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Discrete failure time models

Ludwig Fahrmeir, Universitat Minchen

Introduction

Most methods for analyzing failure time or event history data are based on
time as a continuously measured variate. A basic assumption for large parts
of theory is that failure times are untied, see Andersen et al. [2]. In practice,
there is always some smallest time unit, so that ties can occur. A moder-
ate number of ties, while banned in theory, can be treated by appropriate
modifications. If many ties occur, e.g. due to grouping in larger time units
or intervals, or if time is truly discrete, then discrete survival or failure time
models are more consistent with the data. Such situations arise in medical
work when patients are followed up at fixed intervals like months, in certain
biostatistical problems, for example human fertility studies and time to preg-
nancy (Scheike and Jensen [19]), or in labor market studies where duration of
unemployment is measured in weeks; at best, or in months. We review para-
metric models and outline recent nonparametric approaches. More details,
in particular for parametric models, are given e.g. in Fahrmeir and Tutz [11],

ch. 9, and further references cited there.

Basic concepts

Let time be divided into intervals [ao, a1),[a1, a2),. . .,[ag—1, aq),[aq, o0). Usu-
ally ap = 0 is assumed, and a, denotes the final follow up. Identifying the
discrete time index ¢ with interval [a;—1, a¢), a discrete failure time 7' is con-
sidered, where T' =1t denotes failure within interval ¢ = [a;—1, a;). The basic

quantity characterizing 7" is the discrete hazard function
a(t)=Pr(I'=1T>1), t=1,...4¢, (0.1)

which is the conditional probability for the risk of failure in interval ¢ given

the interval is reached. The discrete survivor function for reaching interval ¢



1s
t—1

S(ty=Pr(T > 1) =[]I1 - a(s)], (0.2)

s=1

and the unconditional probability for failure at ¢ is Pr(T =1t) = «(1)S(t).

For a homogeneous population, discrete failure time data are given by
(t;,6;),i = 1,...,n, where t; = min(7;, C;) is the minimum of survival time
T; and censoring time Cj, and d; is the indicator variable for failure (§; = 1)
or censoring (d; = 0). For the following we assume that censoring occurs
at the end of the intervals, otherwise appropriate modifications have to be
made. Simple estimates for «(t) are crude death rates &(t) = di/n:, where
n; 1s the size of the population at risk and d; the number of observed fail-
ures in [az—1,a¢). The so-called standard life table estimate replaces ny by
ny — we/2, where w; is the number of censored observations in [a:—1,at),
thereby assuming that censored observations are under risk for half the in-
terval. In particular for large ¢, where the size n; of the risk set often becomes
small, these estimates may be quite unsteady, and smoothing by one of the
nonparametric methods outlined further below will be appropriate. This is

illustrated in Figure 1.
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Figure 0.1: Posterior mean estimates (solid line) and pointwise two standard

deviation confidence bands together with crude death rates (plus)

It shows crude death rates at age ¢ in years for a population of retired Amer-

ican white females together with a smoothed estimate. A look at the data



(Green and Silverman [13], p. 101) shows that n; becomes rather small for
higher age ¢, resulting in unstable estimates towards the end of the observa-
tion period.

Discrete failure time data can also be described by discrete-time counting
processes™ N;(t),i=1,... n, defined by N;(0) =0 and

{ 1 if individual 7 is at risk and fails at ¢
AN;() = N;(t) = N;(t = 1) =
0 else

for t > 1, see e.g. Arjas and Haara [3]. Thus, for every individual ¢ under
risk at t, the value AN;(t) can be considered as the outcome of a binary
experiment, with Pr(AN;(t) = 1) = «(t). The sum N(t) = >, N;(t) counts
the number of observed failures up to ¢, and crude death rates can be derived
as nonparametric maximum likelihood estimators, in analogy to the Nelson-
Aalen estimator® for continuous time.

In most studies a vector of possibly time-dependent basic or derived co-
variates x;; 1s observed in addition to failure times. Time-dependent com-
ponents of x;; are assumed to be fixed within interval ¢. Then the hazard

function for survival time 7; of individual ¢ will generally depend on covariates

and is defined by
a;(t|x5) = Pr(Ty =T > t,x5,), t=1,...,q, (0.3)

where x7, = (Xi1,...,X%;t) denotes the history of covariates up to time t. Ex-
pressions for the survivor function (0.2) and for Pr(T = t) have to be modified
accordingly. Also, the sequence of binary experiments for AN;(¢),¢ > 1, will
depend on x;;. Unless separate analysis for homogeneous subgroups can be
carried out, it 1s natural to describe the dependence of conditional probabil-
ities of failure by binary regression models. Let F;_ denote the history of
events registered up to time ¢, but excluding the failure at ¢, and let r;(¢)
denote a risk indicator with r;(¢) = 1 if individual 4 is at risk in interval ¢,
7i(t) = 0 otherwise. Then it will be assumed that the conditional probability

of failures can be expressed as

Pr(AN;(t) = 1F,_) = ri(t) o (t]x};)



with hazard functions linked to a time-varying predictor n;; by
ai(t|xj;) = h(nit) (0.4)

through a suitable link function &, for example the logistic function. The
predictor 7;; 18 modelled parametrically or nonparametrically as a function

of time ¢ and basic or derived covarilates x;;.

Parametric models

This section deals mainly with parametric models (0.4), where the predictor

has the common linear parametric form
Nit = 23 (0.5)

as in generalized linear models*, with the design vector z;; formed from basic

covariates. In many applications the linear predictor is chosen as

nit = Por + X;tﬁx ) (0.6)

where 3, 1s a vector of covariate effects and Go:, ¢ = 1,..., ¢ is a time-varying
baseline effect. Model (0.6) can be written in the form (0.5) by defining z;, =
(0,...,1,...,0, x;t), BI = (Bo1,- - -, Pog, B;) Other predictors are discussed
further below.

Different discrete-time failure models are determined by choice of the
link function A. Most common are discrete proportional hazards and logistic

models.

The discrete proportional hazards model

Suppose that an underlying continuous failure time obeys a proportional
hazard or relative risk model ag(?) exp(x;tﬁx). If time 7" can only be observed
as a discrete random variable, T' = ¢ denoting failure in [a;_1, a;), this yields

the discrete proportional hazards model

a(t|xit) = 1 — exp[— exp(for + X;tﬁx)] ) (0.7)



with baseline effects

BOt = log/ Ozo(t)dt

ai—1
derived from the baseline function ag(u) (see e.g. Kalbfleisch and Prentice
[17]). An alternative formulation of (0.7) is the complementary log-log model*
log{— log[l — ar(t|x;,)]} = Bo¢ +x;,8,. The parameter vector 3, is unchanged
by the transition to the discrete version, so that the same analysis as with
the proportional hazard model i1s possible as far as the influence of covari-
ates is concerned. However, B, and time-varying effects Fo: have now to
be estimated jointly. If the number of intervals is large, then the dimension
of Bo1, ..., fog may become dangerously high, often even leading to nonex-
istence of ML estimates. Then more parsimonious parametric forms like
polynomials By; = By + ...+ Bet”, piecewise constant effects or regression
splines with only a few cut points are preferable. Often, cubic-linear splines
of the form Bor = Bo + Bit + Ba(t — )2 + Bs(t — t.)2, are useful, where
(t—tc)— = min(t —t.,0) and . is a cut-point. The baseline effect is cubic be-
fore t. and linear after ¢.. Such a simple spline model is more robust against
few data at the end of the observation period than polynomials, and it is
a smooth function, compared to piecewise constant modelling. Of course,
other forms of regression splines may be considered. Also one may use the
numerically more stable B-spline basis instead of the truncated power form,
compare Sleeper and Harrington [20] in a continuous-time setting. By ap-
propriate definition of the design vector, regression spline models can also be

written in linear parametric from (0.5).

The logistic model

An alternative model is the logistic model for the discrete hazard

o exp(Bor + %18,
alt|xy) = 1+exp(60t+;;tﬁx)’ (0.8)

considered by Thompson [21] and, in slightly different form, by Cox [5]. For
short intervals, this model becomes rather similar to the discrete proportional
hazards model. An advantage of the logistic model is that the covariate effects

3, can be estimated semiparametrically, considering baseline effects Fo: as



nuisance parameters and leaving them unspecified as in the continuous-time
proportional hazards model, see Cox and Oakes [6].

Other discrete-time failure models result for other choices of h. Very
flexible models are obtained if the link is an element of a parametric family
of link functions. Examples are the model of Aranda-Ordaz (see Fahrmeir
and Tutz [11], p. 318) or the families considered by Czado [7].

Although choice of the link function i1s an important issue, we feel that
careful modelling of the predictor is often even more essential. To simplify
discussion, we consider only two covariates x and w, where # is a continuous
variable like tumor size or hormone concentration and w is binary, indicating
for example sex or treatment group.

Models with time-varying effects are obtained by assuming

it = Bot + Pro; + Porw; (0.9)

where [Fg; could be the time-varying effect of a therapy, possibly decreasing
with time. Alternatively, the term (s:w; may be considered as a particular
form of interaction between time ¢ and the covariate w. The function [
may be modelled parametrically similarly as the baseline effect By;. A more
detailed discussion of parametric time-varying effects is in Yamaguchi [24]. If
the simple linear form [;x; for the influence of x is too restrictive, one may
also try to replace it by a nonlinear smooth function gy (#) like in generalized
additive models. As in Hastie and Tibshirani [15], one may go a step further

and consider varying coefficient models of the form

Nie = Bor + Bi(xi) + Bol(ai)w; + Parw; . (0.10)

Here the smooth function §; may be viewed as an effect of w varying over z,
or it is interpreted as an interaction term between the continuous covariate x
and the binary covariate w. Without further prior knowledge it will often be
difficult to specify certain parametric forms for the smooth functions in (0.9),
(0.10). Instead, it will be reasonable to explore patterns with nonparametric
approaches outlined in the next section and to proceed then with a simpler

parametric likelihood-based inference.



Likelihood inference

Under appropriate conditions on censoring and covariate processes, the log-
likelihood reduces to the common form known for binary regression models.

Introducing the indicators

. S
Yi = Yi1, .., ¥Yit) = (0’...’0’1) ’ 5 =1

it 1s proportional to

(B)=> i{yis log i (s[x) + (1 — yis) log[1 — ai(s|x)]}-

i=1 s=1
Arjas and Haara [3] give a careful discussion of assumptions leading to {(3) as
a (partial) log-likelihood. They will generally hold for noninformative random
censoring and time-independent or external covariates, but can become criti-
cal for internal covariates. In particular, the likelihood 1s valid in the presence
of ties, by making the weak assumption that failures at ¢ are conditionally
independent given covariates and past failures. By appropriate construction
of design vectors z;;, the parameters § can then be estimated with software
for binary regression models, and other tools of likelihood inference for these

models may be adopted, see Fahrmeir and Tutz [11], ch. 9.

Nonparametric approaches

Often, the common assumptions of linearity, additivity and time-constancy
of effects are definitely violated and parametric specifications of more flexible
models like (0.9) or (0.10) may be difficult. In this situation nonparametric
approaches provide useful tools for detecting and exploring nonlinear or time-
dependent effects. We outline the roughness penalty approach*, leading to
spline-type smoothing and related Bayesian nonparametric techniques. Other
methods are based on discrete kernels (e.g. Fahrmeir and Tutz [11], ch. 5, 9),
or local likelihoods (Wu and Tuma [23], in a continuous-time setting, Tutz
[22]). Consider models like (0.9) or (0.10) with unknown parameter vector 8
and unknown ”smooth functions” 51, 32, ..., f, of time or continuous covari-

ates. The roughness penalty approach maximizes a penalized log-likelihood



criterion

P
PLUB, B, Bp) = 1B, Bry - Bo) — D AT (B))
j=1

where J(Bj) are roughness penalties and A; are smoothing parameters. A

simple roughness penalty for a time-varying effect 3;;, 1 =1,...,¢, is
q 2
(Bjt = Bje-1)
J(B;) = — = 0.11
(3= 3 = (0,11

The same form may be used for a function 8;(z) of some continuous covariate

x. Another common penalty 1s
16 = [180) P

leading to cubic smoothing splines (see e.g. Green and Silverman [13]). Kiefer
[18] proposes a discrete proportional hazards model with time-varying effects
B¢ and penalty function (0.11). Dannegger, Klinger and Ulm [8] use the
roughness penalty approach to explore nonlinear and time-varying effects of
risk factors in a breast cancer study with monthly data. Related Bayesian
nonparametric approaches put smoothness priors on 3;; or §;(z) and esti-
mation is based on posteriors given the data. If, for example, a random walk

of first order
Bit = Bjio1 + (ar —ar_1)Y v, v~ N(0,1/X)

is taken as smoothness prior for the sequence {3;;}, then the posterior mode
or MAP estimate is identical to the penalized likelihood estimate with penalty
(0.11), see Fahrmeir [9]. Full posterior analyses can be carried out with
MCMC* (Markov Chain Monte Carlo) techniques, see Fahrmeir and Knorr-
Held [10] and, in the related context of generalized additive models, Biller and
Fahrmeir [4]. Nonparametric methods are also useful for smoothing hazard
functions in the absence of covariates. The smooth curve in Figure 1 is the
posterior mean estimate obtained from a Bayesian MCMC approach. The
corresponding cubic spline smoother is very close, see Green and Silverman

[13).



Some extensions

More complex discrete-time event history data

Discrete failure time models can be extended similarly as continuous-time
models. Often one may distinguish between several types R € {1,...,m}
of failure or terminating events. For example, in a medical study there may
be several causes of death, or in studies on unemployment duration one may
consider full time and part time jobs that end the unemployment duration.
The basic quantities for models with multiple modes of failure® are now cause-

specific hazard functions
@i (tx5) = Pr(T =t, R=r|T > t,x},), (0.12)

i.e. conditional probabilities for failure of type r in interval t. Multicate-
gorical response models can be used for regression analysis of cause-specific
hazard functions. A common candidate for unordered events is the multino-
mial logit model (e.g. Allison [1]). Other discrete choice models like a probit
or a nested multinomial logit model (Hill et al. [16]) may also be considered.
If events are ordered, ordinal response models (e.g. Fahrmeir and Tutz [11])
are appropriate. Again parametric and nonparametric approaches are pos-
sible. Penalized likelihood and Bayesian smoothing techniques with models
for time-varying effects are applied to unemployment durations in Fahrmeir
and Wagenpfeil [12], Fahrmeir and Knorr-Held [10].

Discrete failure time models can also be extended to general multiepisode-
multistate models or, in counting process terminology, marked point pro-
cesses. Hamerle [14] studies parametric regression analysis for such discrete
event history data, but generally much less theoretical or applied work has

been done here.

Unobserved heterogeneity and frailty models

The above model specifications assume that individual heterogeneity can be
described by observed variables. However, it is likely that not all relevant
variables are included in a regression model. The conventional approach to

account for neglected heterogeneity or frailty is to include individual-specific
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parameters into the predictor, i.e. modifying n;; to 9% = ni; + 0;, and to
assume that the individual-specific parameters are 1.1.d. random variables
from a prior density function f, i.e. a normal density. Estimation can then be
based on approaches for generalized mixed models with random effects; and
recent MCMC methods seem particularly well suited. However, for single-
spell failure time models the estimates can be very dependent on the choice
of the prior specification. More experience is needed here. The problem

becomes less severe with repeated events.
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