
Event Timing in Associative Learning: From Biochemical
Reaction Dynamics to Behavioural Observations
Ayse Yarali1*, Johannes Nehrkorn1,2,3, Hiromu Tanimoto1, Andreas V. M. Herz2,3

1 Max Planck Institute of Neurobiology, Martinsried, Germany, 2 Ludwig-Maximilians-Universität München, Department Biology II, Division of Neurobiology, Martinsried,

Germany, 3 Bernstein Center for Computational Neuroscience, Munich, Germany

Abstract

Associative learning relies on event timing. Fruit flies for example, once trained with an odour that precedes electric shock,
subsequently avoid this odour (punishment learning); if, on the other hand the odour follows the shock during training, it is
approached later on (relief learning). During training, an odour-induced Ca++ signal and a shock-induced dopaminergic
signal converge in the Kenyon cells, synergistically activating a Ca++-calmodulin-sensitive adenylate cyclase, which likely
leads to the synaptic plasticity underlying the conditioned avoidance of the odour. In Aplysia, the effect of serotonin on the
corresponding adenylate cyclase is bi-directionally modulated by Ca++, depending on the relative timing of the two inputs.
Using a computational approach, we quantitatively explore this biochemical property of the adenylate cyclase and show
that it can generate the effect of event timing on associative learning. We overcome the shortage of behavioural data in
Aplysia and biochemical data in Drosophila by combining findings from both systems.
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Introduction

Predicting future events is a key to survival. For example, if a

sensory stimulus typically precedes an aversive event, this

relationship will be learned to trigger anticipatory behaviour,

such as avoidance [1]. On the other hand, a stimulus that occurs

after an aversive event has subsided will be learned as a predictor

for relief [2,3] or safety [4,5] and will induce approach. Event

timing, therefore, determines which of the two opposite learned

behaviours is established, as shown in various species including

man [6–12]. Drosophila olfactory associative learning is well-suited

for studying this phenomenon (Fig. 1) [11,13–17]: Flies learn to

avoid an odour that precedes electric shock during training (i.e.

punishment learning); whereas an odour that follows the shock is

subsequently approached (i.e. relief learning).

In an attempt to explain punishment and relief learning in fruit

flies, Drew and Abbott [18] propose a model circuit where the

odour activates a large number of pre-synaptic neurons; while the

shock impinges upon a common post-synaptic neuron that

mediates the conditioned avoidance. For both types of neuron,

the authors assume high firing rates that decay over several

seconds upon the termination of the respective stimuli. Within this

model circuit, a spike-timing-dependent plasticity (STDP) rule

operating at the millisecond-scale can account for the effect of

relative odour-shock timing on the conditioned behaviour, which

occurs at the scale of several seconds. While demonstrating that

slowly decaying spiking activity can enable STDP to function over

long intervals, this model does not capture fruit fly olfactory

learning, as the corresponding empirically measured odour

responses in the Kenyon cells are sparse and short-lasting [19–

21], violating the model’s key assumption.

Here, we propose an alternative model motivated by cellular

and biochemical data. In the Drosophila brain, individual odours

activate small, specific groups of Kenyon cells increasing their

intracellular Ca++ concentration [22–24]; whereas shock induces a

dopaminergic reinforcement signal, which is also delivered to the

Kenyon cells [25–29]. These two inputs likely converge on the

Ca++-calmodulin-sensitive adenylate cyclase, rutabaga; this process

seems necessary and sufficient in the Kenyon cells for olfactory

learning [30–33]. Thus, during punishment training, this adeny-

late cyclase is synergistically activated in the specific trained odour-

responding Kenyon cells [34,35]; the resulting cAMP signalling

then likely strengthens the output from these cells to the

conditioned avoidance circuit (Fig. 2) [36]. Those Kenyon cells

that respond to a control odour that is presented sufficiently before

or after the shock also receive both inputs, but separated in time;

consequently, less cAMP is produced [34] and the output of these

Kenyon cells is strengthened less, if at all. Then, at test, flies are

typically given the choice between the trained odour, which, due

to the strengthened output of the respective Kenyon cells, can

trigger conditioned avoidance, and the control odour, which does

not trigger conditioned avoidance, as the output of the

corresponding Kenyon cells has remained weak. To summarize,

with respect to punishment learning, a particular, Ca++-calmod-

ulin-sensitive adenylate cyclase seems to be the critical detector of

the odour-shock convergence.

The biochemical properties of the corresponding Ca++-calmod-

ulin-sensitive adenylate cyclase in Aplysia (AC-AplA, [37]) have been

analyzed in detail. During gill withdrawal reflex conditioning, a Ca++

influx due to siphon-touch and a tail-shock-induced serotonergic

signal converge on this adenylate cyclase (Fig. 2) [38–40], which is

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e32885



sensitive to the relative timing of the two inputs [41–43] (see Results

for details). We test whether this biochemical phenomenon observed

in Aplysia (and in rats [44]) can serve as a mechanism for the effect of

event timing on associative learning as found in Drosophila. A

computational approach allows us to overcome the shortage of

behavioural data in Aplysia and biochemical data in Drosophila by

combining findings from both systems.

Results

In an Aplysia in vitro neural membrane preparation [41–43], a

transient serotonin input activates the adenylate cyclase; upon

cessation of serotonin, the adenylate cyclase activity returns to the

base-line. This effect of serotonin is modified by Ca++. If Ca++

precedes serotonin by a short time, the adenylate cyclase is

activated more rapidly so that the cAMP production exceeds the

serotonin-only situation. If, however, Ca++ closely follows

serotonin, the adenylate cyclase is deactivated faster, resulting in

a cAMP production below the serotonin-only case. We implement

this property of the adenylate cyclase in two alternative models

[45,46]. This makes it possible to quantitatively explore whether

and how far this biochemical phenomenon can explain the effect

of event timing on learning; to this end, we simulate a key

Drosophila experiment (Fig. 1). In addition, we test in silico for the

Figure 1. Event timing affects associative learning. Fruit flies are trained such that a control odour is presented alone, whereas a trained odour is
paired with pulses of electric shock as reinforcement. Across groups, the inter-stimulus interval (ISI) between the onsets of the trained odour and shock is
varied. Here, ISI is defined such that for negative ISI values, the trained odour precedes shock; positive ISI values mean that the trained odour follows
shock. For each ISI, two fly subgroups are trained with switched roles for two odours (not shown). During the test, each subgroup is given the choice
between the two odours; the difference between their preferences is taken as the learning index. Positive learning indices indicate conditioned
approach to the trained odour, negative values reflect conditioned avoidance. Very long training ISIs support no significant conditioned behaviour. If the
odour shortly precedes or overlaps with shock during training (ISI = 245 s, 215 s or 0 s), it is strongly avoided in the test (punishment learning). If the
odour closely follows the shock-offset during training (ISI = 20 s or 40 s), flies approach it in the test (relief learning). *: P,0.05/8 while comparing to zero
in a sign test. Sample sizes are N = 8, 24, 34, 47, 24, 35, 12 and 12. Data from [15], with permission from Informa healthcare.
doi:10.1371/journal.pone.0032885.g001
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effects of parameter changes and relate our results to behavioural

findings in Drosophila.

Stimulation of the adenylate cyclase by the transmitter
We use the model by Rospars et al. [46] as a general framework

to describe post-receptor G protein signalling. Adapting this model

to our case (Fig. 3A), the shock-induced transmitter (Tr) binds to

the G protein coupled receptor (GPCR) to form a complex (Tr/

GPCR), resulting in receptor activation (GPCR*). GPCR* then

dissociates the trimeric G protein (Gabc) into an activated a-

subunit (Ga*) and the bc-subunits (Gbc). Ga* either spontane-

ously deactivates (Ga) to reassemble with Gbc, or it interacts with

the adenylate cyclase (AC) to form an enzymatically active

complex (Ga*/AC*), which is prone to dissociation into inactive

AC and Ga. The concentration of the Ga*/AC* complex, i.e. the

activated adenylate cyclase, serves as the output variable of the

system.

We stimulate this model with a transient transmitter input

(Fig. 3B, left; see the Materials and Methods for details), which

mimics the in vitro experiments in Aplysia (Fig. 1A of [42]). When

the reaction rate constants k5 and k-5 are appropriately adjusted

(for a detailed sensitivity-analysis, see Fig. 5A), the concentration of

Ga*/AC* first rises to a peak within ,20 s and then decays back

to zero within the next ,100 s (Fig. 3B, left), closely matching the

corresponding Aplysia data (Fig. 4A of [42]); the deactivation of the

adenylate cyclase in the model is slightly slower than the

experimental observations.

Effect of Ca++

As discussed above, in Aplysia, a brief serotonin input results in

cAMP production; Ca++ in turn bi-directionally modulates the

amount of this cAMP production, depending on its timing relative

to serotonin [41–43]. Critically, at the steady state, Ca++ and

serotonin have no synergistic effect on cAMP production [41–43].

In these biochemical experiments, Ca++, bound to calmodulin,

seems to interact with the adenlylate cyclase [43] and the Ca++-

effect on adenylate cyclase is delayed by 2–3 s relative to the effect

of serotonin [42,43]. As a simple way to account for all these

findings in our model, we allow Ca++ to transiently increase the

rate constants for both the formation and the dissociation of the

Ga*/AC* complex (k5 and k-5) with a delay of 2.5 s (Fig. 3A; see

the Materials and Methods for details). For simplicity we exclude

from our model the biochemical step(s) leading to the Ca++-

calmodulin interaction (see below for a discussion). We indeed find

that if a Ca++ input (Fig. 3B, middle; see the Materials and

Methods for details), fashioned after Aplysia in vitro experiments

(Fig. 1A of [42]), arrives immediately before the transmitter, it

accelerates the rise in Ga*/AC* concentration, as at this time

point, Ga*/AC* formation is the dominant reaction. Consequent-

ly the area under the Ga*/AC* curve is increased. Assuming that

the amount of cAMP production is proportional to the

concentration of active adenylate cyclase, this translates into more

cAMP production. If, however, Ca++ arrives once the transmitter

has been reduced, it accelerates the fall of Ga*/AC* concentration

(Fig. 3B, right), since at this time point, dissociation of Ga*/AC* is

dominant. The area under the resulting Ga*/AC* curve is then

smaller, meaning less cAMP production.

Effect of the relative timing of the transmitter and Ca++

In the Drosophila learning experiment shown in Fig. 1, a control

odour is given 210 s before electric shock; whereas a trained odour

is paired with shock with varying inter-stimulus intervals (ISI). To

simulate this experiment we represent the odour by the Ca++ input

and the shock by the transmitter input. We neglect the very short

time delays between the delivery of these stimuli and the resulting

Ca++ influx into and transmitter release onto the Kenyon cells.

Thus, in the control condition (Fig. 4, left), Ca++ arrives 210 s

before the transmitter. We assume that the area under the

resulting Ga*/AC* concentration curve reflects the total amount

of cAMP produced. This can be thought of as the cAMP

production in those Kenyon cells that are responsive to the control

odour (i.e. ‘control’ Kenyon cells). During associative training

(Fig. 4, right), Ca++ follows or leads the transmitter by a variable

ISI. Again, the time integral of the respective Ga*/AC*

concentration curve is taken as an estimate of cAMP production.

Applied to the fly learning experiment in Fig. 1, this would be the

amount of cAMP produced in those Kenyon cells that respond to

the trained odour (i.e. ‘trained’ Kenyon cells). We plot the

difference in cAMP production between the control condition and

the associative training as percent of the control condition (Fig. 4,

bottom: Percent associative effect). This reflects the test situation in

the behavioural experiment in Fig. 1, where flies are given the

Figure 2. Adenylate cyclase as a molecular coincidence detector. In a variety of associative learning systems, a potential coincidence
between the trained stimulus and the reinforcement is detected at the pre-synapse by a particular kind of adenylate cyclase. The stimulus acts on the
respective neurons, raising the intracellular Ca++ concentration. The reinforcement induces the release of a transmitter that binds to its respective G
protein coupled receptors (GPCR) on the very same neurons and activates the G protein (G*). If stimulus and reinforcement are appropriately timed,
the two types of input act synergistically on the adenylate cyclase (AC*), triggering cAMP signalling, and thus lead to the strengthening of the output
from these neurons to the respective conditioned behaviour pathway.
doi:10.1371/journal.pone.0032885.g002
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Figure 3. Regulation of the adenylate cyclase by the transmitter and Ca++. A. Adapting the model of Rospars et al. [46], the transmitter
reversibly binds to its respective G protein coupled receptor (GPCR) to form a complex, resulting in reversible receptor activation (GPCR*). GPRC*
catalyzes the dissociation of the trimeric G protein (Gabc) into an activated a-subunit (Ga*) and the b- and c-subunits (Gbc). Ga* spontaneously
deactivates (Ga) and reassembles with Gbc, or it reversibly interacts with the adenylate cyclase (AC) to form an enzymatically active complex (Ga*/
AC*), which serves as the output. Following data from Aplysia [41–43], Ca++ in turn transiently increases the rate constants for both the formation and
the dissociation of the Ga*/AC* complex (represented by the thickened arrows). The ksubscript denote the rate constants of the respective reactions. B.
When this model is stimulated with a transmitter input alone the Ga*/AC* concentration rises to a peak of ,0.42 molecules/mm2 in ,20 s after
stimulus onset, and decays back to zero within the next ,100 s (left). If a Ca++ input immediately precedes the transmitter, the build-up of the Ga*/
AC* concentration is transiently accelerated (middle). If on the other hand the Ca++ input follows the transmitter, the decay of the Ga*/AC*
concentration is transiently accelerated (right). For graphical reasons, normalized concentrations are calculated by dividing with the peak Ga*/AC*
concentration given transmitter input alone. The transmitter concentration reaches a peak of ,6.7?104 molecules/mm2 in ,7 s and decays back to
zero within ,18 s; the Ca++ concentration starts rising ,4.5 s after the onset, reaches a peak value of 5.6?1024 moles/L at ,6 s and decays back to
zero within ,8.5 s after the onset. Also these inputs are plotted as normalized concentrations.
doi:10.1371/journal.pone.0032885.g003
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Figure 4. Relative timing of the transmitter and Ca++ affects the adenylate cyclase. We stimulate the model with transmitter and Ca++ (see
Fig. 3B for the details). In the ‘control condition’ (left), Ca++ precedes the transmitter by an onset-to-onset interval of 210 s. In ‘associative training’
(right), the two inputs follow each other with an inter-stimulus interval (ISI), which is varied across experiments. Negative ISIs indicate training with
first Ca++ and then the transmitter; positive ISIs mean the opposite sequence of inputs. For either condition, we take the area under the respective
Ga*/AC* concentration curve as a measure of cAMP production. For each ISI, we calculate an ‘associative effect’, by subtracting the amount of cAMP
produced during the respective associative training from that in the control condition. We then express the associative effect as percent of the area
under the Ga*/AC* concentration curve in the control condition. These percent associative effects are plotted against the ISIs. For very large ISIs, we
find no associative effect. If the Ca++ is closely paired with the transmitter, we find negative associative effects; the strongest negative associative
effect (215.5%) is obtained when using ISI ,23 s. If on the other hand Ca++ follows the offset of the transmitter during training, we find positive
associative effects; the largest positive associative effect (6.3%) is obtained for ISI ,26 s. Thus, depending on the relative timing of Ca++ and
transmitter during training, opposing associative effects come about, closely matching the behavioural situation in Fig. 1.
doi:10.1371/journal.pone.0032885.g004
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choice between the control odour and the trained odour. Note that

in the control condition, a non-zero amount of cAMP is produced;

when applied to the learning experiment this would mean a basic

amount of cAMP in all Kenyon cells, possibly causing a basic

strengthening of their output. Indeed in flies, mere exposure to the

shock modifies the olfactory behaviour; interestingly, the resulting

non-associatively modified odour responses are less aversive upon

loss of cAMP signalling or Kenyon cell function [47,48].

Despite the overall simplicity of our approach, the simulation

results (Fig. 4) agree strikingly well with the behavioural situation

(Fig. 1). First, short negative or short positive ISIs result in negative

associative effects; in other words, associative training with close

Ca++ and transmitter pairing produces more cAMP than the

control condition. Translating this to the learning experiment, more

cAMP will be produced in the trained Kenyon cells than in the

control Kenyon cells. Consequently, the output from the trained

Kenyon cells to the downstream conditioned avoidance circuit will

be strengthened more than that of the control Kenyon cells,

resulting, at a choice situation, in relative avoidance of the trained

odour (i.e. punishment learning). Next, for intermediate positive

ISIs, the model produces positive associative effects, indicating less

cAMP production during associative training than in the control

condition. Applying this to the learning experiment, the output

from the trained Kenyon cells to the downstream conditioned

avoidance circuit will be strengthened less than the output from

the control Kenyon cells. Consequently, given the choice between

the two odours, the net behaviour will be conditioned approach

towards the trained odour (i.e. relief learning). Finally, for very

large (positive as well as negative) ISIs, the model shows no

associative effect, as in the behavioural setting.

Other features of the simulation results are also reminiscent of

the behavioural data in Fig. 1. First, the negative associative effect

is larger than the positive associative effect. Second, the strongest

negative associative effects are found when the onset of Ca++

precedes that of the transmitter; overlapping onsets result in a less

pronounced negative associative effect. Note that, in behaviour,

even an ISI of 245 s supports learning (Fig. 1); whereas in the

model, negative ISIs longer than 5 s are not effective; this

discrepancy is likely due to the properties of the Ca++ input in the

present simulation (see Fig. 8 for a detailed analysis). Finally, in

both behaviour and model, the strongest positive associative effects

are obtained when the odour or Ca++ closely follows the offset of

the shock or the transmitter.

Even with a single training trial, the negative and positive

associative effects respectively reach up to ,16% and 6% of the

control, measured at the level of cAMP production. More intense

Ca++ inputs (see Fig. 8 for details) and repetitive training will boost

these effects significantly, as will the high amplification factors

often seen in signal transduction cascades [49].

Relationship between the adenylate cyclase dynamics
and the associative effects

We next test how the agreement between model and

behavioural data is influenced by changes in key model

parameters. To this end, we first vary the rate constants for

Ga*/AC* formation and dissociation (k5 and k-5). The dynamics

of adenylate cyclase activation/deactivation (Fig. 5A) dictates both

the ISI-dependency and the size of the associative effects (Figs. 5B1

and 5B2). Particularly, the duration of the rising and the falling

phases of active adenylate cyclase concentration determine the

window of ISI values appropriate for the negative and the positive

associative effects, respectively. The sizes of the associative effects

also depend on the dynamics of active adenylate cyclase

concentration; intermediate speeds for build up and decay are

best suited (see the legend of Fig. 5 for details). Notably, both the

adenylate cyclase dynamics (Fig. 5A) and the associative effects

(Figs. 5B1 and 5B2) remain stable over more than five orders of

magnitude of the formation rate constant; whereas changes in the

dissociation rate constant have much stronger influence.

The associative effects are influenced little by varying the rate

constants of GPCR (Fig. 6A) or G protein (Fig. 6B) activation and

deactivation within a certain range. But when the respective

forward rate constants are increased beyond the shown values, the

associative effects abruptly decrease (see the legend of Fig. 6 for a

detailed explanation). These findings agree with a previous, more

systematical sensitivity-analysis [50] of the model proposed by

Rospars et al. [46].

Effects of the duration and intensity of the transmitter
To what extent do the observed associative effects depend on

the specific properties of the inputs used?

We first study the effect of changes in the duration of the

transmitter (Fig. 7), keeping the Ca++ input the same as in the

previous experiments. For a fixed rise time of the transmitter,

increasing its decay time constant from 0.1 s to 1 s hardly changes

the size of the associative effects (Fig. 7, the first two cases). A more

slowly decaying transmitter input on the other hand, due to a

much higher control level of cAMP production, allows only for

smaller percent associative effects (Fig. 7, the last case). A

Figure 5. Influence of the rate constants for Ga*/AC* formation and dissociation. A. Time course of the Ga*/AC* concentration, following a
stimulation of the model with transmitter (see Fig. 3B for the details). B1. ISI-dependent associative effects, as explained in Fig. 4. B2. Color-coded
representation of the size of the peak negative (left) and positive (right) associative effects. In (A), (B1) and (B2), we systematically change the rate
constants for Ga*/AC* formation and dissociation (k5 and k-5 in Fig. 3A). Using the default values of both rate constants, we obtain associative effects
fitting the behavioural situation in Fig. 1 (B1, B2: marked with asterices). Notably, this fit is stable over more than five orders of magnitude of the
formation rate constant, but is more sensitive to changes in the dissociation rate constant (B1, B2). The size (B2) and ISI-dependency (B1) of the
associative effects are dictated by the dynamics of adenylate cyclase activation/deactivation (A). Particularly, the negative associative effect depends
on the rising phase of the Ga*/AC* concentration: When either the formation or the dissociation rate constants are increased beyond their default
values, the rising of the Ga*/AC* concentration becomes too fast to be further improved by Ca++; the negative associative effect is thus attenuated.
Also, in this case, the short rising phase of Ga*/AC* concentration limits the window of ISI values appropriate for the negative associative effect. In
turn, decreasing both rate constants below their default values slows down the rise of Ga*/AC* concentration, leaving more space for improvement
by Ca++, thus boosting and -due to the longer rising phase- ‘widening’ the negative associative effect. As for the positive associative effect, the falling
phase of the Ga*/AC* concentration matters: When both rate constants are moderately increased beyond their default values, the fall of Ga*/AC*
concentration gets faster, that is, the dissociation of Ga*/AC* better dominates over its formation, boosting the positive associative effect. Critically,
when the rate constants are increased too much, the drop of Ga*/AC* concentration is accelerated to its limit; thus, both the size and the ‘width’ of
the positive associative effect suffer. To summarize, the negative associative effect is favoured by small values of both rate constants, whereas the
positive associative effect needs moderately high values of these. Consequently, the overall effect size cannot be improved much beyond the default
case, without compromising the relative sizes of the two associative effects with respect to each other and thus the fit to the behavioural situation.
doi:10.1371/journal.pone.0032885.g005
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corresponding effect of shock duration on the strength of learning

remains to be probed for in fly learning experiments. As for the

ISI-dependence of the associative effects, short transmitter inputs

give good fit to the behavioural situation in Fig. 1 (Fig. 7, the first

two cases). For more slowly decaying transmitter inputs, the

positive associative effect only occurs for longer ISIs due to the

broadened dynamics of adenylate cyclase activation/deactivation

(Fig. 7, the last case). Quantitatively, we cannot provide a detailed

comparison between these effects and those found at the

behavioural level, since the dynamics of dopamine availability in

the synaptic cleft upon shock stimulation is not known. It is

however noteworthy that also in Drosophila behavioural experi-

ments shock duration affects the window of ISIs appropriate for

relief learning. For example, in Fig. 1, the shock lasts for 15 s;

accordingly, relief learning is possible with ISIs longer than 15 s.

For a 1.5s-long shock stimulus, however, an ISI of 2 s already

supports relief learning (Fig. 8C of [17]). This invites a more

systematic behavioural analysis of the effect of shock duration on

relief learning.

To test for the effects of varying the transmitter intensity, we use

the intermediate time course shown in Fig. 7 and keep the Ca++

input as in the previous simulations. Scaling the transmitter input

up and down over more than 10 orders of magnitude leaves the

associative effects largely unchanged, both in terms of their percent

size and their ISI-dependencies (data not shown). Only, unreal-

istically large transmitter inputs ($107 molecules/mm2), immedi-

Figure 6. Dependence upon the activation and inactivation rate constants of GPCR and G protein. The percent associative effect is
shown as a function of the ISI, as detailed in Fig. 4. Asterices mark the default conditions. A. Varying the rate constants for GPCR activation and
inactivation hardly affects the size, or the ‘shape’ of the associative effects. B. Varying the rate constant of G protein activation also has nearly no
bearings on the associative effects. As for the rate constant for G protein inactivation, higher values result in overall larger associative effects; this is
because, both the rise and the fall of active adenylate cyclase concentration become moderately faster (not shown, see the legend of Fig. 5 for a more
detailed explanation). In both (A) and (B), increasing the respective forward rate constants beyond the depicted range immediately recruits all
available adenylate cyclase molecules, precluding any effect of Ca++ and thus any associative effect (not shown).
doi:10.1371/journal.pone.0032885.g006

Figure 7. Influence of the transmitter duration. With a fixed Ca++ input, three different transmitter inputs are tested (top). They are all initiated
at 210 s, rise to a peak of 7?104 molecules/mm2 within 40 ms after the onset, but decay with different time constants as indicated above the panels.
We plot the resulting adenylate cyclase dynamics (middle) and the ISI-dependent associative effects (bottom). In terms of the percent sizes of
associative effects, changing the transmitter decay time constant from 0.1 to 1 (the first two cases) hardly makes a difference. A slower decaying
transmitter input (the last case) broadens the dynamics of adenylate cyclase activation/deactivation, resulting in much higher cAMP production in the
control condition; thus, the percent associative effects remain small. As for the ISI-dependence of the associative effects, short transmitter inputs (the
first two cases) give good fits to the situation in Fig. 1; when a slower decaying transmitter input is used (the last case), the positive associative effect
only occurs for large positive ISIs, due to the broadened adenylate cyclase activation/deactivation dynamics.
doi:10.1371/journal.pone.0032885.g007
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ately activate all the available adenylate cyclase; this abolishes the

possibility of modulation by Ca++ and precludes any associative

effect (data not shown). These findings only partially reflect the

situation in the fruit fly learning experiments, where intermediate

shock intensities work best [13,51].

Effect of Ca++duration and intensity
In Fig. 1, given a 15s-long odour presentation, even an ISI of

245 s supports punishment learning. When adhesion of residual

odour substance to the experimental setup is excluded, a 10s-long

odour presentation enables punishment learning with an ISI of up

Figure 8. Influence of Ca++ duration and intensity. Complementing the analysis shown in Fig. 7 we now vary the Ca++ input while keeping the
transmitter input fixed. In all three examples shown in (A), the Ca++ input rises to a peak of 6?1024 moles/L within 40 ms after the Ca++ onset, but
decays with different time constants, chosen as 0.1 s, 1 s and 10 s (A, top). In this scenario, the associative effects increase with increasing Ca++

duration (A, bottom). In addition, a large decay constant causes a long tail of the Ca++ input that enables negative associative effects for longer ISIs (A,
the last case). In (B) we provide an exemplary Ca++ input (B, top) which gives good fit to the behavioural results in Fig. 1 in terms of the ISI-
dependency of the associative effects but not in terms of their sizes relative to each other (B, bottom). In this case, the Ca++ concentration rises to a
peak of 6?1024 moles/L within 13 s after the onset, comparing well with the 15s- long odour presentation in Fig. 1. Note that the best negative
associative effect occurs with ISI = 213 s, similar to the behavioural situation in Fig. 1. Finally, in (C), we study the effects of the intensity of the Ca++

input. We fix the transmitter input and use the Ca++ input depicted in (B), but scaled up and down by one order of magnitude. The intensity of Ca++

strongly influences the sizes of both the negative and the positive associative effects; the balance between the two is however somewhat
compromised with increasing Ca++ intensity.
doi:10.1371/journal.pone.0032885.g008
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to 225 s [52]. That is, a brief gap between the offset of the odour

and the onset of the shock is readily tolerated. As an attempt to

account for such ‘trace conditioning’ in our model, we vary the

decay time constant of the Ca++ input, keeping constant its rise

time and peak (Fig. 8A, top). In fact, implementing the

biochemical steps of Ca++-calmodulin interaction would likely

have the same effect (Fig. 1 of [53]). In any case, more slowly

decaying Ca++ inputs lead to larger associative effects (Fig. 8A,

bottom); and enable longer ISIs to lead to negative associative

effects (Fig. 8A, the last case). As exemplified in Fig. 8B, the shape

of the Ca++ input is indeed a critical parameter for reproducing the

behavioural situation in Fig. 1 (see the respective figure legend for

details). In short, a long tail of odour-induced Ca++ (or Ca++-

calmodulin complex) increase in the Kenyon cells could bridge

over at least part of the temporal gap between odour offset and

shock onset. This could then be used by the Ca++-calmodulin-

dependent adenylate cyclase or likely also other signalling

molecules [54] to enable ‘trace conditioning’. Studies using

genetically encoded Ca++ sensors to monitor the Kenyon cell

odour responses neither rule out nor confirm the existence of such

long tails in the Ca++ concentration [22–24].

Next, we look at the effects of the intensity of the Ca++ input. To

investigate a scenario that mimics the behavioral situation as

closely as possible, we use Ca++ inputs shaped as in Fig. 8B. We

scale their size up or down by one order of magnitude. As shown

in Fig. 8C, this strongly influences both the negative and the

positive associative effects. In the fruit fly, too, learning is typically

improved with increasing odour concentration; beyond a certain

concentration, however, further increase deteriorates learning

[13], which is not explained by our model.

Alternative model for the adenylate cyclase regulation
Finally, we test the generality of our results using an alternative

model for the regulation of the adenylate cyclase by the transmitter

[45]. This model (Fig. 9) includes only a single biochemical step for

the GPCR activation and it ignores the trimeric nature of the G

protein. In addition to its reduced complexity (i.e. five instead of

nine differential equations), it differs from the first model (Fig. 3A)

in terms of the initial concentrations of the molecules, as well as

the reaction rate constants (see Materials and Methods for details).

In response to a transmitter input, the alternative model

generates time courses for the active adenylate cyclase concentra-

tion (Fig. 10A) and associative effects (Fig. 10B) whose salient

features are strikingly similar to those of the first model (Fig. 5).

Most importantly, the simplified model also clearly shows

opposing associative effects that depend in the same qualitative

manner on event timing and the adenylate cyclase dynamics.

Note that the two models we use are adapted from two different

systems (i.e., olfactory transduction in moth [46] and actin

polymerization in human neutrophils [45], respectively) and thus

the parameter estimates come from different methods, processes

and species. Having reconciled these, we are confident that our

results capture the generic properties of Ca++-calmodulin-sensitive

adenylate cyclase regulation. We believe that this cross-species

approach we use strengthens the proof of concept that the reaction

dynamics of adenylate cyclase signalling could explain the effect of

event timing on associative learning.

Discussion

Event timing critically affects associative learning. Fruit flies, for

example, learn an odour as a signal for punishment or relief,

depending on whether it precedes or follows shock during training

(Fig. 1) [11,13–17]. We suggest a simple biochemical explanation

for these two opposing kinds of learning. During punishment

training, a Ca++-calmodulin-sensitive adenylate cyclase in the

Kenyon cells seems to detect the convergence of the odour and the

shock signals (Fig. 2) [30–35] (see also [55] for a similar

mechanism in striatal medium spiny neurons). Based on

biochemical data from Aplysia [41–43], we implement a model

where shock-induced transmitter activates the adenylate cyclase

and the underlying reaction dynamics are bi-directionally

regulated by odour-induced Ca++, depending on the relative

timing of the two inputs (Fig. 3). Using this model, we simulate the

key fruit fly learning experiment for the effect of event timing

(Fig. 1). To mimic the situation in the control Kenyon cells, we use

Ca++ and transmitter inputs that are sufficiently separated in time,

Figure 9. An alternative model for adenlyate cyclase regulation by the transmitter. To complement our main analysis based on the model
adapted from [46] and shown in Fig. 3A, we finally use a simpler model variant [45]. Here, the transmitter reversibly binds to its respective G protein
coupled receptor (GPCR) to form an active complex (Transmitter/GPCR*). This complex then dissociates, or it interacts with the G protein (G) to
activate it (G*). The trimeric nature of the G protein is ignored (compare with Fig. 3A). G* on the one hand spontaneously deactivates (G), on the other
hand it reversibly interacts with the adenylate cyclase (AC) to form an enzymatically active complex (G*/AC*), which serves as the system’s output.
The effect of Ca++ is implemented the same way as in Fig. 3A.
doi:10.1371/journal.pone.0032885.g009
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and assume that the resulting cAMP production will strengthen

the output of these cells to the conditioned avoidance circuits to a

certain level. To simulate the situation in the trained Kenyon cells,

we use various inter-stimulus intervals (ISI) between the Ca++ and

the transmitter. In this setting, the equivalent of punishment

training leads to more cAMP than the control level (Fig. 4) so that

the output of the trained Kenyon cells will be strengthened more

than that of the control Kenyon cells, resulting in avoidance of the

trained odour in a choice situation. The equivalent of relief

training, in turn, results in a cAMP production below the control

Figure 10. Alternative model: Influence of G*/AC* formation and dissociation rate constants. A. We stimulate the alternative model
based on [45] with a transmitter input (details as in Fig. 3B) and plot the time course of the resulting G*/AC* concentration. B. Repeating the
experiment in Fig. 4, we plot the percent associative effect as a function of the ISI. Comparison with Fig. 5 shows that despite their various differences
both models generate rather similar associative effects.
doi:10.1371/journal.pone.0032885.g010
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level (Fig. 4); consequently, the output of the trained Kenyon cells

will remain weaker than that of the control Kenyon cells, resulting

in net approach to the trained odour. Despite its simple

biochemical formulation, the model also recapitulates other salient

features of punishment and relief learning (Fig. 4). This agreement

between the simulation- and the behavioural data is robust with

respect to changes in various model parameters within reasonably

wide ranges (Figs. 5 and 6). Given the effects observed beyond

these ranges however, it may be interesting to experimentally

manipulate reaction rate constants, e.g., by changing ambient

temperature, to then see the effects on the behavioural ISI-

learning function. Importantly, our conclusions also hold for a

rather different model for transmitter-mediated adenylate cyclase

activation (Figs. 9 and 10).

The associative effects we report in Fig. 4 reach up to ,16% of

the control condition; a stronger Ca++ input boosts these effects

significantly (Fig. 8C); also, repetition of training will result in a

cumulative increase. In addition, these effects will most likely be

amplified through the downstream signal transduction cascade

[49]. Note that a previous model based on spike-timing-dependent

plasticity reports up to only ,0.7% change in synaptic strength in

a single training trial (Fig. 1C of [18]), despite assuming

unrealistically strong odour-induced activity. Experimentally,

e.g., in vertebrate brain slices, no less than 20 pre-post synaptic

action potential pairings are necessary to obtain only ,10%

potentiation of synaptic strength [56]. Given these, the sizes of the

associative effects we report seem reasonable. Critically, the

quantitative relationship between synaptic plasticity and behav-

ioural plasticity has not been characterized with respect to

Drosophila olfactory learning; whereas few studies exist in other

systems, e.g., [57] reports 10–20% strengthening in hippocampal

synapses upon behavioural training. In general, the question of

how much change in synaptic strength is required for making a

difference in behaviour, is open.

The present model uses the amount of cAMP production as

output. Clearly, much happens in reality between this step and the

synaptic plasticity underlying learning. Implementing the follow-

ing stages of signal transduction (e.g., activation of the cAMP-

dependent protein kinase (PKA), phosphorylation of Synapsin

[58]) may help understanding key features of associative learning,

other than its sensitivity to event timing. For example, in the honey

bee antennal lobe, a single olfactory reward training trial

transiently activates PKA; repetitive training on the other hand

results in prolonged PKA activation, which may be important for

the formation of long-term memory [59] (see [60] for a

computational model relying on this mechanism). Also, degrada-

tion of cAMP [35] and de-phosphorylation of key downstream

proteins [61] is likely critical for restricting the effects of learning

both during training and thereafter. All these downstream

processes can be added to the model to explain the dynamics of

memory acquisition or decay. In the current study however we

focus on the effect of event timing on learning and provide a proof

of concept that bi-directional regulation of adenylate cyclase can

be the underlying mechanism. As a next step, one should

experimentally test for a role of the Ca++-calmodulin-sensitive

adenylate cyclase, rutabaga in relief learning, using the available

genetic tools, e.g., loss of function mutations [30,32,33], RNAi-

knockdown [62]. Also the role of dopaminergic signalling in relief

learning remains open. Blocking the neuronal output from two

different, incomplete sets of dopaminergic neurons leaves relief

learning intact [16]; however, given the caveats of the genetic

techniques used in the respective study, the complementary

approach of interfering with dopamine receptor function using

genetic [27,63] and pharmacological [64] tools seems warranted.

Note that for punishment learning, both the adenylate cyclase-

and the dopamine roles are better established [25–33].

A previous model by Drew and Abbott [18] suggests that

punishment learning strengthens the Kenyon cell output, whereas

relief learning has a weakening effect, so that opposite kinds of

conditioned behaviour result. As key mechanism the authors

implement spike-timing-dependent plasticity (STDP) at the

Kenyon cell output synapses [65,66]. To bridge the gap in time

scales between STDP and behavioural event timing effects, they

need to assume high and slowly decaying spiking activity in the

Kenyon cells and postsynaptic neurons, following odour and

shock, respectively. As these assumptions are experimentally not

fulfilled [19–21], this particular, STDP-based model does not seem

appropriate for olfactory learning in the fruit fly. This does

however not exclude a role for STDP in insect olfactory learning:

In the locust, specific Kenyon cell output synapses seem to be

‘tagged’ by the occurrence of temporally adjunct pre- and post-

synaptic action potentials, mimicking the situation during odour

presentation; only these tagged synapses are then modified upon

delivery of a delayed neuromodulator [66]. Such a process could

underlie punishment learning, including ‘trace conditioning’; it

can however not readily account for relief learning.

Both in Drew and Abbott’s STDP-based model [18] and in the

present adenylate cyclase-based model, punishment and relief

training act on the same Kenyon cell output to the same

downstream circuit, but in opposite ways. This scenario readily

accounts for the observed diametrically opposite conditioned

behaviours, i.e. avoidance vs. approach [11,13–17]. Further

investigation into the repertoire of conditioned behaviours after

punishment and relief training may well render this scenario short,

e.g., if punishment learning can modulate kinds of behaviour that

relief learning leaves unaffected and vice versa. In that case, an

alternative scenario could be that punishment and relief learning

strengthen the output from two distinct sets of Kenyon cells which

redundantly encode the trained odour, but receive different kinds

of reinforcement signal and send their output to different

downstream circuits. In a related scenario, punishment and relief

memory traces would be laid down within the same Kenyon cells,

but at distinct sub-cellular sites, which receive different reinforce-

ment signals and send output to different downstream circuits. In

either case, it is not known how the reinforcement signal for relief

is implemented at the neuronal level [16]. Finally, with respect to

all scenarios discussed, the role of the Kenyon cells in relief

learning awaits testing. Note that for punishment learning, this

role is well-established [25,31–33].

To summarize, further experiments on the molecular, cellular

and behavioural level are needed to elucidate the mechanism of

relief learning. The present computational study may guide this

process in that it identifies one plausible candidate scenario. More

generally, our approach shows that even a simple biochemical

process may help explain a non-trivial behavioural observation,

such as the bi-directional effect of event timing on associative

learning.

Materials and Methods

All simulations were done in MATLAB 7 (Mathworks, Natick,

USA) on a PC. Except in Figs. 5B2, 8B and 8C, the differential

equations were solved using the forward Euler method, where the

time-dependent inputs and dynamical variables were discretized at

0.001 s. Variations of the temporal step size showed that this

approach yielded a faithful yet simple numerical representation of

the dynamics. In Figs. 5B2, 8B and 8C, we used the ordinary

differential equation solver ode15 s, provided by MATLAB.
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Regulation of the adenylate cyclase by the transmitter
and Ca++

We implemented two alternative models for the regulation of

the adenylate cyclase by the transmitter and Ca++. The first model

was adapted from a previous model of G-protein-mediated insect

olfactory signal transduction [46]. The alternative model was

adapted from an implementation of G-protein signalling in actin

polymerization in human neutrophils [45]. In what follows, we

present in detail the first model; the alternative model is briefly

explained at the end.

The transmitter (Tr) was the primary input to the model, as

sketched in Fig. 3A. Unless stated otherwise, the time course of the

Tr concentration was fashioned after biochemical experiments

performed in Aplysia. To this end, we extracted the time-

dependent serotonin concentration from Fig. 1A of [42] and used

linear interpolation to generate the additional data points required

for the simulations. Numerical values were converted from

mmoles/L to molecules/mm2 using a conversion factor.

Conversion factor

~10{21:Avogadro0s number:
Cell volume

Cell surface area

ð1Þ

Avogadro’s number is 6.02?1023 molecules/mol and, following

[46], the cell volume was 2600 mm3 and cell surface area was

426 mm2, leading to a conversion factor of ,3700 molecules?mm/

mol. The resulting Tr concentration reached a peak value of

6.7?104 molecules/mm2 within ,7 s and decayed back to zero

within ,18 s after stimulus onset.

For the simulations depicted in Fig. 7, the Tr concentration over

time was taken as

½Tr�(t)~e{t=t1{e{t=t2 ð2Þ

To cover different decay courses, the time constant t1 was chosen

as 0.1 s, 1 s and 10 s, respectively; with t2 = 0.01 s, the peak

concentration was reached within ,40 ms after transmitter onset.

The resulting concentrations were normalized such that the peak

was 7?104 molecules/mm2 in each case. For varying Tr intensity,

we used the time constants t1 = 1 s and t2 = 0.01 s and up- and

down-scaled the respective function by division.

In each experiment, the desired Tr concentration time course

was initiated at the specified point in time. In Figs. 3B and 4, for

plotting reasons, concentrations were normalized relative to their

peak values. For molecules other than Ca++ and Tr, concentra-

tions were initiated with the values specified in Table 1.

The concentration of each kind of molecule was then updated

according to the respective equation, below.

d½GPCR�
dt

~{k1
:½Tr�:½GPCR�zk{1

:½Tr=GPCR� ð3Þ

d½Tr=GPCR�
dt

~k1
:½Tr�:½GPCR�

{(k{1zk2):½Tr=GPCR�zk{2
:½GPCR��

ð4Þ

d½GPCR��
dt

~k2
:½Tr=GPCR�{k{2

:½GPCR�� ð5Þ

d½Gabc�
dt

~{k3
:½Gabc�:½GPCR��zk4

:½Ga�:½Gbc� ð6Þ

d½Gbc�
dt

~k3
:½Gabc�:½GPCR��{k4

:½Ga�:½Gbc� ð7Þ

d½Ga��
dt

~k3
:½Gabc�:½GPCR��{k{3

:½Ga��{k5
:½Ga��:½AC� ð8Þ

d½Ga�
dt

~k{3
:½Ga��{k4

:½Ga�:½Gbc�zk{5
:½Ga�=AC�� ð9Þ

d½AC�
dt

~{k5
:½Ga��:½AC�zk{5

:½Ga�=AC�� ð10Þ

d½Ga�=AC��
dt

~k5
:½Ga��:½AC�{k{5

:½Ga�=AC�� ð11Þ

In these equations, the reaction rate constants (k) took the values

listed in Table 2.

Table 1. Components and initial concentrations for the first model.

Abbreviation Molecule Initial concentration (molecules/mm2)

GPCR G protein coupled receptor 6000

Tr/GPCR Complex of Tr and GPCR 0

GPCR* Activated GPCR 0

Gabc Trimeric G protein 1000

Gbc G protein b- and c- subunits 0

Ga* Active Ga 0

Ga Inactive G protein a-subunit 0

AC Adenylate cyclase 500

Ga*/AC* Complex of Ga* and activated AC 0

All values were chosen according to [46] and were estimates from moth olfactory transduction (see [46] for further references).
doi:10.1371/journal.pone.0032885.t001

Modeling Event Timing in Associative Learning

PLoS ONE | www.plosone.org 14 March 2012 | Volume 7 | Issue 3 | e32885



Ca++ was the second input to the model. Unless stated

otherwise, its time-dependent concentration was modeled accord-

ing to data from biochemical experiments carried out in Aplysia

(Fig. 1A of [42]), using linear interpolation. The resulting Ca++

concentration started to rise at ,4.5 s, reached a peak value of

5.6?1024 moles/L within 6 s and decayed back to zero within

,8.5 s after stimulus onset. For Fig. 8A, the Ca++ concentration

was calculated according to the Eq. (2), and then normalized such

that the peak value was 6?1024 moles/L. In Figs. 8B and 8C, the

Ca++ concentration over time was taken as

½Cazz�(t)~

0 tƒt0,

½Cazz
peak�:

etmax=t1

etmax=t1{1
: 1{e(t0{t)=t1
� �

t0vtƒtma  x,

½Cazz
peak�:e({tzt0ztmax)=t2 tmaxvt

8>>><
>>>:

ð12Þ

[Ca++
peak], the maximum value of [Ca++], was taken as 6?1024

moles/L in Fig. 8B and was varied as shown in Fig. 8C. t0 was the

onset of the Ca++ input; tmax = 13 s was the time it took the [Ca++]

to reach its maximum; t1 = 10 s and t2 = 1 s were the time

constants of [Ca++] rise and fall, respectively.

In order to account for the findings in Aplysia [41–43] (see

Results for details), we assumed Ca++ to affect the reaction rate

constants k5 and k-5 with a delay of 2.5 s so that k5 and k-5 became

k5(t)~kbase-line
5

: 1zCazzfactor:½Cazz�(t{D)f g ð13Þ

k{5(t)~kbase-line
{5

: 1zCazzfactor:½Cazz�(t{D)f g, ð14Þ

where the time-dependent input [Ca++](t) is replaced by [Ca++](t-

D) and D= 2.5 s. We used Ca++ factor = 10 000 L/(moles?s).

Effect of event timing on the adenylate cyclase
The model system was stimulated with a transmitter input, as

described above, delivered at time t = 210 s. For the control

condition, a Ca++ input was given at t = 0 s. For the associative

training, the Ca++ input was separated from the transmitter input

with an inter-stimulus interval (ISI), which was varied across

experiments between 2150 s and 200 s in steps of 1 s, except in

Fig. 5B2, where the range was 2100 s to 200 s. Here, negative

ISIs indicated that Ca++ preceded the transmitter; positive ISIs

meant that Ca++ followed the transmitter. The timing of stimuli

was fashioned after the behavioural experiment in Fig. 1. During

the 550s- long simulation, the area under the Ga*/AC*

concentration curve was taken as a measure of cAMP production.

For each ISI, we then calculated the percent associative effect as

Percent associative effect

~
AreaControl condition{AreaAssociative training

AreaControl condition

:100
ð15Þ

Negative values thus indicated that associative training with the

particular ISI resulted in more cAMP production than the control

Table 2. Rate constants of the reactions for the first model.

Rate constant Reaction Value Unit

k1 Formation of the Tr/GPCR complex 5.6?1025 mm2/(molecules?s)

k-1 Dissociation of the Tr/GPCR complex 8 1/s

k2 Activation of GPCR 17 1/s

k-2 Inactivation of GPCR 100 1/s

k3 Dissociation of Gabc into Ga* and Gbc 0.75 mm2/(molecules?s)

k-3 Deactivation of Ga* to Ga 0.05 1/s

k4 Reassembly of Ga and Gbc into Gabc 2 mm2/(molecules?s)

k5
base-line Formation of the Ga*/AC* complex 1025 mm2/(molecules?s)

k-5
base-line Dissociation of the Ga*/AC* complex 0.1 1/s

Apart from k5 and k-5, all values were chosen according to [46]. Thus, k1, k-1, k2, k-2 were estimates from moth olfactory transduction or vertebrate phototransduction
(see [46] for further references). For the parameters k5 and k-5 (see also Eqs. 13 and 14), the listed base-line values were chosen to mimic the experimentally measured
dynamics of adenylate cyclase activation/deactivation in response to transmitter [42], for a detailed sensitivity-analysis, see Fig. 5A. k5 and k-5 were sensitive to Ca++ (Eqs.
13 and 14).
doi:10.1371/journal.pone.0032885.t002

Table 3. Components and initial concentrations for the alternative model.

Abbreviation Molecule Initial concentration (molecules/cell)

GPCR G protein coupled receptor 55 000

Tr/GPCR* Complex of Tr and activated GPCR 0

G* Activated G protein 0

AC Adenylate cyclase 100 000

G*/AC* Complex of G* and activated AC 0

G G protein 100 000

Apart from the initial concentrations of AC and G*/AC*, values were as in [45] and thus estimates from neutrophil actin polymerization (see [45] for further references).
doi:10.1371/journal.pone.0032885.t003
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condition; positive values meant less cAMP production compared

to control.

Alternative model
The alternative model for the dual control of the adenylate

cyclase by the transmitter (Tr) and Ca++ was based on [45] and is

sketched in Fig. 9. The Tr and Ca++ concentrations were chosen

according to the experiments performed in Aplysia (Fig. 1A of

[42]), as already explained in the context of the first model, except

that Tr concentration was measured in moles/L. Model

components and initial concentrations are given in Table 3. The

dynamical variables were updated according to the Eqs. (16) to

(21) and the reaction rate constants are given in Table 4. The

effect of Ca++ and the percent associative effect were defined as in

the first model.

d½GPCR�
dt

~{k1
:½Tr�:½GPCR�zk{1

:½Tr=GPCR�� ð16Þ

d½Tr=GPCR��
dt

~k1
:½Tr�:½GPCR�{(k{1zk6):½Tr=GPCR�� ð17Þ

d½G��
dt

~k3
:½G�:½Tr=GPCR��{k{3

:½G��{k5
:½G��:½AC� ð18Þ

d½AC�
dt

~{k5
:½G��:½AC�zk{5

:½G�=AC�� ð19Þ

d½G�=AC��
dt

~k5
:½G��:½AC�{k{5

:½G�=AC�� ð20Þ

½G�z½G��z½G�=AC��~100000 ð21Þ
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