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Abstract

Survival data may include two different sources of variation, namely variation over
time and variation over units. If both of these variations are present, neglecting
one of them can cause serious bias in the estimations. Here we present an approach
for discrete duration data that includes both time-varying and unit-specific ef-
fects to model these two variations simultaneously. The approach is a combination
of a dynamic survival model with dynamic time—varying baseline and covariate
effects and a frailty model measuring unobserved heterogeneity with random ef-
fects varying independently over units. Estimation is based on posterior modes,
i.e., we maximize the joint posterior distribution of the unknown parameters to
avoid numerical integration and simulation techniques, that are necessary in a
full Bayesian analysis. Estimation of unknown hyperparameters is achieved by
an EM-type algorithm. Finally, the proposed method is applied to data of the

Veteran’s Administration Lung Cancer Trial.
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1 Introduction

In event history analysis, we often know only interval-censored events, i.e., we only
know that the occurrence of an event lies in a time interval between two consecutive
follow ups. Time therefore is divided into T + 1 intervals [by, b1), [b1,b2), - .., [b7_, bF),
(b, beo) to discretize the original but unknown continuous duration time. Survival time
T then is measured as a discrete variable, where 1" = ¢ denotes failure or end of duration
within the interval [b,_1,b;), for t € {1,...,T}. We assume by = 0 and bz denotes the
final follow up. In addition to duration time 7', a vector ¢; of possibly time—dependent

covariates is observed. The discrete duration process is described by the hazard function
Atler) = P(T =t|T > t,¢y), (1)

t =1,...,T, the conditional probability of failure in interval [b;_;, b;), given that interval

is reached. The probability of surviving interval [b;_1, b;) is given by the survival function

t

S(tle;) = P(T > tlc}) = H (s]es)),

where ¢ = (¢q, ..., ¢) denotes history of covariates up to time ¢. To model the discrete

hazard function (1) with dependence of the covariates, the binary logit model

exp(fyt + C;ﬁ) (2)
1+ exp(v: + ¢i3)

is a standard choice, where the parameters v, and 8 are baseline and covariate effects.

Mtle) = P(T = t|T > t,¢,) =

Alternatively, the grouped proportional hazards model, a discrete version of the Cox

model, defines the discrete hazard function as

A(t]zy) = 1 — exp(—exp(y; + 2,5)). (3)

A summary of discrete time duration models is given by Fahrmeir and Tutz (1997),
with generalizations to discrete models for multiple modes of failure. For more detailed
information see Hamerle and Tutz (1989).

Model (2) treats the effects 74, ..., 7 and  as fixed. If the number of time intervals
is large, the number of unknown parameters becomes dangerously high. As a conse-
quence, unrestricted modelling and fitting will often lead to nonexistence of maximum
likelihood estimates and divergence of the used iterative estimating procedures due to
the many parameters involved, especially if the data become sparse for larger 7. To
avoid such problems, we could use a more parsimonious parameterization, for instance
by using piecewise polynomials for baseline hazard functions. However, by imposing

such parametric forms one may overlook unexpected patterns like peaks or seasonal



effects. Fahrmeir (1994) and Fahrmeir and Wagenpfeil (1996) propose dynamic models
with a more parsimonious parameterization within the framework of generalized linear
models. They allow baseline and covariate effects to vary over time, thereby following
a Markovian transition model. Estimation is done by generalized Kalman filters and
smoothers. This approach allows a rather flexible modelling, but it does not include
unobserved heterogeneity or frailty, which often appears in event history analysis due to
different responding of the observed individuals to some treatment, e.g. a chemotherapy.
Neglecting heterogeneity can lead to bias in the estimates of covariate effects. But often
it is not possible to collect enough covariates to account for heterogeneity. A solution is
the introduction of individual-specific random effects, varying independently over the
subjects. The approach including both parametric covariate effects and random effects
to model frailty is standard in event history analysis, see e.g. Scheike and Jensen (1997).
But this approach considers covariate effects as time-fixed, an assumption that is not
always justified, since we often observe individuals over a longer period of time, where
covariate effects may vary with time. See, for example, the application in Section 4.
Hence, the two mentioned approaches, the dynamic model and the random effects
model, allow either modelling of dynamic effects varying over time, or the modelling of
random effects, varying randomly over units. But combining these two models appears
to be reasonable. Petersen, Andersen and Gill (1996) interpret the hazard function as
“a result of two different sources of variation, one within subjects reflecting the risk
changing over time of a given subject, and the other, the selection of individuals prone
to failure, reflecting the variation among subjects. If both of these sources of variation
are present and we do not include them in our analysis, both the interpretability of
the hazard rate as the evolution of individual risk over time, as well as the estimates
of say, treatment effects, are at best obscured and at worst seriously biased.” Sev-
eral authors describe the effect of neglected heterogeneity on estimation in duration
models with fixed effects, see e.g. Vaupel and Yashin (1985). In the case of longitudi-
nal data, Knorr—Held (1995) and Biller (1997) propose the dynamic generalized linear
mixed model (DGLMM), a combination of the dynamic generalized linear model and
the generalized linear model with random effects, that simultaneously model dynamic
time-varying effects and unit—specific random effects. In the DGLMM, a direct Bayesian
approach based on the posterior density of the unknown parameters involves compu-
tationally intractable high—dimensional integrations. In Knorr-Held (1995), Bayesian
analysis therefore is based on Markov Chain Monte Carlo methods. An alternative,
that is applied in Breslow and Clayton (1993) to generalized linear mixed models or
in Fahrmeir and Wagenpfeil (1996) to dynamic generalized linear models, is maximiz-

ing the posterior density, i.e., posterior mode estimation. Based on the results of Biller



(1997) for longitudinal data, in this paper we propose the DGLMM for discrete duration
data, where estimation of the unknown parameters is founded on the posterior mode
principle, resulting in a Fisher scoring algorithm with backfitting steps in each scoring
iteration. Estimation of unknown hyperparameters, i.e., the parameters describing the
prior knowledge about the time-varying and unit-specific random effects, is done by
an EM—type algorithm where posterior modes and curvatures resulting from the Fisher
scoring algorithm are substituted for posterior means and covariances to avoid the use
of numerical integration techniques.

Section 2 introduces the data situation and the DGLMM for discrete duration data,
and in Section 3 we present the algorithms for the estimation of the unknown parameters,
first the Fisher scoring algorithm for the model parameters, i.e., the dynamic time—
varying effects and the unit-specific random effects, and then the EM-type algorithm
for estimating the hyperparameters. We give here only a brief summary of the results,
for details we refer to Appendices A and B. An application of the DGLMM to discrete

duration data is given in Section 4, and concluding remarks in Section 5.

2 Data situation and model definition

Observing a sample of 7« = 1,...,n units, for each of these units the true discrete survival
or duration time T; exists, but is not observable for all units. For some units we only
know the censoring time C;, the time of the last possible observation of survival of unit
i. Censoring is assumed to occur at the end of the interval [b;_1,b;). In the concept of
random censoring the survival time 7; and censoring time C; are independent random
variables. The data are now represented by (t;,0;,¢;), 7 = 1,...,n, where t; = min (7}, C;)
denotes the observed survival time, and §; = I(T; < C;), an indicator variable for
censoring. Additionally we observe possibly time-varying covariates ¢; = {c;1, ..., ¢y, }-
In order to define discrete duration models in the framework of generalized linear models,
we define event indicators by y; = 1, if an event occurs in [b;_1,b;) for unit i, and
yi = 0, if no event occurs in [b; q,b;) for t = 1,...,t;, ¢ = 1,...,n. With the risk
set Ry = {i : t < t;}, i.e., the set of units still at risk in interval [b; 1,b;), we collect
observations at time ¢ in vectors y; = (yi, 1 € Ry), ¢; = (¢, 1 € Ry), and denote histories
of event indicators and covariates up to time ¢ by y; = (y1,..., %), ¢; = (c1,..., ).

Given y;_, and cj, the event indicator y;; follows a binomial distribution

yit|y:—17 C: ~ B(L ,U/it)a



with expectation p;;. Hence, the discrete hazard function (1) of unit i can be represented
as

A(tlei) = Py = Llcf, yin = oo = Yig—1 = 0) = piy.
To analyse the effect of the covariates on survival of the units, we link the hazard
function to a linear predictor 7;; using a response function A(t|c;) = h(n;), where h
may be the logistic distribution function (2) or the extreme-minimal—value distribution
function (3).

The covariates are incorporated into the predictor by

Nit = zta+ tﬁl t'Yt (4)

Design vectors X;;, Uy and Z; are built from the covariates ¢;. The effects of the
covariates are represented by the parameters o, 3; and ;. Here o denotes fixed effects,
independent of unit 7 and time £, [; measures the unit—specific effect of unit 2, and
¥ = (7ot,7%;)" includes the time-varying baseline-parameter 7y, and the time—varying
covariate effects §;. Correspondingly the design vector Zl, = (1, Z},) is built from basic
covariates. If §; and 7, are modelled as fixed effects, we have to introduce for each unit
1 a unit—specific dummy variable and for each time ¢ a time—specific dummy variable
in the linear predictor. This parameterization leads to a great number of parameters
to be estimated, which often results in nonexistence of maximum likelihood estimates,
i.e., at least one component of the parameters tends to infinity, and as consequence, the
estimating procedure diverges. For a more parsimonious parameterization we define the
unit—specific and time—varying effects 3; and +; as random variables.

As usual in generalized linear mixed models (see, e.g., Stiratelli, Laird and Ware,
1984, or Breslow and Clayton, 1993), the unit-specific parameters J3; are supposed to

be independent and identically normal with mean zero and covariance matrix H, i.e.,

zzd

B, " N(O,H), i=1,...,n.

Since the estimating procedure in Section 3 is based on the joint posterior density of the
unknown parameters, a flat prior density with covariance matrix I' — oo is assigned to
the parameter a. The composed parameter vector b = (a', 5') with g = (51,...,5))
therefore has the limiting prior density (as T~ — 0)

p(b; H,T) x p(8; H) = Hpﬁz,

For a parsimonious parameterization of the time—varying effects, Fahrmeir and Wa-

genpfeil (1996) propose to define the sequence of ~; by the linear Markovian transition



equations

v = Tyveer+v, t=1,2,...

Yo = @ao+ Vo. ©)
With known transition matrices 71, Ts,... and independent error terms v; ~ N (0, @),
for ¢ > 1, and vy ~ N(0,Qy), this approach allows the effects v, to vary flexibly over
time ¢, but also penalizes for unsmooth paths of 7,. A simple example of transition
equation (5), that is used in the application in Section 4, is the first—order random walk
defined by T; = I, the identity matrix. From the transformation v, — v, 1 = v; we see,
that covariance () = 0 leads to time—fixed effects, while () > 0 results in a stochastic
trend model for the 7, with varying differences between successive effects. Histories of
dynamic effects up to time ¢ are denoted by v} = (74,7,---,7),t =0,1,...,T, and we
define v = ~Z, the history up to time T. Independence is assumed between time-varying
parameters v and the composed parameter b.

For a complete model specification, the following additional independence assump-
tions are required: conditional on v, b and y;_,, both the current observation y, is
independent of v;_,, and the individual responses y;; within y, are independent.

As pointed out in Section 1, model (4) is a combination of the dynamic and the
random effects model. Hence, these two models are submodels of (4). But there are
two other submodels, the first one consisting only of o and ~;, the other of 5; and ;.
The derivation of the estimating procedures of these submodels from the procedure for

model (4) in Section 3 is straightforward and therefore omitted.

3 Estimation of unknown parameters

In this section we present an algorithm for the simultaneous estimation of the unknown
model parameters ¢ = (¢/, #',+")" and the unknown hyperparameters 6 = (H, ag, Qo, @),
i.e., the parameters specifying the prior distribution of the varying effects ; and ;. In
a first step we present an algorithm for computing the model parameters ¢, assuming
that hyperparameters 6 are known. Afterwards, we drop this assumption and derive an

algorithm for estimating 6.

Model parameters ¢

Estimation is based on the posterior mode principle, i.e., we maximize the logarithm

of the joint posterior density p(p|ys, ¢

Taking logarithms, this leads to the penalized log-likelihood

) of the parameters ¢ (given the data (yx, c5)).

PL(¢) = l(¢) + a(yp), (6)



with

l(% — a9)'Qy " (70 — ao),

=33 logp(yitly; 1, ciy v, b) — 5
=1 t=1

the sum of individual log—likelihoods and the log—prior of 7. In the penalty term

1

o) = — 57/ 5L "

the first part results from the prior specifications of the time—varying effects v, with the
block tridiagonal penalty matrix P. For the definition of P see Fahrmeir and Wagenpfeil
(1996). The second part of (7) results from the prior specifications of the unit—specific
effects 3; with the block diagonal matrix L = diag(H!,..., H!).

To derive the estimates of ¢ we need the score function s(¢) = OPL(p)/dp =
(s(a)’,s(B),s(v)) and the expected information matrix F'(p) = E(—=0*PL(p)/0pdy").
See Appendix A for the definition of these matrices.

Since the likelihood equation s(¢) = 0 is nonlinear in ¢, we use the iterative Fisher

scoring algorithm to compute the estimate ¢ of ¢,
P = g™ + FH(eW)s(eW), k=0,1,2,...,

starting with an initial value $(®). Dimensions in this equation are too high for direct
inversion of F/(¢®)). Therefore the Fisher scoring step is transformed into equations for
each parameter, using the partitioning of the score function s(y) and the information
matrix F'(¢). We get the scoring equations

. . k E)—1 (k) "L [« k E)\—1 _x

6l = 6O 4 (FE) - Ff(F3g) i) ("(0) = Fog (Fag) 's"(8)) - (8)

ac «

Bl — B (Fm H(s*(8) — Ffa (@) — o)) ©)
;y(kJrl) _ ( K7, 4+ P) Lt W(k)(ygc) _ Xak+D Uﬁ (k+1) ) (10)

with working matrices

s'(a) = s(@®)+ E® (30 — 3k+)
s'(B) = s(B* >+Fg$<v<> Fe+1)
A I J—
vy = Xa® + UpW 4+ 24W 4 (W) (y — p®).

A direct computation of (8) to (10) is not possible, since each of these equations contains
the remaining unknown effects. Therefore we apply the iterative backfitting algorithm
(see Hastie and Tibshirani, 1990) to solve each Fisher scoring step by repeated compu-
tation of (8) to (10) until convergence of each of these three parameters.

To avoid direct inversion of the block tridiagonal matrix F,, = Z'WZ+ P in equation

(10), we use an algorithm that utilizes in an efficient way the structure of the matrix.
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Following Biller (1997) we use an algorithm based on the LDL’ factorization of F.,., but
adapted to the case of a diffuse prior distribution for the starting value vy ~ N(ag, Qo)
of equation (5). Wagenpfeil (1996, p. 94) points out, that a diffuse starting prior for
state space models, defined by @, = 0, avoids problems in the estimation of ay and
Qo in the EM—type algorithm, namely strong underestimation and abnormally narrow
confidence bands around time ¢t = 0. For details of the algorithm see Appendix B.

In contrast to the inversion of F’,, there are no problems in computing the necessary
inversions in (8) and (9) since Fzg = U'WU + L is block diagonal.

Hyperparameters 6

For estimating the hyperparameters #, we present a modified version of the EM algo-
rithm, which is a maximum likelihood method in incomplete data situations (see Demp-
ster, Laird and Rubin, 1977). Here, (yx, ci) are the observed, but incomplete data, the
model parameters ¢ are the unobserved data. The joint density of the complete data
(4 ¢ ), whose logarithm is proportional to the penalized log-likelihood PL(p) (see
(6)), depends on the unknown hyperparameters 6 = (H, ag, Qo, Q). For estimation of
f, the EM algorithm avoids numerical integration of the joint density of the complete
data with respect to ¢. With a starting value #(°) in each iteration r = 0,1,... of the
EM algorithm expectation— and maximization—steps are carried out until convergence.
The expectation-step computes the conditional expectation M (0|0)) = E(PL(¢|0)|6™)
given the current value (") of the hyperparameters. The maximization-step maximizes
M(]0™) with respect to f, to obtain estimates 1) of the hyperparameters. The
resulting estimating equations contain posterior expectations and covariances of 3; and
v, that require numerical computation of high dimensional integrals. To avoid numeri-
cal integration techniques we substitute posterior modes and curvatures resulting from
the Fisher scoring algorithm for posterior means and covariances of 3; and v, as in
Stiratelli, Laird and Ware (1984). The curvatures, i.e., the covariance matrices of the
posterior mode estimates, are the corresponding submatrices on the main diagonal of
the inverse of the information matrix F'~'(¢). But even with methods for inverting
partitioned matrices it is not possible to obtain the necessary submatrices V'(/3;) and
V(v:) in closed form, since F'(¢) contains the block tridiagonal matrix F,. Therefore,

as approximation we consider the inverses of the submatrices Fjg and F,, separately,
V(B) 0 V(70) *
-1 _ . -1 .



Hence we use V(B;) = cov(B;]0")) and V() = cov(v,]0")) instead of the posterior
covariances of 3; and ;. V() (and also matrices By, that are needed below) results
from the algorithm to invert the block tridiagonal matrix F,, mentioned above.

This procedure yields estimates for H and (), which also result in the generalized
mixed and the generalized dynamic model (see Fahrmeir and Tutz, 1997, Sections 7.3
and 8.3):

N 122 ~y
o = n > (V(ﬁz‘) + ﬁzﬂi)

i=1

1 I, o )
Q = ﬂ 22 ((% - Tt%—1)(% - Tt%—l)'

+ V(% - V(%),BéTtI - TtBtV(%) + TtV(’Yt—1)Tt')

Since we use a diffuse prior for the starting value vy, estimates for ay, and )y are not

needed.

4 Veteran’s Administration Lung Cancer Trial

This section illustrates joint modelling of unit—specific random effects and time—varying
dynamic effects. The aim is to show what happens with the estimated heterogeneity, if
we include or omit covariates with time—constant or time-varying effects, i.e., to show,
which parts of the model make a contribution to the explanation of heterogeneity.

The data of the Veteran’s Administration Lung Cancer Trial, presented in Kalbfleisch
and Prentice (1980), includes the survival times of 137 patients with lung cancer. To
compare a standard and a test chemotherapy, patients were randomized to one of the
two therapy groups. In addition to the right censored survival times and the indicator
for therapy group other covariates were observed. Kalbfleisch and Prentice (1980) used a
Weibull and a proportional hazards model to estimate the fixed covariate effects. In their
analyses only the covariates Karnofsky rating (patients’ performance status measured on
a scale ranging from 10 to 90, with high values indicating good performance) and tumor
cell type had significant effects. Mau (1986) considered dynamic covariate effects with
the regression model of Aalen (1989). Here Karnofsky rating was the only significant
covariate (significance tests with the Cox and the two—step Anderson and Senthilselvan
model, see Mau, 1986, for references). In both analyses the covariate therapy group was
insignificant.

Since the survival times are sparse at the end of the observation period, we group
them to monthly survival times, i.e., we can use the model for discrete times considered
in Section 2. Following the results of Kalbfleisch and Prentice (1980) and Mau (1986)

we consider only the covariates therapy group and Karnofsky rating.
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In all models presented below, the time—varying effects v, are modelled with a first—
order random walk, i.e., transition model (5) with identity transition matrices T, =
I. The unit—specific random effects ; are assumed to be independent with normal
distribution N (0, H). The following graphs of time-varying effects -, in each case contain
pointwise confidence bands, i.e., we do not estimate simultaneous confidence bands, but
the confidence intervals of 7, are estimated separately for each time point ¢ by using the
diagonal of the matrix V' (v;) presented at the end of Section 3.

We start with a simple model only including the time-varying baseline parameter:
model 1: 1y = Yo

Estimates are obtained by Fisher scoring combined with the EM—type algorithm. For @)
we get the estimate Q = 0.0263. Figure 1 showes the estimate of the dynamic baseline
parameter. Here the baseline, which has to capture all possible variations over time and

units, is negative and, except for the last months, strongly decreasing with time.

Figure 1 about here‘

Including a random effect to measure possibly existing heterogeneity yields
model 2: 0y = Yo + Bi.

Now we get Q = 0.0017 for the random walk variance, resulting in a nearly time—
constant and negative baseline, see Figure 2. For the unknown variance H of ; we get
the estimate H = 0.4268, which is a strong indication for existing heterogeneity in the
data. Figure 3 shows the estimates BAZ of the unit—specific random effects. On the z—axis
the patients are ordered respective to the individual failure times ¢;, i.e., at the beginning
(left) is the patient with the smallest ¢;, at the end (right) the patient with the greatest
t;. Here we recognize a strong time-dependence of the estimated unit—specific effects.
Patients with small observed failure times have all the same positive effects, the longer
the patients live the smaller (and negative) the effects f; are. Patients with the greatest
observed failure times have the smallest BZ Also patients with censored failure times
(O) have negative individual effects. This result is in agreement with Aalen (1988), who
points out, that individuals have different frailties (measured in our example with the
unit—specific effects BZ), and that those who are most frail (i.e., individuals with the
largest effects BZ) will die earlier than the others. The results of model 2 show, that
all the variation in the data, measured in model 1 by the baseline parameter, is now
measured by the unit—specific random effects Bi, since the baseline parameter in model

2 is nearly time constant.

11



‘Figure 2 about here‘

‘Figure 3 about here‘

Now we include the covariate therapy group to compare the test chemotherapy
(group = 1) with the standard chemotherapy (group = —1, reference category). Here we
use effect coding of the dichotomous covariate, since dummy coding in dynamic models
shows an unsatisfactory asymmetry in the declaration of the reference category (see
Section 5.1 of Knorr—Held, 1997). Assuming the effect of group as fixed yields

model 3: 7y = vor + group - a + ;.

~

The effect of group is estimated as @ = 0.0416. If we have a look at the standard
deviation of 0.1212 we can consider the effect as not significant as in the analyses of
Kalbfleisch and Prentice (1980) and Mau (1986). All other parameters have nearly
the same estimates as in model 2. The variance of the random effects 3; is with the
value H = 0.4378 even a little bit higher as in model 2. Here we see, that the fixed—
effect approach of the insignificant covariate therapy group makes no contribution to
the explanation of heterogeneity.

In the next step we include the covariate Karnofsky rating with the three categories
rating 10-30, rating 40-60 and rating 70-90 following Kalbfleisch and Prentice (1980), p.
60. Since in dynamic models the same problems occur for effect coding with more than
two categories as for dummy coding mentioned above (see Knorr-Held, 1997) here we

use dummy coding with the two dummy variables karnof1l and karnof2 built as

karnofl  karnof2

1 0 rating 10-30, completely hospitalized

0 1 rating 40-60, partial confinement

0 0  rating 70-90, able to care for self (reference category)
and get

model 4: 1y = Yor + group - aq + karnofl - as + karnof2- as + f;
= Yo+ T+ B,
with x}, = (group, karnof1, karnof2), a = (a1, s, a3)’. The baseline effect 7y, is again
nearly time-constant and negative with random walk variance ( = 0.0010. For the

fixed effects o we get the estimates (and estimated standard deviations):

group : 0.0499 (0.1174)
karnofl :  2.6956 ( 0.4146 )
karnof2: 0.8034 ( 0.1779)

12



As in model 3 the effect of therapy group is slightly positive and not significant. The
dummies karnof1l and karnof2 have strongly positive effects with the effect of karnof1
clearly above the effect of karnof2. That means, the patients with bad performance
status (Karnofsky rating 10-30) have a much higher risk of death when compared with
the reference group, i.e., the patients with high Karnofsky rating 70-90. Also patients
with Karnofsky rating 40-60 (karnof2), have a higher risk when compared with the
reference group, but a smaller risk as the patients with Karnofsky rating 10-30 (karnofI).
In considering the standard deviations of the effects of karnof! and karnof2 we could
characterize the two dummies as significant. For the variance H of the unit-specific
random effects we get the estimate H = 0.2074, i.e., the amount of heterogeneity is only
half of the value of models 2 and 3. Figure 4 shows the estimates 3;. Here again we
see the same tendency as in models 2 and 3, that patients with small observed failure
times have positive effects and patients with great observed failure times or censored
failure times have negative effects. But the estimates spread more around zero and the
amount of the estimates is smaller, ranging only from about —0.6 to +0.2. From the
results of model 4 we can recognize the following: with the inclusion of the significant
covariate Karnofsky rating the amount of the heterogeneity in the data decreases, i.e.,
the significant covariate Karnofsky rating explains a great part of the heterogeneity, in
contrast to the insignificant covariate therapy group, see the comments to model 2. But
the estimate H = 0.2074 indicates, that there is still a meaningful amount of unobserved

heterogeneity in the data.

Figure 4 about here

Now we consider the covariate effects as time-varying and first include only the

covariate therapy group in

model 5:  ny = yor + group - yu + B = zZiv + B,

with 2}, = (1, group) and v; = (vot, 91)". The random walk covariance has the estimate
Q = diag(0.0018,0.0183). For the baseline this small variance again yields a nearly
time—constant and negative effect as in the models above, while the estimate of the
time—varying effect 7;; of the covariate group, that is shown in Figure 5, is strongly
decreasing till time t = 24. At the beginning the effect of the test chemotherapy is
positive. From time ¢ = 4 the effect is negative to the end of the observation period.
This result indicates that from the beginning up to time ¢ = 4 the standard therapy is
better for survival and then it changes. But as in the models above and in the analyses
of Kalbfleisch and Prentice (1980) and Mau (1986) we can consider the effect of the

covariate group as not significant, since the zero line is included in or is close below the
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confidence band. The estimation of the variance H of the unit—specific random effects
yields H = 0.3511, the estimates of 3; look similar as the estimates of model 2 in Figure
3, but with values ranging only from about —0.8 to +0.3. Comparing with model 3,
where the effect of therapy group was modelled as fixed, we see, that the time-varying
dynamic approach of the therapy effect explains some amount of the heterogeneity, but

the bigger part still remains.

Figure 5 about here

In the next step we include the covariate Karnofsky rating with time—varying effects

yielding

model 6: ;= Yor + group - Yy + karnofl - Yo + karnof2 - Y3 + 5
th% + 51;7

with 2!, = (1, group, karnof1, karnof2) and v = (Yor, Vi1, Y2, Ve3)'- For @ we get the
estimate Q = diag(0.0011,0.0246, 0.0361,0.1008). The baseline parameter vy, is again
negative and nearly time-constant. The estimates of the therapy effect 7;; are nearly
the same as in model 5, see Figure 5. Figure 6 shows the estimates of the time-varying
effects of Karnofsky rating. The dummy karnofl has a strongly positive and time—
constant effect. That means, the patients with bad performance status (Karnofsky
rating 10-30) have a much higher risk of death over the entire course of time when
compared with the reference group, i.e., the patients with high Karnofsky rating 70-90.
For the dummy karnof2, the Karnofsky rating 40-60, we have a significant positive effect
on the hazard till time ¢ = 5. From ¢t = 5 the confidence band includes the zero line,
that means, from time ¢ = 5 on the effect of karnof2 is insignificant. For the variance
H of the unit-specific random effects we get the estimate H = 0.0245. The estimates
of f; look similar as the estimates of model 4 in Figure 4, but with much smaller values
ranging only from about —0.06 to +0.02. In contrast to model 4 with the time-fixed
modelling of Karnofsky rating and model 5 with the introduction of the insignificant
covariate therapy group with time-varying effects we see here that the time-varying
modelling of the effects of the significant covariate Karnofsky rating explains almost all

heterogeneity in the data, leaving only a negligible amount of unexplained heterogeneity.

Figure 6 about here
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5 Concluding remarks

We propose a model that combines time-varying and unit-specific effects additively
without interactions between time and units to consider the two possibly existing sources
of variation in duration analysis, namely variation over time and variation over units.
The example in Section 4 shows that the algorithm is able to separate the fixed, the
unit—specific and the time—varying effects, and that the combination of the two varying
effects has interpretable and comprehensible results. Also we recognize, which parts of
the model make a contribution to the explanation of heterogeneity. So models 3 and 5
of the example reveal, that the insignificant covariate group contributes nothing to the
explanation of heterogeneity. Only the time-varying modelling of the effect of group
decreases the amount of the measured heterogeneity slighty. However, the introduction
of the significant covariate Karnofsky rating explains a great amount of the unobserved
heterogeneity. While the fixed effect approach reduces the heterogeneity by the half
(model 4), the heterogeneity almost vanishes if we model the therapy effect as time—
varying (model 6). Summing up, we may say that in the example the insignificant
covariates make no contribution to the explanation of heterogeneity, while the significant
covariates explain a great proportion, or almost all, of the heterogeneity if we use time—
varying effects.

The EM-type algorithm including Fisher scoring with backfitting in each scoring
step presented in Section 3 is implemented in C++. The software supports analysis in
the dynamic generalized linear mixed model for discrete duration data defined in Section

2 including the submodels mentioned at the end of this Section.

Appendix A: Matrices s(y¢) and F ()

In this Appendix we define the score function s(p) and the expected information matrix
F(¢p). We assume an informative prior distribution for the starting value vy ~ N (ag, Qo)
of transition equation (5). For diffuse starting priors all definitions remain the same,
but we have to omit all terms including Qo and 7, (see comments in Section 3).

As for the random effects model in Fahrmeir and Tutz (1997), Section 7.3.3, the
components s(a) and s(8) = (s(B1)',...,s(8n)") of s(p) result in

n it
s(a) = OPL(p)/0a = ZXitDitZ;tl(yit — Wit)

=1 t=1

t;
S(BZ) = 8PL(Q0)/3BZ = ZUztthEz_tl(ylt_l'th) _H_lﬁia L= 17"'7”7

t=1
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with D;; = 0h(ni) /0N, Ya = cov(yu|p) and p;y = h(ny). For the matrix representa-
tion we define matrices X| = (X;1,..., Xiy,), X' = (X{,..., X)), U = (Ua, ..., Uiy,),
U = diag(Ui, .. Un)s i = Uiy ¥i)s ¥ = Whsoyn)'s i = (s -5 ig,)'s 0=
(yy - pmh), Dy =diag(Ds, ..., Diy,), D = diag(Dy, ..., D,), ¥; = diag(Zi, ..., Zit,),

¥ = diag(X,,...,%,) and obtain the score functions

s(@) = X'DE7'(y—p),
s(B) = U'DS ™'y —p) - Lp.

The component s(y) = OPL(p) /0y = 0l(p)/0v+0a(p) /07 of s(p) (with dl(p) /0y =
(0L(¢) /00, Ol(p) /01, - .., 0l(¢)/O0¥F)") is given by the elements

0l(0)/0v = Qy'(ao— )
()0 = Z ZitDitZ;tl(yit — i), t=1,... .T

1ER

da(p)/0y = —Pv.

Unlike the matrix representation of s(y) in Fahrmeir and Wagenpfeil (1996), here we
have to adapt s(7y) to the representation of s(«) and s(/3), where for each i first matrices
Z; = diag(Z],, ..., Zz) are built, and then the design matrix Z = (Z1,..., 7). Since
here for each unit 2 we have different numbers #; of observations, matrices are defined
as follows: Z = diag(l,”2), Z = (Z},...,Z,)", Z; = (Z;,0;) fori € Ry and Z; =
Z; for i € Ry, with Z; = diag(Zj,,...,Z;,;,) and O; a matrix of zeros of appropriate
dimension. With D = diag(/, D), ¥ = diag(Qo, %), y = (ay,y")’, p = (7§, 1t')" we get

_ Qo (a0 — 7o) R Ea——
s(7) = (Z’DZ‘I(y—u) ) — Py =17ZDX" (y—p)—Pr.

For a unified representation we define matrices X' = (O, X'), U' = (0", U"), K =
diag(O, L, P) (with O in each case a matrix of zeros of appropriate dimension) and

W = DX 'D’ yielding the score function and the expected information matrix

ste) = (s(a),s(8),5(7)) = (X,U,Z)DE"(y — u) - Ky

Faa Faﬁ Fa'y
F(QO) == Fﬂa Fﬁﬂ F57 == (X,U, Z),W(X,U,Z) —|—K
Fva Fvﬁ FW

Appendix B: Inversion of the block tridiagonal matrix

To invert the block tridiagonal matrix F,, = Z'WZ+ P in equation (10), now we adapt
the algorithm in Biller (1997, Section 4) to the case of a diffuse prior distribution for the
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starting value vy ~ N(ag, Qo) of equation (5). A simple transformation of equation (10)
vields F,, 4+ = s* with s* = Z’W® (y® — Xa¢+D) — UBE+D) = (s), 5], ..., sL)".
Defining the diffuse prior by Q' = 0, the initial values of the algorithm result in ¢y = 0,
Dy = T!Q~'Ty, and following B, =T} ', D; = Sicr, ZuWaZl, + TyQ™' Ty and £, = s1.
Hence, we get the following algorithm for the diffuse starting priors, without considering
the time point ¢ = 0:

Initialization: g1 =381, Di=Yiep ZuWnZl + ThQ'Ty
Forward recursion, fort =2,...,T:

B, = _D;_11Ft71,t; Dy=Fy+BF, 1, € =5+DBjg
Filter correction: A7 = D%IST, VT\T = D%I

Smoother corrections, for t =T, ...,2:

V-1 = D;115t—1 + B, V;_”T = Df_11 + BtVﬂTBé-
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Figure 1: Estimates of the baseline parameter vy, plus/minus one standard deviation
(model 1).

Figure 2: Estimates of the baseline parameter vy, plus/minus one standard deviation
(model 2).

Figure 3: Estimates of the unit—specific effects 3; (® for patients with observed failure
times, O for patients with censored failure times). Patients i = 1,...,137 ordered

respective to individual failure times ¢;.(model 2)

Figure 4: Estimates of the unit-specific effects 5; (® for patients with observed failure
times, O for patients with censored failure times). Patients i = 1,...,137 ordered

respective to individual failure times ¢;. (model 4)

Figure 5: Estimates of the time—varying effect 94 of therapy plus/minus one standard

deviation (model 5).

Figure 6: Estimates of the time-varying effects 7,2 and ;3 of Karnofsky rating

plus/minus one standard deviation (model 6).
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Figure 3
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Figure 6
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