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Abstract

We consider asymptotic theory for the maximum likelihood esti-
mator in the generalized linear model with an unknown breakpoint.
A proof for the asymptotic normality is given. The methods are
based on the work of Huber (1967). The main problem is the non—
differentiability of the likelihood and the score function, which requires
non-standard methods. An example from epidemiology is presented,
where confidence intervals for the parameters are calculated with the
asymptotic results.

Keywords: Asymptotic Normality, Breakpoint, Mazimum Likelihood,
Non-differentiable Score Function, Segmented Regression.

1 Introduction

In segmented regression models the domain of the regressor X is divided in
two or more intervals, where the regression function has a different form or
different parameters. The endpoints of these intervals are called changepoints
or breakpoints (Seber and Wild, 1989). In this paper, we consider generalized
linear models with two segments, i.e. one breakpoint. We further assume that
the regression function is continuous and that only the slope parameter differs
in the two segments. The regression equation can be written as

EY|X =) =Gla+ bi(z —7) + falz = 7)4), (1)
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where ty :=max(0,t),t_ := min(0, ).

Here, G' denotes the link function, e.g. logistic, identity etc. A major task
with respect to such models concerns parameter estimation if the breakpoint
T is treated as an unknown parameter. Then standard asymptotic theory is
not applicable, because the regression function is not differentiable in X = 7.
Feder (1975) has shown asymptotic normality for the least square estimator
in this model with continuous response Y. We address the more general case
of maximum likelihood in generalized linear models. An important special
case is the logistic regression, which has many applications in toxicology and
epidemiology, see Ulm (1991), Kiichenhoff and Carroll (1997).

We give a proof for the asymptotic normality of the maximum likelihood
estimator (MLE) for the i.i.d. case. We use methods which differ from those
used by Feder and which can be applied in the much more general con-
text of estimating equations. The outline of the paper is as follows: In the
second section, the model is introduced and the consistency of the MLE is
pointed out. In the third section, the asymptotic normality of this estimator
is shown. In the fourth section, the derived results are applied to a study
from occupational epidemiology.

2 Model and assumptions

Let (Y;, X;),i = 1,...,n, be an independent sample from the generalized
linear segmented regression model, which is given by the conditional expec-
tation of Y| X and the corresponding conditional density from an exponential
family, see e.g. Fahrmeir and Tutz (1994),

EY|X =2) = G(ao+ Pro(x—T70)—+ Pao(x—70)+)s (2)

fl,e) = exp{w‘gﬂw(y,f)}. 3)

Here, £ is the nuisance—parameter and b'(J) = E(Y|X = z). Further we
assume that G is the natural link function yielding

¥ = o+ Sro(a— 7o) =+ Pao(@—T0)+-

We want to estimate the parameter vector 8y = (v, 510, 20, 7o), Wwhere the



MLE is defined by

~

b, = 0= arg max > Gy, at fi(2i-7) + Bolai-1)1,€). (4)

=1

G denotes the log-likelihood function. We further define the score function
by

SV, X,0) = (Y = Glot+ fi(X-7)-+ Ba(X-7)4)) - (5)
1
(X—7)_
(X-7)4
7ﬂII{X5T}7ﬂ2I{X>T}
Note that the log-likelihood is not differentiable in 7 = X, so the score

function is the gradient with respect to # only for X # 7. Also the MLE is
not necessarily a solution of

1=1

In the following we need some regularity assumptions, which are similar to
those in Fahrmeir and Kaufmann (1985, p. 356).

(R1) Let (X;,Yi)iz1,..n be an independent sample from model (2) and (3)
with natural link function. Identifiability of model (2) holds, i.e. f1o #
Ba0-

(R2) X has a twice differentiable density on R. The first two moments of X
exist.

(R3) The expectations

(i) E(G(Y, ag+ fro(X—70) -+ Bao(X—70)+,§)),
(ii) E(S(Y,X,6,)%)
exist.

Note that (R3)(ii) is fulfilled if the moments E(Y*), E(X*), E(G*) exist.



Theorem 2.1 (Consistency and asymptotic solution)  Under regularity
conditions (R1) to (R3),

(a) 0 is consistent, i.e.
plim 6 = 6, for n — oc.

(b) 0 is an asymptotic solution of the score equations, i.e.

(n%ZS(Y;,Xi,HA)> 50 for n — 0. (6)

i=1
Proof:

a) The first proof of the consistency of the MLE without using differentia-
bility conditions is due to Wald (1949). Using arguments from Huber
(1967) we do not need compactness of the parameterspace yielding the
result.

b) Since the score function is continuously differentiable in the first three
components, we have

n

> 8;(Yi, X;,0) =0 for j =1,2,3.

i=1
The forth component is the right directional derivative having jumps
in all points X;. Using that this derivative changes sign in the MLE

and that X has a density we get (6) for the forth component. Details
can be found in Kiichenhoff (1995).

3 Asymptotic normality of the MLE

In this section, we are concerned with the asymptotic normality of the esti-
mator @, i.e. the convergence in distribution

Vi = 6y) =2 NL(0,V) (7)
for n — oo, where V.= —[ZE(S(Y, X, 0))|p=g,] '&. In the following, we are
using the notation

0 :
%E(S(Y, X, 0))|o=9, = E'(S(Y, X, 6y)).



Lemma 3.1 There exist strictly positive numbers a, dy such that
|E(S(Y,X,0))] = a- |0 — 0o for |0 — 6] < db. (8)

Proof: Since E(S(Y, X, 6)) is differentiable in some neighbourhood of 6,
the mean value theorem yields the equation

[E(S(Y, X, 0))] = [E'(S(Y, X, 07)) - (6 — 6o)], (9)

where 0" =6y +t-(0—06y), t € (0,1) and 0* is possibly different for each row
of E'"(S(Y, X, .)).
Since the mapping E'(S(Y, X, 6)) is continuous in # the convergence

lim E'(S(Y,X,0%))- (6 —0) = E"(S(Y, X, 0h)) - (0 — )

0*—0o

is valid. According to this convergence and (9) we can choose dy > 0 such
that

E/(S(Y,X,0) (6~ 00)| > 5 - [E'(S(V, X,00)) - (6~ 0u)],

for all 6* with |6* — 6y < dy. Using the fact that the matrix E'(S(Y, X, 6y))
is symmetric and regular we get the inequality

1
for all § with |6 — 0y| < dy, where \,;;, is defined as follows
Amin = min{|A| : A is eigenvalue of E'(S(Y, X, 6y))}.

Note that A, 7# 0 holds. Setting a = %/\min we obtain (8). O
Note that the result (8) is valid for any df, > 0, such that dj, < dj.



Theorem 3.1 (Asymptotic normality) We assume that there are strictly
positive numbers K, Ky, dy such that

(N1) E( sup [S(Y,X, %) - S(Y,X,0)]) < K, -d
[y <d

for |0 — 6| + d < do,

(N2) E[(‘wS;l;F<dIS(Y,X,¢)—S(Y,Xﬁ)lf] < Kp-d

for |0 — 6| + d < do.

Then under the regularity conditions (R1) to (R3) the MLE § is asymptoti-
cally normal, i.e. (7) is valid.

Proof:  The basic idea in the proof is the application of a theorem by
Huber (1967) and the fact that the mapping

E(S(Y,X,0):0 - R

is continuously differentiable in a suitable neighbourhood of 6.
Using the mean value theorem we get the vector equation

E(S(Y, X,0)) = E(S(Y, X,0)) + E'(S(Y, X,6")) - (0 — 60), (10)

where 6* = 0y + 1 - (g— ), t € (0,1) and 6* is possibly different for each
component of (10).
Equation (10) can be written in the form

~

1 n
VRE(S(Y, X,0)) \/_ZS Yi, Xi, 00) — \/ﬁ;S(Yi,Xi,eo) =
E'(S(Y,X,0")) - /n(0 — ). (11)

According to our regularity conditions (R1) to (R3), Theorem 2.1, the con-
ditions (N1), (N2) and Lemma 3.1 the assumptions of the theorem of Huber
(1967) (cf. appendix) are fulfilled and therefore

~

VnE(S(Y, X, 0)) Z S(Y;, X;,0,) — 0. (12)

\/_



The central limit theorem for i.i.d. random vectors yields
1 n
VEZ;SO;X;%)—5+NMQ—E%SOL&0@y§@. (13)

Note that the assumption of a natural link function yields
Var(S(Y, X, 0p)) = —E"(S(Y, X, 6o)) - &o-
Further, the convergence
E'(S(Y, X,0%)) — E'(S(Y, X, 0)). (14)

is valid. The convergences (12), (13), (14) together with an argument of the
Cramer type (cf. Pruscha, 1996, Prop. B 3.9., p. 397) complete the proof. O

In the following two theorems we present sufficient conditions for the con-
ditions (N1) and (N2). Let S;(0) = S;(Y, X,0), i = 1,...,4, denote the four
components of the vector S(Y, X, ).

Theorem 3.2 (Sufficient conditions) The set of conditions:
(S1) The regressor variable X has a bounded density,

(S2) There are strictly positive numbers dg, ay, as, as, as, such that

E sup |Sip)|<a,i=1,..4,
pEB(09,do)

where the supremum is taken over all p € B(6y,dy) where S; is differ-
entiable,

is sufficient for (N1).

Proof: Let 6, denote the fourth component of the parameter vector 6.
In the following various positive constants are denoted by C. Note that the
four components of the score vector S(Y, X, #) are not generally differentiable
and the fourth component S;(6) can have jumps with respect to the variable
7 = 0,. These circumstances are the main technical aspects in the proof.



For |# — 6y| + d < dy the inequality

B sup |S(Y,X,¢) = SV, X,0)| < E sup |Si(e) — S1(0)| +

|yp—0|<d |yp—0|<d
E sup [So(¢p) — So(0)] + E sup [Ss(¢) — Ss(0)] +
|p—0|<d lyp—0|<d
Ellix¢nosay sup [Si(v) — Si(0)]] +
|yp—0|<d
Ellixenwy,ay sup |Si(v) — Si(0)]] (15)
y—0|<d

holds. For the first four terms of the right hand side of (15) an application
of the mean value theorem yields for ¢t =1, ..., 3

E sup [Si(y)—Si(0)| <C-d-E sup [Si(p)l, (16)
|p—0|<d pEB(00,do)
and
Ellixgp@say sup |Si(y) — Su(0)]] <d-E sup [Si(p)]- (17)
W)*e‘gd pGB(eo,do)

For the fifth term the inequalities

Ellixepi,ay sup [Sa(¥) — Sa(0)[] <

lv—0|<d
E[I{XEB(04,d)} : Cjump +C-d- sup |Séll(p)|] <
pEB(0o,do)
C-d+C-d-E sup [Si(p)| (18)
pEB(o,do)

hold, where C},,, is a positive constant, which is due to the possible jump in
the fourth component of S(Y, X, #). Note that we have used the boundedness
of the density of X in the second inequality. The inequalities (15), (16), (17),
(18) and the condition (Sz) finish the proof. O



Theorem 3.3 (Sufficient conditions) The pair of conditions:
(S7) The regressor variable X has a bounded density,

(S%) There are strictly positive numbers dg, by, be, b3, by, such that

E[ sup |Szl(p)|]2 < bi; 1=1,...,4,
pEB(0o,do)

where the supremum is taken over all p € B(6y,dy) where S; is differ-
entiable,

is sufficient for (N2).
Proof: Arguing analogously as in the proof of Theorem 3.2 we obtain the

inequality

E[ sup |S(KX7w) - S(YaXa 9)|]2 <
lv—0|<d

C-d- (Z E[ sup |Sz'(p)|]2) +C - d.

i—1 pGB(eo,do)

Choosing dy < 1 it yields d < 1. Therefore d*> < d holds and the theorem is
proven. O

The conditions (S;), (S2) and (S]), (S%) respectively are connected with
the special form of the link function as well as with the distribution of the
regressor X. For the identity link, i.e. the case of the least square estimation,
the conditions (Sy) and (S%) are obviously fulfilled, if F(X*) exists. In the
following theorem we formulate sufficient conditions for the conditions (.Sz)
and (S5). These assumptions are fulfilled for the logistic regression model
which is often used in practice (cf. Sec. 4).

Theorem 3.4 (Logistic regression)  Under the conditions
e The mappings |G| and |G’| are bounded.
e B(X*) <00, E(Y?) <.

the assumptions on boundedness (S;) and (S5) hold.

Proof:  The result follows immediately by computation of the derivatives
Sl i=1,..,4, O



4 The determination of a threshold limiting
value: cement dust and chronic bronchitis

In occupational epidemiology it is often of interest to assess a so—called
threshold limiting value (TLV) which is defined as the maximum concen-
tration of a chemical substance at the workplace under which no negative
impact on the employee’s health is expected even if the employee is repeat-
edly exposed over long periods. Here, we are especially concerned with the
concentration of cement dust in the workplace air which is regarded as a pos-
sible risk factor of chronic bronchitis. The investigation of this relationship
caused several epidemiological studies with that topic which were conducted
by the German research foundation (DFG) between 1972 and 1977 (DFG,
1981). The one we consider here involved 499 workers from a cement plant
in Heidelberg. For each of these workers, four variables can be used for the
analysis: chronic bronchitis, average exposure to cement dust concentration,
smoking and duration. The dust concentration [mg/m3] was calculated as a
weighted average for each worker where at most five “measurements” taken
at the workplace were included. The covariate smoking (SM) can only be
taken into account as binary variable. The last covariate duration (DUR)
means the age of a person at the first examination with respect to chronic
bronchitis (CBR) minus the age when first exposed to cement dust, where
CBR was also measured as binary. For a more detailed discussion of the
considered variables and further details of the data set and its analysis we
refer to Kiichenhoff and Pigeot (1998).

The assessment of a TLV can be coped with modelling the TLV as a
breakpoint in a segmented regression model, typically with G of model (2)
chosen as the logistic function, where the slope of the first segment is fixed
as zero. Since the response variable Y, i.e. CBR, is binary its expectation
reads as P(CBR = 1) such that we obtain the following model equation

P(CBR =1) = G(a+ Bx(X — 7); + B,SM + B4DUR), (19)

where X denotes the logarithmically transformed dust concentration after
having added 1.0 to its original value, i.e. log;,(1+ dust concentration). The
MLE of the unknown parameters can be calculated using an algorithm pro-
posed by Kiichenhoff (1997). Since the results obtained in Section 2 and
3 can be directly transfered to models with further covariates and a fixed
slope parameter in the first segment, the estimated standard deviations are
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derived using the above asymptotic theory. The results are summarized in
Table 1. The corresponding confidence intervals can be calculated from these
results in the usual way. The resulting regression curve is depicted in Figure
1, where the additional covariates smoking and duration enter the model by
their means.

Table 1: Parameter estimates of the threshold model for the Heidelberg data.
The estimated standard deviations are given in column o.

A

parameter | estimate o
T 0.394 | 0.020
« -2.169 | 0.401
Bx 52.390 | 31.474
Bs 0.470 | 0.262
B 0.026 | 0.009

P(CBR=1)
0.0 02 04 05 08 10

0.05 015 0.25 0.35 0.45
Concentration

Figure 1: Segmented logistic regression model. Circle marks the estimated
threshold limiting value.

The estimated TLV results in 1.48 mg/m? (7 = 0.394) where the estimated
slope parameter for the second segment shows an extremely increasing re-
lationship between dust concentration and CBR (AX = 52.390). Since the
estimated threshold limiting value for cement dust takes a rather large value,
i.e. it is located at the upper border of the observed dust concentrations, our
results have to be interpreted very carefully.
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5 Appendix

We present the following result from Huber (1967, 1981) in our notation and
give some useful explanations.

Let © be an open subset of d-dimensional Euclidian space R?, (X, A, P) is
a probability space, and S : X x © — R? some mapping. Assume that
X1, Xa, ... are independent random variables with values in X and common
distribution P. Further 6 = 6,,(X;, ..., X;,) denotes an estimator for € ©.

Theorem Under the assumptions

(H1) For each fixed 6 € ©, S(X,#) is measurable and S(X, 0) is separable,
(H2) There is a 6, € O with ES(X,6y) =0,

(H3) There are strictly positive numbers a, b, ¢, dy such that

(i) [E(S(X,0))| > a- |0 — 6| for |0 — | < do,
(ii) E(supjy_g<q |S(X, ) = S(X,0)]) <b-d for [0 — 6] + d < dy,

(iil) E(suppy_gj<q |S(X, ) — S(X,0)[))] < c-d
for |6 — 0| + d < do,

(H4) E(|S(X, 00)[*) < oo,

for an estimator é\, which has the properties

P(|6 — 6| < do) — 1, (E1)
1 < ~ P

— X, E2
\/ﬁ;‘s( 279)—>07 ( )

the convergence

% zn: S(X:, 0) + VRE(S(X,8)) — 0

holds.
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Remarks:

(i) Note that in the conditions (H3) (ii) and (H3) (iii) the supremum is
taken for fixed 6.

(ii) Condition (H3) (iii) is somewhat stronger than needed; it can be weak-

ened to

E( sup |S(X,9)— S(X,0)))* < o(|logd| ™).
lv—0|<d

~

(iii) The expression E(S(X,#)) is a random vector. Here the notation
means that we first compute the expectation of S(X,#) with a fixed 6
and then plug in the estimator # in this function of 6.

(iv) A consistent estimation equation estimator (consistent asymptotic so-
lution) of the estimation equation (cf. Pfanzagl, 1994, Sec. 7.4)

1 n
— > S(Xi,0)=0
\/ﬁ; (X:,0)
fulfills the assumptions (E1), (E2).
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