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We analyze the retrieval dynamics of analog ‘“neural” networks with clocked sigmoid elements and
multiple signal delays. Proving a conjecture by Marcus and Westervelt, we show that for delay-
independent symmetric coupling strengths, the only attractors are fixed points and periodic limit cycles.
The same result applies to a larger class of asymmetric networks that may be utilized to store temporal
associations with a cyclic structure. We discuss implications for various learning schemes in the space-

time domain.

Signal transmission processes play an important role
for the dynamics of the nervous system [1]. The underly-
ing electrochemical transport mechanisms are quite intri-
cate and cannot be modeled explicitly within the mesos-
copic approach [2] to biological information processing.
On this level of description, single neutrons are treated as
elementary building blocks, most commonly in the form
of binary threshold units or sigmoid analog elements, and
signal propagation processes are incorporated into the
dynamical description as retarded interactions [3]. Nu-
merical and analytical studies show that a chaotic time
evolution is rather common in systems with delayed
feedback —in single cells [4] as well as in large assemblies
[5].

In contrast to the above observation, some neurobio-
logical central pattern generators utilize delayed feedback
to initiate precise rhythmic activity of motor neutrons
[6]. Furthermore, artificial networks with retarded in-
teractions have proven to operate very effectively as asso-
ciative memories in the space-time domain once special
configurations of synaptic coupling strengths have been
implemented by hand [7,8] or memorized by some ap-
propriate learning rule [9—-12]. However, even these sys-
tems exhibit irregular temporal behavior for certain pa-
rameter values [13,14], greatly affecting their capabilities
as content addressable memories.

It is therefore of broad interest to determine general
conditions which exclude spurious chaotic motion in
delayed-feedback networks but still allow for nontrivial
spatiotemporal phenomena. As is well known, a local
stability analysis cannot deal with this question [15], and
instead, global techniques have to be applied.

So far, two similar approaches have been reported:
For systems with binary elements and a parallel deter-
ministic updating rule, a Lyapunov functional for the re-
trieval dynamics has been introduced in Ref. [16]. It gen-
eralizes Hopfield’s concept [17] of an “energy landscape”
to the space-time domain, applies to a wide class of net-
works that store both static patterns and temporal associ-
ations, and assures that the dynamics relaxes to fixed
points or periodic limit cycles. A slightly different route
has been taken by Marcus and Westervelt [18]. These au-
thors have focused on systems with analog elements and
delay-independent symmetric interactions. Extending
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prior work on graded-response neurons [19,20] and
iterated maps [21], they showed that clocked networks
converge to fixed-point attractors under certain condi-
tions for the synaptic strengths. Guided by some evi-
dence from systems with small maximum delay, they con-
jectured that if those restrictions for the synaptic weights
are not met, the only new attractors are periodic limit cy-
cles.

In the present paper, essential ingredients of both ap-
proaches are combined to form a more general frame-
work for the study of analog networks. We focus on syn-
chronous systems, introduce a novel Lyapunov function-
al, and prove the conjecture of Marcus and Westervelt.
We then turn to a larger group of asymmetric networks
and discuss both unsupervised and teacher-forced learn-
ing schemes for temporal sequences.

The time evolution of analog networks with a synchro-
nous updating rule is defined by a set of coupled
difference equations,

Vit +1)=g,(h;(1)) (1)
with
N Tmax
hi()=3 X J;()V;(t =)+ (1) . (2)
j=17=0

Here, V; denotes the activity of the ith cell, 1 <i =N, and
depends through g; on the local field (postsynaptic poten-
tial) h;, which in turn is determined by the external input
I; and previous neural activities, weighted by the synaptic
coupling strengths J;;(7). For simplicity, the basic time
step (clock cycle) has been set equal to unity. Conse-
quently, the signal delays take nonnegative integer values.
For the special case of delay-independent symmetric
weights, i.e., J;;(1)=J;=J; for 0=7=1,,,, we recover
the description of Ref. [18].

Throughout the present paper, it is generally assumed
that the input-output characteristics g; are single valued,
monotonically increasing, and differentiable, so that there
are well-defined inverse functions g;~! with the same
properties. We will call transfer functions g; ‘“‘sigmoid,”
if in addition they also grow in magnitude more slowly
than linear for large positive or negative arguments. We
introduce auxiliary quantities G;(V;),

1415 ©1991 The American Physical Society



1416

Vi
G,-(V,-)-:*fo dx g \(x), 3

which for sigmoid g; and large absolute V; increase faster
then V7 by construction. Following the notation of Ref.
[18], we denote the maximum slope of g; by S;.

We now prove that there is a Lyapunov functional for
the dynamical system (1),(2) if the synaptic couplings ex-
hibit an ‘“‘extended synaptic symmetry” [21] for some
J
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(fixed) positive integer D,
Jj(7) for =D —1
J;i (1)

T | Jy(D —1—2) for 0S7<D—1.

4)
Links with 7= D are assumed to vanish, i.e., 7, <D.
Notice that the coupling strengths might be asymmetric
for 77D —1 in the sense that J;;(7)7J; (7).

Consider the functional

N D-1 N D—1
H()y=—3 3% 3 Jy(nVit—a)Vi(t—(a+7+1)modD)+ 3 3 [G(V(t =7))—L,(t —1—7)Vi(t —7)] . (5
i,j=1a,7=0 i=171=0

External inputs are supposed to be D periodic, a condition that is satisfied in a trivial way for the standard case of time-

independent inputs. The difference AH(¢)=H (t)

N N
AH(t)=— 3 AZ,(Dh(t—1)—1 3 J,; (D

i=1 ij=1

where
-1
Z,(t)= 2 Vi(t —7)
=0
and
AZ()=Z,()—Z;(t —1)=V(¢t)—V;(t —D) .

The right-hand side of (6) is zero if AZ;(¢)=0 for all i.

In what follows, we analyze the case where V;(¢)5=V,;(t —D
tonically increasing by assumption, G; is strictly convex.

N
—DAZ,(1)AZ;(1)+ F [G(V;(2))—

—H (¢t —1) is then given by

i=1

) for at least some i. Since g;” ! is single valued and mono-
Through a Taylor expansion of G;(V;(t —D)) around

G;(V,(1)), we obtain the following upper bound for those i in the last term of (6):

For a graphical illustration see Ref. [18].
into (6), we arrive at

Inserting (8)

j—l
N
13 B7IAZ (1) . ©)

i=1
A sufficient condition for AH (¢) <0 is therefore given by
7“min[J(l)-—'1)]2_ﬁ‘1 s (10)

where A_;,[J(D —1)] denotes the smallest eigenvalue of
the matrix J(D —1) with components J;(D —1) and
B=max;{B;}. As long as AZ;(¢)70 for some i, H has to
decrease if (10) is met. Since H is bounded from below
for sigmoid g;, AH(#) and AZ,(?) vanish asymptotically
for large t.

We have thus demonstrated that the retrieval dynam-
ics of synchronized analog networks with sigmoid ele-
ments and retarded feedback is governed by a Lyapunov
functional if the synaptic weights satisfy both (4) and (10).
Furthermore, we have shown that the network relaxes to
a solution with V;(¢)=V;(t —D), i.e., to a static state or a
limit cycle with a period equal to D or an integer fraction
of D.

G(Vi(t =D))< AZ()G{(V(1))—LAZ;(t)*G!"(V(t

NSAZ(Dh;(t —1)—LAZ(t)B" . (8)

The model of Ref. [16] uses two-state threshold units
V;=x1 with a parallel stochastic time evolution,
Prob[ V;(t +1)==%1]=L{1+ttanh[Bh,(t)]}. Here, B!
denotes the noise level and 4;(?) is given by (2) as in the
continuous case. The deterministic limit,
Vi(t +1)=sgn[h;(¢)], may also be regarded as a high-
gain limit of the analog network if we consider input-

output characteristics g; that saturate at +1 (—1) for
large positive (negative) arguments, e.g., g;(h;)
=tanh(f3;h;). The relationship between the discrete and

the continuous system is therefore similar to that between
the original Hopfield model [17] with random sequential
stochastic updates and its graded-response counterpart
[20], operating in continuous time. This resemblance car-
ries over to the Lyapunov functionals as well, where for
B;— =, the contribution of G; to (5) can be neglected,
leaving the functional for the Ising-spin model with dis-
tributed delays.

Returning to analog systems, we now discuss some re-
sults for two special synaptic configurations. First, we
choose delay-independent symmetric couplings and
max—D —1,

-
Jir)=Jy;=J

Jy;y=J; for0OS7<D—1. an

The temporal sums in (5) decouple and we obtain
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N
H(t)=-— % EJ Z;(1)Z;(¢)
D

2 2 [Gi(Vi(t —71))

—L(t—1—7)V;(t —7)] . (12)
This expression is equivalent to the first Lyapunov func-
tional of Ref. [18] where it is shown that if (10) and (11)
hold, there are fixed-point attractors only. With properly
normalized couplings, J o« D1, these solutions are iden-
tical to the attractors of the graded-response model [20],
however, regions of attraction and convergence times are
changed [18].

Second, we consider a slight modification of Eq. (11),

0 for =D —1

J;=J; for0<r<D—1. 13

J ij ( 7') =
Equation (10) is now satisfied for all sigmoid g;. We have
thus proven the conjecture of Marcus and Westervelt
[18]: For synchronous analog networks with arbitrary
sigmoid input-output functions, symmetric couplings and
maximum delay D —2, all attractors are restricted to be
limit cycles with periods of D and its divisors.

In passing I would like to note that if D is replaced by
D +1 in (13), both (11) and (13) describe the same net-
work. However, the corresponding Lyapunov function-
als differ even for constant external inputs, and it is only
for the second case that one may draw the above con-
clusions. Furthermore, it is worthwhile to mention that
the second Lyapunov functional of Ref. [18] follows
without guesswork as a special case from (5) and (13) for
D =3.

For the remaining part of the paper, we turn to more
general coupling matrices and discuss the storage of tem-
poral associations with common duration D. Since we
know that the retrieval dynamics has to converge to D-
periodic limit cycles once the conditions (4) and (10) are
met, the main task is to construct or learn synaptic cou-
plings which guarantee that these limit cycles indeed
resemble the desired spatiotemporal attractors for ap-
propriate initial conditions. Similar to the static case,
various approaches may be pursued. I will focus on one
unsupervised learning rule and briefly comment on some
teacher-forced scenarios.

Generalizing from networks with binary elements [16],
let us take

1 P D—1
Jij(r)=e(r) F 2 EOV,-(t“-Fl)Vj((t“—fr)modD) ,

(14)

where p labels the P sequences {V(z,); 1=i=N,
1.<_tu <D}. The parameters €(7) may be used to define
various network architectures [10]. The coupling
strengths will, in general, be asymmetric, J; (T)#J (1),
but for all networks with e(7)=¢[D —(2+T)modD] the

“extended synaptic symmetry”’ (4) still holds. For simpli-
city, we set e(D —1)=0 to satisfy (10) as well.

As a result of the modulo operation in Eq. (14), arbi-
trary sequences are memorized as if they were D-periodic
cycles. They will be retrieved accordingly. If during
learning, a sequence is already presented 7.,, time steps
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before synaptic strengths are altered, the modulo opera-
tion may be dropped, leaving a learning rule that is Heb-
bian [22] in the sense that it correlates presynaptic activity
with subsequent postsynaptic response— in our case the
response is delayed by 7+ 1 time steps due to both the
signal lag and the additional step of the discrete-time dy-
namics (1).

For sequences of uncorrelated, binary random patterns
Vi(t,)==1, quantitative analytical and numerical results
about the network performance have been obtained in the
high-gain limit B;— o [16]. They show that the storage
capacity for temporal associations is comparable to that
for static memories in the Hopfield model. Arbitrary sig-
moid input-output functions may be treated in a similar
fashion if one combines the concept of equivalent static
systems [16] with a statistical mechanical analysis of
graded-response neurons [23].

The learning rule (14) may be utilized to store cycles of
correlated real-valued patterns as well. First numerical
studies have been performed for low-dimensional trajec-
tories (small N) with high numbers of data points (large
D). For many examples, good retrieval could be obtained
this way [24]—without any need for highly time-
consuming supervised learning schemes [25]—however,
teacher-forced algorithms might eventually be necessary
to solve more sophisticated tasks. Here, once again, the
existence of a Lyapunov functional is of great help since
it allows for an application of mean-field techniques [26]
to a wide class of supervised learning strategies like spa-
tiotemporal extensions of the “Boltzmann Machine” con-
cept [27] or, more general, contrastive-learning schemes
[28,29].

Concerning hardware applications, let us note that the
dynamical system (1),(2) can readily be implemented with
charge-coupled devices. There, the vector-matrix multi-
plication in Eq. (2) can be accomplished in a fully parallel
fashion at a clock rate in the megahertz regime [30], al-
lowing for fast systematic experiments of adaptive learn-
ing schemes. Our theoretical analysis might help to
guide and complement such work.

In summary, we have studied the global dynamics of
parallel networks with analog elements and retarded
feedback. Using a novel Lyapunov functional it could be
proven that for a wide class of system architectures and
transfer functions, the only attractors are fixed points and
certain periodic limit cycles. The results can be regarded
as design criteria for artificial networks as well —they
show how to extend well-known learning schemes to the
spatiotemporal domain and guarantee the absence of
spurious chaotic trajectories.
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ping Li, and Bernhard Sulzer. The author also benefited
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Neural Systems program at the California Institute of
Technology. It is a great pleasure to thank Pierre Baldi,
John Hopfield, Marcus Mitchell, and Chuck Neugebauer
for valuable discussions. This work has been supported
by the Office of Naval Research Contract No. N00014-
87-K-0377 and by a grant from the Studienstiftung des
Deutschen Volkes.
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