The assumed dependence of bust firing on the state of facilitation yields a
more frequent occurrence of CA3 bursts toward the end of the place field
and, hence, for early phases.
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Figure 11: Phase precession in simulated place fields. The input to the
conductance-based model neuron is an inhomogeneous Poisson spike train that
resembles granule cell activity during the traversal of a symmetric place field.
The upper panels present phase distributions for 100 simulated runs of the rat.
The bottom panels depict the number of spikes as a function of position, that is,
the place field of the simulated CA3 pyramidal cell. The input phase ψ = 110◦

is fixed. (A) The phase-place distribution is bimodal, as in Figures 10B and 10C.
The symmetric shape of the place field of the input is preserved in the histogram
of the output spikes. (B) Burst firing in CA3 pyramidal neurons yields curved
phase-place distributions covering a phase range of 360 degrees. Furthermore,
the place field of the output spikes is asymmetric. In Aand B, the initial phase of
the theta oscillation in each traversal was chosen randomly, simulating a vari-
able theta phase at place field entry. The facilitation parameters � = 0.0058 and
γ = 0.0525 were increased compared to Figure 9 because fewer input spikes
are available. The temporal jitter σJ of the firing probability density is set to
0.1 Tθ . The noise in the theta oscillation and the threshold is gaussian with
ση = 0.01 (sampling rate 1 kHz) and σϑ = 0.02, respectively. Further parameters
are vrun = 13.3 cm/s, σG = 6.67 cm, Tθ = 100 ms, and λ0 = 40 Hz. Remaining pa-
rameters are as in Figure 9: τc = 0.075 Tθ , τm = Tθ , Emf = 2 ϑ , γ0 = γ1 = 0.014,
Eθ = −1/3 ϑ , IDC = 1.85 ϑ/τm, and Vreset = 0.6 ϑ .

To conclude, by introducing a space-dependent mf input and burst firing
in CA3 cells, we can generate asymmetric place fields with phase-place
distributions that are curved (Mehta et al., 2002) and cover a total phase
range of 360 degrees.

6 Discussion

We have provided a computational model that generates phase precession
as the result of the combination of oscillations of the membrane potential
of neurons and short-term facilitation of synapses (see Figure 2). Regarding
phase precession of pyramidal cells in the CA3 region of the hippocampus,
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the peculiar features of the mossy fiber (mf) synapse, such as its large
efficacy, huge short-term facilitation, and long time constant of decay of
facilitation, are essential in this framework.

6.1 Summary of Results and Specific Predictions. The proposed
model can account for features intrinsic to hippocampal phase precession
that are known from the experimental literature (e.g., O’Keefe & Recce,
1993; Skaggs et al., 1996; Harris et al., 2002; Mehta et al., 2002; Huxter et al.,
2003). Here we summarize the basic properties of our model, compare
them to data, and derive experimentally testable predictions.

6.1.1 Progressive Decrease of the Firing Phase. In vivo, the firing phase �

of hippocampal pyramidal cells on average decreases during place field
traversals. In the model, this phase decrease is explained by the short-
term facilitation of the mf synapse, which denotes a progressive increase
of the EPSP amplitude at the CA3 pyramidal neuron. EPSP amplitudes
do not markedly decrease within the time span of about 1 second that
is usually needed to traverse a place field because the facilitation of the
mf synapse decays with a time constant of about 10 seconds (Salin et al.,
1996; Gundlfinger et al., 2007). The activity of DG granule cells is indeed
characterized through spike bursts and long (tens of seconds) intervals of
no activity (Jung & McNaughton, 1993; Wiebe & Stäubli, 1999) in which the
facilitation of mf synapses can decay back to its baseline value and phase
precession can start anew.

Let us consider the case that a rat crosses the same place field two times
within a few seconds. The first traversal facilitates an associated mf synapse,
which leads to phase precession. Immediately before the second traversal,
this synapse is still facilitated. Our model predicts that at the beginning of
the second traversal, spikes at late firing phases near 360 degrees are largely
absent, and the range of phase precession is reduced. In general, interfering
with the properties of facilitation of the mf synapse should fundamentally
change phase precession in CA3.

6.1.2 Range of Phase Precession and Preferred Firing Phase of DG Granule
Cells. For hippocampal pyramidal cells in vivo, the mean firing phase pre-
cesses from the latest phase close to 360 degrees to a phase below 180 degrees
(Harris et al., 2002; Mehta et al., 2002; Huxter et al., 2003).1 The mean firing

1The theta phase is defined differently in different publications. O’Keefe and Recce
(1993) could not define a particular reference phase as they did not control for the exact
location of the recording electrodes. Skaggs et al. (1996) defined the theta phase 0◦ as the
maximum of the population spike activity in CA1, which they found to approximately
correlate with the peak of the field EEG at the hippocampal fissure and the trough of the
EEG in stratum pyramidale (sp). The EEG trough in CA1 sp is also taken as phase 0◦ in
Csicsvari et al. (1999), Buzsáki (2002), and Ylinen et al. (1995). Conversely, Harris et al.
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phase thus changes over a range of about 180 degrees, that is, less than 360
degrees. The phases of spikes, however, are distributed over the whole theta
cycle. In the model, firing phases � close to 360 degrees are evoked by the
smallest suprathreshold EPSPs, whereas the largest EPSPs trigger action
potentials close to the input phase ψ of DG granule cell firing, which was
90 degrees in the example shown in Figure 2. Thus, smaller input phases ψ

allow a larger range of firing phases �, which extends over a range of up
to 360◦ − ψ . This range refers, again, to the mean firing phase (gray lines
in Figure 8), not to the distribution of spike phases (dots in Figure 8). Due
to noise, the distribution of spike phases can cover 360 degrees and thus is
larger than the range of phase precession (see Figures 8 and 11).

The model also demonstrates that large ranges of phase precession imply
a discontinuity of the firing phase � as a function of the EPSP amplitude A,
and the larger the discontinuity, the smaller is the amount of continuous
phase precession (see Figures 5 and 6). Hence, there exists an input phase ψ

that is optimal in the sense that the range of phase precession is sufficiently
large and the phase discontinuity is sufficiently small or absent.

Our model therefore predicts that the preferred phase ψ of firing of DG
granule cells, which is assumed to be identical to the phase of mf input to
CA3, is between about 45 and 270 degrees (see Figures 5 and 6). The mean
firing phase of DG granule cells in vivo in behaving animals is still a matter
of debate owing to problems with spike sorting in this brain area (Jung &
McNaughton, 1993; Skaggs et al., 1996; Yamaguchi et al., 2002). On the one
hand, Ylinen et al. (1995) stated that granule cells in urethane-anesthetized
rats fire locked to theta oscillations at phases between 30 and 120 degrees.
On the other hand, Skaggs et al. (1996) reported firing phases of dentate
units to cluster around 270 degrees, with a range of spike phases of about
half a theta cycle; the precession of the mean firing phase of dentate units,
however, is much smaller. Phase precession in DG would boost facilitation-
mediated phase precession in CA3, since both contributions add up.

6.1.3 Slow Postsynaptic Integration of Pyramidal Cells. Theta oscillation pe-
riods Tθ in behaving animals are between about 80 ms and 250 ms (Buzsáki,
2002), which is long compared to generic membrane integration times of
cortical neurons. To bridge the long temporal gap between an early input
phase of DG granule cells (for example ψ = 90◦) and late firing phases
� ≈ 360◦ in CA3 pyramidal cells, we assumed a slow decay of EPSPs (see
Figure 2B), due to a membrane integration time τm that is comparable to the

(2002) and Dragoi & Buzsáki (2006) determined phases via a Hilbert transform of the CA1
sp EEG, which assigns phase 0◦ to the field potential peaks. A third convention is used
by Huxter et al. (2003), who take phase 0◦ as “the + to − zero crossings” of CA1 sp theta.
Again differently, Mehta et al. (2002) had no unique phase reference as they adjusted
phase 0◦ of each cell individually to achieve the best linear correlation between phase and
position.



Phase Precession Through Synaptic Facilitation 1311

theta period Tθ . In vitro data indeed confirm that CA pyramidal neurons can
exhibit EPSPs decaying with an extraordinary long time constant of about
100 ms (Jonas et al., 1993; Fricker & Miles, 2000; Axmacher & Miles, 2004).

Our model therefore predicts how phase precession depends on the
theta period Tθ . Given some fixed value of the membrane time constant
τm, phase precession is impossible for Tθ � τm (see Figure 4). This may be
a reason that in urethane-anesthetized animals in which the frequency of
theta oscillations is typically low (about 4 Hz; Yoder & Pang, 2005), phase
precession has not been documented.

6.1.4 Bimodality of Phase Distributions and Variability of Firing Phases. In
vivo, the distribution of firing phases as a function of the animal’s location
can be linear, nonlinear, and also bimodal (Skaggs et al., 1996; Yamaguchi
et al., 2002; see also Figure 1B). In the model, the bimodality is explained
through a discontinuity of the firing phase as a function of the EPSP ampli-
tude (see Figures 2C and 6). Nonlinear relations without a discontinuity can
be obtained for input phases ψ of DG granule cell spikes that are larger than
some phase ψd−c ≥ 180◦ (see Figures 3C and 5B) or by blurring the discon-
tinuity by noise (see Figures 8, 10, and 11). We found that with increasing
ψ , phase distributions look more and more linear.

Bimodal and nonlinear phase distributions (see Figures 1B and 11) are
related to the in vivo finding that the variability of the firing phase � is
always smallest at the entry of the place field, when the mean firing phase
is close to 360 degrees, and that the phase variability is largest immediately
before the animal leaves the place field, that is, when the mean firing phase
is below 180 degrees (Skaggs et al., 1996; Mehta et al., 2002; Yamaguchi
et al., 2002). In the framework of our model, the increase of the variability
of CA3 firing phases can be attributed to a constant jitter in the input phases
ψ and a variable transfer of this jitter to the output spikes; for the smallest
suprathreshold EPSPs with mean output phases close to 360 degrees (at the
entry of a place field), the jitter in the output phase is much smaller than
the jitter in the input phase (gray areas in Figures 2C and 7A). For large
EPSPs that occur shortly before the simulated rat leaves a place field, a jitter
in the input phase produces an at least equally large jitter of the output
phase.

6.1.5 Discrepancies Between Model and Data. A major difficulty in compar-
ing model results with in vivo data is that experimental procedures, setups,
and data analysis are diverse. Therefore, experimentally obtained phase-
place distributions and their statistical properties are different across labs.
Consequently, the phase-place distributions in Figure 11 match some experi-
ments better than others. Our model can explain bimodal (or discontinuous)
phase distributions, whereas it is difficult to produce continuous phase-
place distributions with smooth phase precession over a large fraction of
the theta cycle (O’Keefe & Recce, 1993; Mehta et al., 2002). Furthermore, our
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proposed mechanism does not directly address the observation that phase
correlates better to place than to time (Huxter et al., 2003). In the next sec-
tions, we outline these and other problems in detail, and we show how the
model could be extended to be consistent with the available data. After all,
synaptic facilitation is not necessarily the only mechanism for phase preces-
sion; other mechanisms might also play a role, and the shape of the phase-
place distributions could thus reflect a mixture of several contributions.

6.2 Further Links to the Experimental Literature. The following fea-
tures of hippocampal phase precession are in line with our model, even
though we have not covered them explicitly in analytical calculations or
numerical simulations in this letter. Below we briefly outline these features.

6.2.1 One- and Two-Dimensional Environments. In vivo, phase preces-
sion is seen not only in one-dimensional linear tracks but also in two-
dimensional open environments. In the latter, phase precession is less robust
and has a smaller range on average (Skaggs et al., 1996). In both environ-
ments, however, when an animal enters a place field, the first spikes occur
at the end of the theta cycle near 360 degrees (Skaggs et al., 1996; Harris
et al., 2002). Our model is also consistent with these observations. In two-
dimensional environments, a rat often only skirts the edge of a place field.
When only part of the place field is traversed, facilitation of mf EPSPs does
not progress as far as it would during a complete traversal of the place
field right through its center. Hence, the mf EPSP amplitude becomes less
facilitated on average, and a smaller amount of phase precession should be
detected. Nevertheless, the first spikes during a place field crossing always
occur at the end of the theta cycle.

6.2.2 Multiple Place Fields. Recently, Maurer et al. (2006a) showed that
a CA pyramidal neuron can exhibit more than one place field in a single
environment, with each field showing a corresponding pattern of phase
precession, even if the place fields of the neuron spatially overlap. This in-
dicates that one cell could participate in different cell assemblies, coding for
different locations in one environment. Assuming that several DG granule
cells with different place fields provide facilitating input to one CA3 pyra-
midal neuron, we can explain the emergence of multiple place fields with
phase precession in one CA pyramidal neuron.

6.2.3 Perturbations of the Hippocampus. Phase precession is robust to tran-
sient (up to 250 ms) inactivation of the hippocampal CA region and resetting
the phase of theta oscillations (Zugaro et al., 2005); after recovery from in-
activation, phase precession continued, and the phase of spikes in the first
theta cycle after the perturbation was more advanced than the phase of
spikes just before the perturbation. These findings are consistent with our
model in which the firing phase depends on the state of facilitation of the
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presynaptic terminal of the mf synapse. The presynapse is presumably not
affected by perturbations of the activity of neurons in the CA region.

Phase precession is not prevented by the NMDA receptor antagonist CPP,
which blocks experience-dependent expression of long-term potentiation
and, as a result, the asymmetric expansion of hippocampal place fields
during repeated route following (Mehta, Quirk, & Wilson, 2000; Ekstrom
et al., 2001). This finding is consistent with our model because plasticity at
mf synapses is independent of NMDA receptors (Nicoll & Malenka, 1995;
Nicoll & Schmitz, 2005).

6.2.4 Phase-Rate Correlations. Whether firing phase of hippocampal pyra-
midal cells is correlated with their instantaneous firing rate (Harris et al.,
2002; Mehta et al., 2002) or not (Huxter et al., 2003) is a controversial issue.
In our model, the firing phase in CA3 is determined by the amplitude of
mf EPSCs. Since large mf EPSCs may trigger even more than one spike in
a CA3 pyramidal cell, we expect a correlation between the instantaneous
firing rate and the firing phase in single place field crossings. Averaging
over several crossings should weaken this correlation. Furthermore, this
correlation should be more pronounced in CA3 than in CA1 if a CA1 cell
inherits phase precession from many CA3 cells and if the firing rate in CA1
is modulated by further excitatory as well as inhibitory inputs.

6.2.5 Nonspatial Behavior and Phase-Time Correlations. Hippocampal
phase precession in rats has also been observed during wheel running and
REM sleep (Harris et al., 2002). These findings are in line with our model
of mf-mediated phase precession, which has no explicit spatial quality. The
model thus can account for phase precession in a nonspatial context.

The shape of phase-place distributions in vivo is largely independent
of running speed (Huxter et al., 2003). Averaging over many place field
traversals at different running speeds therefore does not affect the phase-
place correlation but reduces the correlation between the phase of spikes
and the time since the animal entered the place field (Schmidt et al., 2006).
Trial-averaging thus accounts for the stronger correlation between phase
and position compared to the weaker correlation between phase and time
spent in the place field, as reported, for instance, by O’Keefe and Recce
(1993).

Because the firing rate of hippocampal pyramidal cells is roughly pro-
portional to the running speed of rats (Ekstrom et al., 2001), the number of
action potentials fired during a place field traversal is almost constant and
independent of running speed (Geisler, Robbe, Zugaro, Sirota, & Buzsáki,
2007). Similar data on the dependence of the firing rate of DG granule cells
on running speed are not available. However, if the number of action poten-
tials a DG granule cell fires during a place field traversal would be almost
constant, phase precession in the framework of our model would become
independent of running speed: the faster a rat runs through a place field,
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the faster the mf synapse facilitates and the faster the CA3 phase precesses;
for a variable running speed during place field traversals, phase is then
more strongly correlated with position than with time spent in the field in
trial-averaged data but not in single trials.

6.2.6 Phase Precession in the Hippocampal Formation and the Entorhinal
Cortex. Phase precession has mainly been described in CA3 and CA1 pyra-
midal cells, but it is less pronounced in CA1 interneurons (Maurer et al.,
2006b; Ego-Stengel & Wilson, 2007) and the dentate gyrus (Skaggs et al.,
1996; Yamaguchi et al., 2002). In both latter cases, phase precession might
be inherited from CA pyramidal neurons: for CA1 interneurons directly
from CA1 pyramidal cells and for cells in the DG by feedback from CA3
via mossy cells.

Recently, phase precession has also been reported in grid cells of layer II
in the medial entorhinal cortex (Fyhn et al., 2006). Grid cells show several
firing fields covering the environment like a grid. Fyhn et al. found a full
cycle of phase precession in each firing field, indicating that phase preces-
sion might be generated in the entorhinal cortex (EC) or at an earlier stage.
There, phase precession could be generated through interaction of short-
term facilitation and membrane potential oscillation in a similar way as we
have proposed for the mf synapse in CA3.

Could phase precession in the DG and the CA region be inherited from
the EC (McNaughton, Battaglia, Jensen, Moser, & Moser, 2006)? One objec-
tion against inheritance is the high convergence from EC to DG and CA,
that is, cells in DG and CA receive input from a large number of EC cells. To
inherit phase precession, the EC cells projecting to one postsynaptic neuron
need to show similar phase precession, which requires considerable fine-
tuning of the connectivity. Otherwise, phase precession would be severely
reduced by averaging over many cells firing at different phases. A further
argument against inheritance of phase precession from EC to CA via the
perforant path is that the corresponding synapses are located at the distal
parts of the dendritic tree of pyramidal cells. These synapses are relatively
weak and thus probably not suited to reliably transfer precise spike timing
(Jarsky, Roxin, Kath, & Spruston, 2005).

6.3 Comparison with Other Models. In this letter we explain how
phase precession can be generated in single cells, which is similar to the ap-
proaches of O’Keefe and Recce (1993), Kamondi et al. (1998), Magee (2001),
Harris et al. (2002), Mehta et al. (2002), Lengyel et al. (2003), and Huhn et al.
(2005). Some of the single cell models assume that precession arises in CA1
(Kamondi et al., 1998; Magee, 2001; Harris et al., 2002; Mehta et al., 2002).
Another class of phase precession models explicitly requires a network of
neurons. Some of these network models suggest the origin of phase pre-
cession to be in CA3 (Tsodyks et al., 1996; Wallenstein & Hasselmo, 1997;
Bose & Recce, 2001; Booth & Bose, 2001; Scarpetta & Marinaro, 2005) and
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others in the entorhinal cortex (Yamaguchi, 2003; Hasselmo & Eichenbaum,
2005). Finally, Jensen and Lisman (1996), Hasselmo et al. (2002), Koene et al.
(2003), and Lisman et al. (2005) predict phase precession to be generated
through an interplay of the entorhinal cortex and CA3.

Mechanisms used to explain the generation of phase precession include
(1) the interaction of two oscillators with slightly different frequencies
(O’Keefe & Recce, 1993; Kamondi et al., 1998; Bose & Recce, 2001; Booth &
Bose, 2001; Lengyel et al., 2003; Yamaguchi, 2003; Huhn et al., 2005), (2) the
asymmetry of place fields (Mehta et al., 2000, 2002), (3) the adaptation of
the spiking activity of pyramidal cells in response to sustained excitatory
input (Kamondi et al., 1998; Magee, 2001; Harris et al., 2002; Mehta et al.,
2002; Mehta, Quirk, & Wilson, 2000) and (4) the use of a short-term memory
buffer (Hasselmo et al., 2002; Koene et al., 2003); see, for example, Zugaro
et al. (2005), Maurer and McNaughton (2007), and Yamaguchi et al. (2007)
for a discussion of phase precession models. It is also conceivable that phase
precession is generated through an interaction of two or more mechanisms.

Mechanistic models of phase precession can also be divided into
models that explain this phenomenon as the result of (sequence) learning
(Tsodyks et al., 1996; Jensen & Lisman, 1996; Wallenstein & Hasselmo,
1997; Hasselmo et al., 2002; Koene et al., 2003; Mehta et al., 2002; Scarpetta
& Marinaro, 2005; Hasselmo & Eichenbaum, 2005; Jensen & Lisman,
2005), and models, including ours, that do not require previous (sequence)
learning (O’Keefe & Recce, 1993; Magee, 2001; Harris et al., 2002; Lengyel
et al., 2003; Yamaguchi, 2003; Huhn et al., 2005). The latter retrospective
models have the advantage that phase precession in CA1 can occur in
the first exposure to a new environment, which is in accordance with the
observations of Rosenzweig, Ekstrom, Redish, McNaughton, and Barnes
(2000), Mehta et al. (2002), and Chen and Frank (2007). An argument in
favor of retrospective models is the avoidance of a combinatorial explosion.
In other words, if phase precession is a result of a learned trajectory
in a two-dimensional environment, this phenomenon should not be
observed if the rat enters a direction-insensitive place field from a different
new direction. Learning phase precession separately for many different
trajectories, however, demands a high amount of plasticity resources.

6.4 Limitations and Outlook. Our model is mostly restricted to a single
CA3 spike per cycle. We think of it as the first spike of an intracycle burst.
Multiple firing has been included using a phenomenological model. Mech-
anistic explanations could arise from, for example, intrinsic cell properties,
granule cell bursts, or recurrent activity.

A further extension to our model could be the inclusion of a more
realistic theta fine structure since the phase of firing is sensitively mod-
ulated by the time course of the intracellular oscillations (Hopfield,
1995). The model predicts that the distribution of spike phases is specif-
ically altered by changes in the oscillation amplitude, the mean level of
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depolarization, the theta frequency, and the shape of the theta oscillation.
In particular, skewed or sawtooth-like oscillations could alter the range of
continuous phase precession. We have refrained from adding further details
to the model and instead focused on the principal mechanism of synaptic
facilitation.

How phase precession is adapted to the particular size of a place field
of a CA3 place cell is another open issue. Place cells with small place
fields exhibit rapid phase precession, whereas cells with large fields dis-
play slow phase precession such that the range of firing phases is the
same in both cases (Ekstrom et al., 2001; Dragoi & Buzsáki, 2006; Geisler
et al., 2007). Mossy fiber facilitation should therefore be strong for small
place fields where a CA3 place cell receives only few DG input spikes on
average. Conversely, for large place fields in which a CA3 place cell re-
ceives a large number of DG spikes, facilitation should be weak. Moreover,
the smallest mf EPSPs should ideally be subthreshold so that occasional
spontaneous DG spikes do not drive CA3 cells. Such an adaptation of mf
facilitation might be achieved through long-term potentiation (LTP) and
long-term depression (LTD) of the synapse (Nicoll & Malenka, 1995; Nicoll
& Schmitz, 2005; Gundlfinger et al., 2007). As expected for a mechanism
of input adaptation, induction of mf LTP and LTD occurs predominantly
presynaptically (Nicoll & Schmitz, 2005); plasticity is mainly triggered by
the activity of the DG granule cell and to a much lesser extent depends
on the activity of the CA3 pyramidal cell. To summarize, experience-
dependent variations of the size of a place field and changes in the speed
of phase precession are tightly coupled (Chen & Frank, 2007). Both phe-
nomena might therefore be based on a common mechanism that is related
to experience-dependent changes of properties of short-term facilitation
(Gundlfinger et al., 2007).

Taken together, we suggest that synaptic facilitation (e.g., at hippocam-
pal mossy fiber synapses) generates the phenomenon of phase precession,
which is a temporal spike code. Hippocampal phase precession might be
important in sequence learning (Skaggs et al., 1996; Mehta et al., 2002; Sato
& Yamaguchi, 2003; Melamed et al., 2004; Jensen & Lisman, 2005; Lengyel
et al., 2005). Our model thus provides a potential link between the physiol-
ogy of the mossy fiber synapse and behavior (Lipp, Schwegler, Heimrich, &
Driscoll, 1988). This is the more so as DG granule cells are necessary for nor-
mal spatial learning but not for place field firing in the CA (McNaughton,
Barnes, Meltzer, & Sutherland, 1989).

Appendix A: Analytical Solutions to the Threshold Model
for τ c = 0

Assuming exponentially decaying EPSPs with instantaneous rise (τc = 0),
we can analytically solve the threshold model as defined in section 3. Here
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we derive the formulas dealt with in section 3.2, which quantitatively de-
scribe phase precession.

We briefly repeat the definition of the threshold model, where EPSPs
always start from zero resting potential; that is, only isolated EPSPs are
considered. An EPSP ε that is elicited at phase ψ triggers a spike at the
phase � at which the firing threshold ϑ > 0 is reached for the first time. In
other words, the condition

ϑ(�) = ε(� − ψ) (A.1)

has to be fulfilled. The theta modulated firing threshold ϑ is defined as

ϑ(ϕ) = ϑ0 − ϑ1 cos ϕ, (A.2)

with the mean threshold ϑ0 and the amplitude ϑ1 of the threshold oscilla-
tion. We require ϑ0 > ϑ1 > 0. The theta phase ϕ = ω t is determined by the
time t and the circular frequency ω = 2π/Tθ , where Tθ is the theta period.
The shape of an exponentially decaying EPSP ε with instantaneous rise is
given by

ε(ϕ) = A exp [−ϕ/(ωτm)] 
(ϕ), (A.3)

where A is the amplitude and τm > 0 is the membrane time constant, that
is, the time constant of the decay. The function 
(x) denotes the Heaviside
step function, 
(x) = 1 for x ≥ 0, and 
(x) = 0 otherwise.

A.1 Maximum Firing Phase �max. The maximum firing phase �max

is assumed for decaying EPSPs ε that are just large enough to reach a
decreasing threshold ϑ . To calculate �max, we require that ε and ϑ touch
at a point that is characterized by two conditions. First, the values of ε

and ϑ are equal, ε(�max − ψ) = ϑ(�max). Second, the slopes of ε and ϑ

are identical, ε′(�max − ψ) = ϑ ′(�max), and negative (see also Figure 3A).
Mathematically, �max can be obtained by using equations A.2, A.3, and
ε′(�max − ψ) = ϑ ′(�max) in equation A.1, which leads to

1
ω τm

[ϑ1 cos(�max) − ϑ0] = ϑ1 sin(�max). (A.4)

Defining the theta modulation depth ρ = ϑ1/ϑ0 > 0, we can rewrite
equation A.4 as

ρ−1 = cos(�max) − ωτm sin(�max). (A.5)
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Using tan α = 1/(ωτm) we find

ρ−1 = −
√

1 + (ωτm)2 sin(�max − α). (A.6)

Equations A.4 to A.6, are subject to two further constraints. First, the cur-
vature of ϑ is larger than the one of ε since the EPSP has to reach the
threshold from below. Hence, the second derivatives obey ε(�max − ψ)′′ <

ϑ(�max)′′. Since we have 0 < ε(�max − ψ)′′ for exponentially decaying EP-
SPs, ϑ(�max)′′ = ϑ1 cos(�max) from equation A.2, and ϑ1 > 0 by definition,
we find cos �max > 0 and 0 ≤ �max < π/2 or 3/2π < �max ≤ 2π . Second,
a decaying threshold means 0 > ϑ ′(�max) = ϑ1 sin(�max). The two con-
straints therefore imply that �max ∈ ]3/2 π, 2π]. Taking the appropriate
branch of the inverse sine in equation A.6, we find the maximum firing
phase to be

�max = 2π − arcsin{[ρ
√

1 + (ωτm)2]−1} + arctan[1/(ωτm)] (A.7)

for ρ
√

1 + (ωτm)2 ≥ 1. Equation A.7 equals equation 3.5 in section 3.2.2.

A.2 Switch from Discontinuous to Continuous Phase Precession at
Phase ψd−c. The phase ψd−c separates the regions of discontinuous and
continuous phase precession. Similar to the previous paragraph, the phase
ψd−c is determined by two conditions: first, ε(ψd−c − ψ) = ϑ(ψd−c), and
second, ε′(ψd−c − ψ) = ϑ ′(ψd−c). In analogy to equation A.4, we find

1
ω τm

[ϑ1 cos(ψd−c) − ϑ0] = ϑ1 sin(ψd−c). (A.8)

In contrast to the previous paragraph, however, the curvatures of ϑ and ε

need to have different signs (see Figure 3C). We still seek values of ψd−c in
the decaying part of the threshold. The constraints thus imply that ψd−c ∈
]π, 3/2 π[. Taking the appropriate branch of the inverse sine in equation A.8,
we arrive at

ψd−c = π + arcsin{[ρ
√

1 + (ωτm)2]−1} + arctan[1/(ωτm)] (A.9)

for ρ
√

1 + (ωτm)2 ≥ 1. Equation A.9 equals equation 3.6 in section 3.2.3.

Appendix B: Singularities of the Threshold Model for τ c > 0

The results derived in appendix A can be generalized to EPSPs ε(ϕ − ψ) =
Ak(ϕ) with arbitrary shape k ≥ 0 and constant input phase ψ . One therefore
defines the firing phase � through the implicit equation

G(�, A) = Ak(�) − ϑ(�) ≡ 0, (B.1)
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in which ϑ is the theta-modulated voltage threshold from equation A.2.
If the phase � smoothly precesses, �(A) is differentiable such that
G(�(A), A) ≡ 0. Differentiation then yields

∂G
∂�

d
dA

� = −∂G
∂ A

= −k(�) < 0,

where the last inequality is due to k(�) > 0 for a positive firing threshold
ϑ(�) > 0. Consequently, �(A) is singular at �s if and only if

0 = ∂G
∂�

∣∣∣∣
�=�s

= Ak ′(�s) − ϑ1 sin(�s). (B.2)

Combining equations B.1 and B.2 with ρ = ϑ1/ϑ0 then leads to

ρ−1 = cos(�s) + k(�s)
k ′(�s)

sin(�s), (B.3)

which is reminiscent of equations A.5 and A.8 that determine the character-
istic phases �max and ψd−c, respectively, for exponentially decaying EPSPs.
In contrast, equation B.3 cannot be solved explicitly for arbitrary k, and
the singular phases �s have to be determined numerically. We consider
an EPSP shape k as generic if equation B.3 provides not more than two
singular phases, that is, a maximum firing phase and at most one further
discontinuity.
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