LMU

INSTITUT FUR INFORMATIK

. . Ludwig——

Lehr- und Forschungseinheit fiir Masimilians
Programmier- und Modellierungssprachen Universitic
Oettingenstrafle 67, D-80538 Miinchen Miinchen

Deduktive Datenbanken

Francois Bry, Rainer Manthey, Heribert Schiitz

erscheint in KI — Kinstliche Intelligenz — Forschung, Entwicklung, Erfahrungen
http://www.pms.informatik.uni-muenchen.de/publikationen

Forschungsbericht/Research Report PMS-FB-1995-1, September 1995



Deduktive Datenbanken

Frangois Bry!, Rainer Manthey?, Heribert Schiitz!

Unstitut fiir Informatik der Universitit Miinchen,
{bry,hschuetz}@informatik.uni-muenchen.de
Institut fiir Informatik 111, Universitit Bonn,
manthey@informatik.uni-bonn.de

1 Einleitung

Deduktive Datenbanken stehen in einer interessanten Beziehung zur Logikpro-
grammierung. Einerseits kann die Fachrichtung “deduktive Datenbanken” als
Teil der Logikprogrammierung angesehen werden. Sie ist zusammen mit und
fast gleichzeitig wie die Logikprogrammierung entstanden [Min88b,GMN&4].
Wie die Logikprogrammierung beruhen die deduktiven Datenbanken auf der
Feststellung, dafl eine Sprache der Logik erster Stufe (iiblicherweise basierend
auf definiten Klauseln) als Modellierungssprache verwendet werden kann, wobei
die Modelltheorie die Semantik und ein geeigneter Beweiskalkiil das Berech-
nungsmodell liefert. Dementsprechend gelten die theoretischen Grundlagen der
Logikprogrammierung auch fiir deduktive Datenbanken [Min88a]. Andererseits
unterscheiden sich deduktive Datenbanken von der eigentlichen Logikprogram-
mierung in ihren Zielen und Methoden. Dieser Artikel soll in diese besonderen
Ziele und Methoden einfithren. Er soll insbesondere einen Uberblick iiber die
Deduktionsmethoden geben, die wahrend des letzten Jahrzehnts zur Anfrage-
auswertung, Integritits- und Anderungsverwaltung in deduktiven Datenbanken
entwickelt worden sind. Aus Platzgriinden werden nur wenige Literaturhinweise
gegeben, die sich im wesentlichen auf Biicher und Ubersichtsartikel beschrinken,
die weitere Referenzen auf spezifische Forschungsliteratur enthalten.

2 Ziele der Forschung iiber deduktive Daten-
banken

Am besten 148t sich die “Philosophie” der deduktiven Datenbanken in Hinblick
auf die geschichtliche Entwicklung der Datenbanksysteme erértern. Entstanden
aus dem Wunsch, die Verwaltung von grofien oder persistenten Datenmengen
zu erleichtern und von den Anwendungsprogrammen zu trennen, hat die Daten-
bankforschung von Anfang an zwei komplementére Ziele verfolgt.

Zum einen soll ein Datenbankverwaltungsystem Dienstleistungen im Bereich
der Systemverwaltung anbieten, die — andere Akzente setzend — der Prozef3- und
Netzverwaltung verwandt sind: Dateiverwaltung, Sicherung der Daten gegen
unerlaubte Zugriffe und Systemfehler, nebenldufige Datenzugriffe und Transak-
tionsverwaltung.



Zum anderen soll ein Datenbankverwaltungssystem unter Einbeziehung von
héheren Sprachen die Datenmodellierung, d.h. die Représentation von Daten-
bankanwendungen, erleichtern. Ausgehend von Dateien sind zu diesem Zweck
hierarchische, Netzwerk-, relationale, Entity-Relationship- und zuletzt dedukti-
ve, aktive und objektorientierte Datenbankmodelle vorgeschlagen worden.

Die eine Strémung der Datenbankforschung ist inhaltlich mit der systemna-
hen Informatik verwandt. Die andere Stromung liegt nahe bei den Programmier-
und Modellierungssprachen. Ein grundlegendes Prinzip verbindet die beiden
komplementéren Schwerpunkte der Datenbankforschung: Eine Datenbank soll
unabhéngig von ihrer internen Darstellung einem Anwendungsprogramm ge-
geniiber so erscheinen, als ob sie ausschlieflich diesem Programm zur Verfiigung
stiinde. Dies wird einerseits durch die Isolation von Transaktionen, andererseits
durch spezialisierte externe Datenbank-Schemata erreicht.

Die Fachrichtung “deduktive Datenbanken” gehért im wesentlichen zu dem
Teil der Datenbankforschung, der den Programmier- und Modellierungsspra-
chen niher steht. Aus der Sicht der Datenbanken wird sie meist als Erweiterung
der relationalen Datenbanken angesehen, weil eine relationale Datenbank hin-
sichtlich Datenmodellierung und Semantik ein ausschlieflich aus Fakten beste-
hendes Logikprogramm darstellt. Eine deduktive Datenbank entspricht demge-
geniiber einem mit sogenannten Integritéitsbedingungen erganzten Logikpro-
gramm. Fakten bzw. nichtatomare Klauseln, Ableitungsregeln genannt, sind
extensionale bzw. intensionale Definitionen, die zur Anfrageauswertung abgeru-
fen werden. Integrititsbedingungen dienen zur Uberwachung von Anderungen
der Fakten und Ableitungsregeln: nur solche Anderungen werden zugelassen,
die zu Fakten- und Regelmengen fithren, die die Integritdtsbedingungen erfiillen.
Inzwischen werden auch deduktive Erweiterungen anderer, insbesondere objekt-
orientierter Datenmodelle untersucht und implementiert, deren Zusammenhang
mit der “klassischen” logischen Programmierung nicht mehr so offensichtlich ist
wie im relationalen Fall.

Fiir die meisten Datenbanken sind intensionale Spezifikationen und Inte-
grititsbedingungen duflerst wichtig. Sie werden derzeit vorwiegend durch spezi-
elle Anwendungsprogramme implementiert, die fiir jede Anwendung gesondert
entwickelt werden miissen. Dabei zeigen sich folgende Nachteile, die von deduk-
tiven Datenbankverwaltungssystemen vermieden werden sollen:

e unsystematische Programmentwicklung

e stark von der Programmierung abhéngende Effizienz
e Verwaltung der Programme auflerhalb der Datenbank
e imperative statt deklarativer Spezifikationen.

Intensionale Spezifikationen und Integritdtsbedingungen sind Bestandteile
der Datenbankanwendung und sollen wie die sonstigen Daten gesichert wer-
den sowie von nebenldufigen Transaktionen zugegriffen werden kénnen, d.h. sie
sollen als Teil der Datenbank verwaltet werden. Ein ideales deduktives Daten-
bankverwaltungssystem wiirde intensionale Regeln und Integritatsbedingungen
gleichermaflen wie Fakten verwalten, d.h. fir deren Speicherung, Abrufe und
Anderungen #hnliche Dienste anbieten wie fiir die sonstigen Daten. Die For-
schungsergebnisse des letzten Jahrzehnts lassen dieses Ziel ndher riicken.



Aus der Sicht relationaler Datenbanken ist die Erweiterung einer Daten-
bank um Ableitungsregeln und Integritdtsbedingungen aus mehreren Griinden
natiirlich. Zum einen stellen Ableitungsregeln lediglich eine Verallgemeinerung
des im relationalen Modell vorhandenen Begriffes der “Sicht” (engl.: view) dar.
7Zum anderen war ein allgemeiner Ansatz fiir Integritdtsbedingungen bereits ein
Ziel der relationalen Datenbanken, das bisher nur teilweise realisiert worden ist.

Die in deduktiven Datenbanken eingefithrten Erweiterungen stellen fiir die
Datenbankforschung einen Sprung ins Unbekannte dar. Mit den deduktiven
Datenbanken wird zum ersten Mal ein Datenbankkonzept vorgeschlagen, das
genauso wie eine herkdmmliche Programmiersprache uneingeschrinkte Berech-
nungen ermoglicht, weil eine aus Fakten und Ableitungsregeln bestehende Spra-
che Turing-vollstdndig sein kann.

3 Das logische Modell deduktiver Datenbanken

Die deklarative Semantik deduktiver Datenbanken unterscheidet sich kaum von
jener der Logikprogrammierung [GM92]. Die von einer deduktiven Datenbank
spezifizierte Faktenmenge 148t sich sowohl als kleinstes Herbrand-Modell als
auch als Fixpunkt eines Folgerungsoperators definieren. Dabei werden Inte-
gritdatsbedingungen zunéchst nicht beriicksichtigt.

Eine deduktive Datenbank wird widerspruchsfrei genannt, wenn sie al-
le ihre Integritdtsbedingungen erfiillt. Integritdtsbedingungen kdnnen als ge-
schlossene Formeln, d.h. Ja/Nein-Anfragen, definiert werden, die nach jeder
Datenbankénderung von der Fakten- und Regelmenge erfiillt werden miissen.
Ein wesentlicher Unterschied zwischen deduktiven Datenbanken und Logikpro-
grammen liegt darin, daf} eine deduktive Datenbank wegen ihrer Integritdtsbe-
dingungen widerspriichlich oder gar unerfiillbar sein kann. In Abschnitt 5 wird
erlautert, wie diesern Umstand Rechnung getragen werden kann.

Deduktive Datenbanken verlangen in der Regel von Fakten, Ableitungs-
regeln, Anfragen und Integritdtsbedingungen domé#nenunabhingig zu sein.
Eine Formel heifit doménenunabhéngig, wenn sich ihre Giltigkeit bzgl. einer
Interpretation durch eine Erweiterung der Doméne nicht dndert. Fiir Fakten be-
deutet die Doménenunabhéngigkeit lediglich, dafl sie variablenfrei sind. Da die
Doménenunabhingigkeit aber eine unentscheidbare Eigenschaft ist, sind hinrei-
chende syntaktische Bedingungen, vor allem die Bereichsbeschriankung, vorge-
schlagen worden. Eine Ableitungsregel heifit bereichsbeschrinkt, wenn jede
im Kopf oder in einem negativen Rumpfliteral vorkommende Variable ebenfalls
in einem positiven Rumpfliteral vorkommt. Fiir Integritdtsbedingungen und
Anfragen 148t sich diese Figenschaft geeignet verallgemeinern. In deduktiven
Datenbanken wird die Bereichsbeschridnkung in der Regel vorausgesetzt. Uni-
verselle Sperzifikationen werden in deduktiven Datenbanken im Gegensatz zur
eigentlichen Logikprogrammierung kaum beriicksichtigt.

Der Nutzen rekursiver Spezifikationen fiir Datenbanken wurde zeitweise be-
zweifelt. Inzwischen ist die Bedeutung der Rekursion fiir die Modellierung von
Datenbanken jedoch nicht mehr umstritten. Graphtraversierungen, wie sie in ei-
ner Vielzahl von Anwendungen (Energie- oder Kommunikationsnetze, Strafien-
oder Bahnverbindungen, etc.) vorkommen, lassen sich deklarativ mittels Rekur-
sion natiirlich und elegant spezifizieren. Sogar die relationale Anfragesprache
SQL wird derzeit um rekursive Sichten erweitert (SQL 3). Aus Effizienzgriinden



wird oft die Einschrankung auf lineare Rekursion vorgeschlagen. Obwohl diese
Einschrankung meist moglich ist, kann sie bisweilen die Modellierung wesentlich
erschweren.

Fiir deduktive Datenbanken wie in der Logikprogrammierung wird eine von
der klassischen Logik abweichende Negationsart verwendet, die nichtmonoton
ist und zur Modellierung der meisten Anwendungen besonders gut geeignet
ist: Aussagen, die nicht bewiesen werden kénnen, werden als falsch betrach-
tet (“negation-as-failure”). Die deklarative Semantik dieser Negationsart ist
immer noch nicht abschlieflend geklart. (Vgl. Abschnitt 2.1 des Beitrags von
T. Eiter und G. Gottlob in diesem Heft.) Viele deduktive Datenbankverwal-
tungssysteme setzen Stratifikation — d.h. Abwesenheit von Negation in Re-
kursionszyklen — voraus, um sich auf Datenbanken mit einer klaren Semantik
einzuschranken [Bid91].

Aus praktischen Griinden haben in deduktiven Datenbanken sogenannte
Aggregationsoperatoren (z.B. arithmetischer Durchschnitt) eine gréfiere Be-
deutung als in der herkémmlichen Logikprogrammierung. In Verbindung mit
rekursiven Regeln ermoglichen sie insbesondere einfache und anschauliche Spe-
zifikationen von sogenannten Stiicklisten (“bill of materials”), die von grofler
praktischer Relevanz sind. Auch bei der Aggregation treten Probleme des nicht-
monotonen Schliefens auf.

Der Mangel an Strukturierungsmdoglichkeiten in der Logikprogrammierung
erweist, sich bei der Modellierung von deduktiven Datenbanken als besonders
ungiinstig. Um diese zu verbessern, aber auch um Konzepte wie Objektidentitét
oder Vererbung als Modellierungswerkzeuge zur Verfiigung zu stellen, sind lo-
gische Sprachen vorgeschlagen worden, die einige Merkmale der Objektorientie-
rung anbieten. Sie stellen eine interessante Erweiterung der herkémmlichen Lo-
gikprogrammierung dar, auch in theoretischer Hinsicht, da sie beispielsweise zy-
klische Terme oder Verwendung von Skolemtermen in Regelképfen ermoglichen

[KL89].

4 Anfrageauswertung

In ihrer prozeduralen Semantik weichen die deduktiven Datenbanken von der
eigentlichen Logikprogrammierung deutlich ab. Die Tiefensuche, auf der iibli-
cherweise Sprachen der Logikprogrammierung beruhen, wird fiir deduktive Da-
tenbanken aus zwei Griinden in Frage gestellt: zum einen, weil sie die Terminie-
rung der Anfrageauswertung nicht sicherstellt; zum anderen, weil sie zu einer
fakten- statt mengenorientierten Anfrageauswertung fiihrt.

Deduktive Datenbanken stellen insofern héhere Anforderungen an die An-
frageauswertung als die Logikprogrammierung, als Terminierung soweit méglich
vom Auswertungsverfahren garantiert werden soll. Aus mehreren Griinden kann
nicht von Benutzern einer deduktiven Datenbank verlangt werden, fiir Termi-
nierung zu sorgen:

o Bei groflen Fakten- und Regelmengen ist es kaum mdoglich, die Reihenfolge
der Klauseln zu iiberschauen und so zu beriicksichtigen, dafi nur terminie-
rende Anfragen gestellt werden.

e Aus Effizienzgriinden ist es meist giinstiger, im Sekundarspeicher Fakten-
und Regelmengen ungeordnet zu verwalten.



Es wird also ein noch héheres Mafl an Deklarativitiat gefordert. Fiir dedukti-
ve Datenbanken sind Anfrageauswertungsverfahren entwickelt worden, die diese
besonderen Anforderungen erfiillen.

4.1 Die relationale Abstraktion: mengenorientierte Zu-
griffe auf Fakten

Fir die Auswertung von Anfragen an relationale Datenbanken wurden die be-
kannten Operatoren der relationalen Algebra (Projektion, Selektion, Join usw.)
eingefithrt. Die relationale Algebra stellt die Relation bzw. Menge als abstrak-
ten Datentyp zur Verfiigung. Sie ermdglicht die Beschreibung von Anfragen
unabhéngig von den Datenstrukturen, durch die die betroffenen Relationen re-
prasentiert werden.

Ein Ausdruck der relationalen Algebra kann auf zwei Ebenen optimiert wer-
den, insbesondere um die Zahl der Sekundérspeicher-Zugriffe zu verringern:
Zunichst wird er durch einen algebraisch dquivalenten Ausdruck mit méglichst
kleinen Zwischenergebnissen ersetzt. Danach werden fiir die einzelnen Opera-
toren geeignete Algorithmen und Datenstrukturen ausgewihlt.

Solche Optimierungen wurden im Gebiet der relationalen Datenbanken be-
sonders fiir positive, konjunktive Anfragen untersucht. Da an deduktive Da-
tenbanken wegen ihrer Ableitungsregeln und Integrititsbedingungen oft allge-
meinere Anfragen (einschliefilich Negation, Disjunktion und Rekursion) gestellt
werden, wurde die relationale Algebra um einige neue Operatoren und Optimie-
rungsmethoden erweitert.

4.2 Vorwirtsschlielende Anfrageauswertungsverfahren

In der Logikprogrammierung wird das Vorwirtsschlieflen fast ausschliefilich the-
oretisch, zur Definition der Fixpunktsemantik verwendet. In deduktiven Daten-
banken wird es hingegen auch praktisch, zur Implementierung der Anfrageaus-
wertung verwendet [NR91].

Fiir Datenbanken, bei denen unterschiedliche Anfragen sehr haufig ausgewer-
tet werden, kann es sinnvoll sein, die Menge aller ableitbaren Fakten zunéchst zu
generieren, um sie dann als relationale, nichtdeduktive Datenbank zu verwalten.
Dieser Ansatz wird Materialisierung genannt. Zeitplane fiir Verkehrsmittel,
die unverhéltnisméafig viel hdufiger abgefragt als aktualisiert werden und sich
hervorragend als deduktive Datenbank modellieren lassen, sind ein Beispiel fiir
eine vorteilhafte Anwendung der Materialisierung.

Das Riickwértsschlieflen erweist sich zur Materialisierung als vollig ungeeig-
net, weil es auf einer in diesem Kontext nutzlosen Verwaltung von Anfragen
beruht. Das Vorwértsschlieflen, das fiir die eigentliche Logikprogrammierung
wegen seines Mangels an Selektivitit ineffizient ist, erweist sich fiir die Materia-
lisierung als vorteilhaft. Sind Fakten und Ableitungsregeln bereichsbeschrénkt,
so kann das Vorwértsschliefilen als wiederholte Anwendung der positiven Unit-
Hyperresolution implementiert werden, wobei keine blinde Instantiierung von
Regeln erforderlich ist.

Die Faktengenerierung wird so lange fortgesetzt, bis keine neuen Fakten
mehr abgeleitet werden kénnen. In der Regel wird davon ausgegangen, dafl in
einer deduktiven Datenbank die Menge der ableitbaren Fakten endlich ist, was
die Terminierung des Verfahrens sicherstellt. FEin Sdttigungsverfahren, das der



in der theoretischen Behandlung iiblichen wiederholten Anwendung des men-
genorientierten Folgerungsoperators unmittelbar entspricht, wird als “naives”
Tterationsverfahren bezeichnet. Eine inkrementelle Variante dieses Verfahrens,
das die systematische Wiederholung von Ableitungen vermeidet, wird “semi-
naive”, “differentielle” oder “A-Iteration” genannt [GKBS&7].

Diese Vorgehensweise 148t sich als Erweiterung eines relationalen Datenbank-
verwaltungssystems implementieren. Das Datenbankverwaltungssystem bietet
Relationen zur Speicherung der abgeleiten Fakten und die (eventuell erwei-
terte) relationale Algebra zur mengenorientierten Implementierung der Unit-
Hyperresolution. Seine Optimierungstechniken sorgen fiir eine effiziente Mate-
rialisierung. Die Moglichkeit, Anfragen durch reines Vorwértsschlielen gekop-
pelt mit anschliefender Selektion der gesuchten Antworten zu implementieren,
wird zwar in der Theorie immer wieder als “naive bzw. semi-naive Auswertung”
erwahnt, stellt aber (aufier in Extremfillen) keine praktikable Auswertungsme-

thode dar.

4.3 Riickwartsschlieflende Anfrageauswertungsverfahren

Das Vorwirtsschlieflen ermdglicht kaum, die gestellte Anfrage zur Einschrin-
kung der generierten Faktenmenge zu verwenden. Fiir Datenbankanfragen wie
fiir Anfragen an Logikprogramme ist das Riickwértsschliefen unumgénglich, um
den Suchraum einzuschranken.

Weil die Ableitungsregeln deduktiver Datenbanken die gleiche Gestalt haben
wie die Klauseln eines Logikprogramms, 148t sich das Riickwirtsschlieflen fiir
deduktive Datenbanken in gleicher Weise wie fiir Logikprogramme formalisieren,
d.h. als SLD-Resolution. Wenn die SL.D-Resolution den Suchraum bestimmt,
setzt sie aber keine Suchstrategie voraus. Bei der Auswahl einer fiir die An-
frageauswertung in deduktiven Datenbanken geeigneten Suchstrategie werden
andere Eigenschaften gewilinscht als in der eigentlichen Logikprogrammierung.
Ein Anfrageauswertungverfahren wird tiblicherweise als geeignet fiir deduktive
Datenbanken angesehen, wenn es mengenorientiert ist und in moglichst vielen
Fillen terminiert.

Deduktive Datenbanken, in deren Fakten und Ableitungsregeln keine Ne-
gation und keine Funktionssymbole vorkommen, werden Datalog-Datenbanken
genannt. (Datalog ist ein Kiirzel fiir die Bezeichnung “database prolog”,
die in den T0er Jahren in der Logikprogrammierung verbreitet war. Datalog-
Datenbanken sind eine unmittelbare Erweiterung der relationalen Datenban-
ken, in denen komplexe Terme ebenfalls nicht zuldssig sind.) Das Herbrand-
Universum und damit die Menge der ableitbaren Fakten einer solchen Daten-
bank ist endlich. Suchbdume der SLD-Resolution sind in diesem Fall den-
noch nicht immer endlich, weil rekursive Ableitungsregeln zu unendlichen Asten
fiihren konnen. Daher sind riickwértsschliefende Anfrageauswertungsverfahren
fiir funktionsfreie Datenbanken besonders eingehend untersucht worden.

Mit unterschiedlichen Formalismen und unter Verwendung verschiedener Da-
tenstrukturen sind fiir Datalog-Datenbanken Methoden vorgeschlagen worden,
denen allen das gleiche Prinzip zugrunde liegt: die Memoisierung von Anfra-
gen und Antworten. Anfragen, die bereits einmal gestellt wurden, werden nicht
noch einmal ausgewertet, und hergeleitete Antworten werden an alle Inkarnatio-
nen der zugehdrigen Anfrage weitergegeben. Das Verfahren besteht somit aus
einer verschrinkten Materialisierung von Anfragen und Antworten, bis weder



neue Anfragen noch neuen Antworten generiert werden kénnen [War92]. (Vgl.
Abschnitt 2.1 des Beitrags von M. Hess in diesem Heft.)

Eine umfassende Diskussion aller vorgeschlagenen Realisierungen dieses
Prinzips wiirde den Rahmen dieses Uberblicks sprengen. 7Zwei Ansitze seien
hier jedoch erwdhnt, zum einen weil mit ithnen das Prinzip erstmals eingefiihrt
wurde, zum anderen weil sie das gestellte Problem auf sehr unterschiedliche
Weise 16sen. Die beiden Ansétze erschienen zunéchst so unterschiedlich, daf§
erst nach einigen Jahren die Ubereinstimmung des zugrunde liegenden Prinzips
erkannt wurde [Bry90a].

Der eine Ansatz, die OLDT- oder SLDAL-Resolution [TS86,Vie89], ist eine
Variante der SLD-Resolution und steht der Logikprogrammierung am néchsten.
Der andere Ansatz, als Magic-Set-Methode bekannt [BMSU86,UlI88], steht den
relationalen Datenbanken nahe, weil er als Datenstrukturen lediglich Relationen
verwendet.

Die SLDAL-Resolution verwendet, teilweise expandierte Beweisbaume als
Datenstruktur. Es geniigt im Gegensatz zur reinen Tiefensuche nicht, zu je-
dem Zeitpunkt nur einen einzigen Ast eines Beweisbaumes zu speichern. Die
SLDAL-Resolution beruht also auf dem Ersatz der in der Logikprogrammierung
iiblichen Keller-Datenstruktur durch eine baumartige Datenstruktur. Terminie-
rung der Auswertung wird bei diesem Ansatz durch eine Kombination von Sub-
sumptionstests fiir Unteranfragen (admissibility test) und Memoisierung (lemma
generation) erreicht, was die Endung AL motiviert.

Die Magic-Set-Methode beruht auf einer Transformation des gegebenen
Datalog-Programms in ein anderes Datalog-Programm. Eine rein vorwérts-
schlielende Auswertung des transformierten Programms simuliert auch Schritte
einer rickwartsschlieBenden Auswertung des urspriinglichen Programms. Die
partiellen Beweisbdume werden gewissermassen in einzelne Fakten zerlegt, die
in Relationen gespeichert werden kdnnen.

Inzwischen ist der Ursprung der Magic-Set-Methode in Vergessenheit gera-
ten. Sie entstand aus einer Formalisierung und Ausarbeitung der Alexander-
Methode [RLK86]. Es stellte sich aber spater heraus, dafl die Supplementary-
Magic-Set-Methode, eine Verfeinerung der Magic-Set-Methode, gerade der Ale-
xander-Methode entspricht.

Die Magic-Set-Methode hat gegeniiber der SLDAL-Resolution den Vorteil,
daf} der vorwértsschlielende Auswertungsmechanismus nicht verindert werden
muf}, weshalb die bekannten Optimierungstechniken aus relationalen Datenban-
ken weiter verwendet werden kénnen. Aus den eingeschrinkten Datenstrukturen
relationaler Datenbanken ergibt sich jedoch auch der wesentliche Nachteil der
Magic-Set-Methode: Im Gegensatz zur SLDAL-Resolution kann der Zusammen-
hang zwischen den generierten Anfragen und Antworten nicht mehr durch die
Datenstruktur représentiert werden, sondern muf3 durch méglicherweise teure
Join-Operationen wiederhergestellt werden. Auflerdem kann die aus Effizienz-
griinden unumgéngliche Endrekursions-Optimierung in die SLDAL-Resolution
wesentlich leichter eingebaut werden als in die Magic-Set-Methode.

Weitere terminierende Anfrageauswertungsmethoden sind fiir Datalog-Da-
tenbanken entwickelt worden, in denen ausschliellich lineare Rekursionsmuster
vorkommen. Die praktische Begriindung fiir diese Forschung war die Feststel-
lung — oder Uberzeugung —, daf die meisten Anwendungen sich mit linearrekur-
siven Ableitungsregeln spezifizieren lassen. Zweifelsohne sind diese Methoden
nicht nur fiir deduktive Datenbanken von Belang. Es ist zu erwarten, daf} einige



dieser Methoden von anderen Bereichen der Logikprogrammierung iibernommen
werden.

Weitere Methoden wurden und werden noch entwickelt, um Verfahren wie
die SLDAL-Resolution und die Magic-Set-Methode um die Behandlung der Ne-
gation und von Aggregaten zu erweitern. Auch Heuristiken und Strategien fiir
diese Verfahren sind untersucht worden. Das Riickwértsschlieflen in dedukti-
ven Datenbanken bleibt ein aktives Forschungsfeld, auch wenn es wegen der
oben erwahnten Besonderheit der Magic-Set-Methode oft als Vorwartsschlieffen
bezeichnet wird.

4.4 Faktenweise Anfrageauswertung

Eine mengenweise Anfrageauswertung liefert dem Anwendungsprogramm zu ei-
nem Zeitpunkt eine Menge von Antworten, welches dieses typischerweise nur
faktenweise bearbeiten kann. Dieses Phidnomen wird als “impedance mismat-
ch” bezeichnet. Ein weiteres Problem der mengenweisen Auswertung ist, dafl
ganze Mengen von Zwischenergebnissen im (Sekundér-)Speicher abgelegt und
im néchsten Verarbeitungsschritt wieder aufgenommen werden miissen.

Ahnlich wie in relationalen Datenbanken die mengenorientiert dargestellten
Ausdriicke der relationalen Algebra tatsichlich vielfach tupelweise ausgewertet
werden, kénnen auch Anfragen an deduktive Datenbanken weitgehend fakten-
weise ausgewertet werden.

Einige deduktive Datenbanksysteme, insbesondere die Systeme Megalog
(heute im Prolog-System Eclipse integriert) und Butterfly, belegen, dafi durch
eine faktenweise Anfrageauswertung eine beachtliche Effizienz erreicht werden
kann. Bisher liegt jedoch kein systematischer Vergleich von mengen- und fak-
tenweiser Auswertung vor. Eine Ubersicht iiber diverse Verfahren findet man
in [CGTY90]. Das Lehrbuch [CGH94] stellt ebenfalls einen SLD-basierten, fak-

tenorientierten Ansatz vor.

5 Integrititserhaltung

In Datenbanken wird zwischen statischen und dynamischen Integrititsbedin-
gungen unterschieden. Statische Integritatsbedingungen konnen als Ja/Nein-
Anfragen angesehen werden, die nach jeder Aktualisierung der Datenbank po-
sitiv beantwortet werden miissen. Dynamische Integrititsbedingungen sind
Aussagen iiber die zeitliche Entwicklung einer Datenbank, meist iiber die bei-
den Zustinde vor und nach einer Anderung. Die iiberwiegende Mehrzahl der
bisher zu diesem Thema publizierten Arbeiten widmet sich statischen Inte-
gritdatsbedingungen.

Wie gewdhnliche Anfragen kdénnen statische Integritdtsbedingungen nicht
behandelt werden. Zum einen soll eine Aktualisierung erst dann durchgefiihrt
werden, wenn feststeht, dafl sie zu keiner Verletzung von statischen Integri-
tatsbedingungen fithrt. Das heifit, die Integritdtsbedingungen sollen gegeniiber
einer Simulation der aktualisierten Datenbank ausgewertet werden, bevor die
Datenbank tatséchlich geandert wird.

Zum anderen soll der Effizienz halber ausgeniitzt werden, dafi die statischen
Integritatsbedingungen vor der Aktualisierung erfiillt sind. Nur solche (In-
stanzen von) Integritdtsbedingungen, die durch die Anderungen moglicherweise



verletzt werden, sollen iiberpriift werden. Man spricht dann von einer in-
krementellen Integritdtspriifung. Wegen der grofien Faktenmenge, die aus ei-
ner deduktiven Datenbank ableitbar ist, erweisen sich nichtinkrementelle Inte-
gritiatspriifungsverfahren als ineffizient.

Schlieilich mufl der Fall widerspriichlicher Integritdtsbedingungen behan-
delt werden. Sowohl Integritdtsbedingungen als auch Ableitungsregeln kénnen
als logische Axiome angesehen werden und sind somit potentiell inhdrent wi-
derspriichlich bzw. wunerfillbar. In einer deduktiven Datenbank mit wider-
spriichlichen Integritdtsbedingungen wird eine Integritdtsprifung nach einer
versuchten Anderung stets fehlschlagen, d.h. es existieren in diesem Fall iiber-
haupt keine konsistenten Datenbankzustinde. Die Widerspruchsfreiheit oder
Erfiillbarkeit der Integritatsbedingungen selbst kann nicht durch eine Integri-
tatsprifungsmethode festgestellt werden. Integritidts- und Erfiillbarkeitspriifung
sind zwei komplementire Aspekte der Wissensakquisition in Datenbanken.

5.1 Integritatspriifung

Ableitungsregeln sind ein besonders geeignetes Mittel zur Simulation einer ak-
tualisierten Datenbank. Dadurch besteht ein enger Zusammenhang zwischen
Integritatspriifungen und deduktiven Datenbanken. Dies mag der Grund dafiir
sein, dafl Integritdtsiiberpiifungsmethoden, die auch fiir nichtdeduktive Daten-
banken von grofier praktischer Relevanz sind, fast ausschliefilich im Gebiet der
deduktiven Datenbanken untersucht worden sind.

Ein kurzes Logikprogramm — ein Metaprogramm — reicht aus, um die ge-
anderte deduktive Datenbank zu simulieren. Die in deduktiven Datenbanken
iiblichen Auswertungs- und Optimierungsmethoden kénnen auf dieses ange-
wandt werden, um die Effizienz der Integritatspriifung zu gewahrleisten. Wah-
rend die theoretische Formalisierung dieses auf Metaprogrammierung beruhen-
den Ansatzes noch interessante Fragen offen 1ait, hat sich der Ansatz in der
Praxis bewéhrt.

Durch partielle Auswertung des Metaprogramms beziiglich der statischen
Integritatsbedingungen und eines Anderungsmusters werden spezialisierte Inte-
gritidtsbedingungen gewonnen, die als von der Fakten- bzw. Regelmenge un-
abhiangige minimale Zulissigkeitsbedingungen fiir die Anderung angesehen wer-
den kénnen. Tn dieser Weise lassen sich hiufig vorkommende Anderungsmuster
“vorkompilieren”. Die so erzeugten Bedingungen sind typischerweise dyna-
mische Integrititsbedingungen. FEine Ubersicht zu dieser Thematik bietet
[BMMO1].

5.2 Erfiillbarkeitspriifung

Die Uberpriifung von Integrititsbedingungen auf Erfiillbarkeit ist sehr we-
nig untersucht worden. Sie ist jedoch insbesondere im Zusammenhang mit der
Logikprogrammierung erwidhnenswert, weil sie Anlafl zur Entwicklung des in
Prolog implementierten Theorembeweisers SATCHMO war [MB88].

Die Erfiillbarkeit einer Klauselmenge 148t sich am besten dadurch iiberpri-
fen, daff Herbrand-Modelle fiir die Klauselmenge systematisch gesucht werden.
Basierend auf dieser Feststellung wurde ein neuartiges, tableaux-dhnliches (je-
doch wesentlich effizienteres) Modellgenerierungsverfahren entwickelt, das eini-
ge Techniken der Logikprogrammierung und deduktiver Datenbanken verwen-



det. Das Verfahren lief sich in einem effizienten und &uflerst kurzen Prolog-
Programm implementieren.

Der Erfolg des Beweisers SATCHMO, der vielseitig angewandt und wei-
terentwickelt wurde, hat die urspriingliche Motivation fiir seine Entwicklung,
die Erfiillbarkeitspriifung fiir Integritdtsbedingungen in Datenbanken, in den
Hintergrund gedréngt. Dies ist bedauerlich, weil SATCHMO und das mit
ithm eingefiihrte Modellgenerierungsverfahren noch in keiner Weise eine vollig
ausreichende Losung zur Erfiillbarkeitspriifung darstellt. Oft verlangen eben
Datenbankanwendungen, daf} die statischen Integritdtsbedingungen zusammen
mit den Ableitungsregeln ein endliches Modell haben, d.h. erfillbar im Endli-
chen sind. Erste Ergebnisse zeigen, daB sich SATCHMO zur Uberpriifung der
Erfiillbarkeit im Endlichen gut erweitern 1aft.

6 Datenbankinderungen

Die Spezifikation und Bearbeitung von Anderungen deduktiver Datenbanken
wird seit einiger Zeit intensiv untersucht. Datenbankidnderungen betreffen sel-
ten einzelne Fakten, sondern vielmehr Faktenmengen, die deklarativ spezifiziert
werden, was zur Entwicklung von regelbasierten Sprachen zur Spezifikation von
Datenbankinderungen gefiihrt hat. Mehrere Ansitze sind vorgeschlagen wor-
den, die hier in deklarative und imperative Ansitze eingeteilt werden. In die-
sem Zusammenhang sei noch einmal darauf hingewiesen, dafy auch statische und
dynamische Integrititsbedingungen, die zur Spezifikation von Anderungen bei-
tragen, durch Regeln dargestellt werden kénnen. Der Materialisierungsansatz
(s. Abschnitt 4.2) verlangt besondere Anderungsmethoden. SchlieBlich kénnen
Anderungen explizit gespeicherte oder auch aus der Datenbank ableitbare Fak-
ten betreffen. Diese zweite Art von Datenbankdnderungen wurde bereits fiir
relationale Datenbanken untersucht, und wird “view update” genannt.

6.1 Deklarative, regelbasierte Ansitze fiir Datenbankin-
derungen

Datenbankidnderungen, die eine durch eine Anfrage spezifizierte Faktenmenge
betreffen, lassen sich anschaulich und natiirlich mittels Regeln der Gestalt

Anderung — Anfrage

spezifizieren. Anderungen, die mittels einer solchen Regelsprache definiert sind,
lassen sich in verschiedener Weise durchfiihren.

Eine Moglichkeit der Interpretation solcher Regeln besteht darin, daf zu-
néchst alle Regelriimpfe ausgewertet und danach die den abgeleiteten Regelkdp-
fen entsprechenden Anderungen mengenweise in einer Transaktion durchgefiihrt
werden, sofern sie einander nicht widersprechen.

Regelbasierte Ansétze fiir Datenbankinderungen, die in dieser Weise be-
arbeitet werden, nennen wir deklarativ, weil die Spezifikation der Anderung
keine imperativen Aspekte enthdlt (wdhrend natiirlich die Durchfithrung der
Anderung imperativ verstanden werden muf}).

Deklarative Anséatze haben den Vorteil, gut mit Integritatsprifungsmetho-
den kombinierbar zu sein. Sie haben den Nachteil, zur Beschreibung einiger
komplexer Anderungen wenig geeignet zu sein.

10



6.2 Imperative, regelbasierte Ansitze fiir Datenbankén-
derungen

Anderungsregeln kénnen statt mengenweise auch in irgendeiner fiir geeignet ge-
haltenen Reihenfolge nacheinander ausgewertet und durchgefiihrt werden. Die-
ser Ansatz entspricht dem der regelbasierten Produktionssysteme der kiinstli-
chen Intelligenz, die bekanntlich imperative Ansétze sind.

Wie in der kiinstlichen Intelligenz sind fiir deduktive sowie nichtdedukti-
ve Datenbanken verschiedene Regelarten untersucht worden, im wesentlichen
Variationen der bekannten Event-Condition-Action-Regeln oder ECA-Regeln.
Datenbanken, fiir die solche Regeln spezifiziert werden kénnen, werden aktive
Datenbanken genannt.

Bei solchen Regelsprachen ist die Konfliktauflosung, d.h. die Bestimmung
der Reihenfolge der Durchfithrung einer Regelinstanz, eine schwierige Frage, die
in Datenbanken eine neue Dimension erhélt. Die Semantik einer solchen Sprache
kann unter Verwendung der formalen Methoden der Logikprogrammierung un-
tersucht werden. Die Forschung zum Thema “Aktive Datenbanken” beschriankt
sich heute allerdings nicht mehr nur auf die Verwendung von aktiven Regeln zur
Anderungsspeziﬁkation, sondern 148t eine Vielzahl von Ereignistypen zu. Auch
mengenorientierte Semantiken werden inzwischen haufig verwendet [WC96].

6.3 Regelbasierte Darstellung von Integritidtsbedingun-
gen
Statische Integritidtsbedingungen lassen sich natiirlich und einfach als besondere

Ableitungsregeln darstellen. Sei B eine Integritdtsbedingung, so ermdglicht eine
Regel der folgenden (oder einer entsprechenden normalisierten) Gestalt

false — = B

die Ableitung von false, sobald die Integritatsbedingung B falsifiziert wird. Die-
se Darstellung hat einige Vorteile: Sie ermdglicht eine einheitliche Darstellung
von Integritatsbedingungen und Ableitungsregeln und sie erleichtert die Einbe-
ziehung von statischen Integritdtsbedingungen in Regelsystemen zur Darstellung
von Anderungen.

Der Zustand einer Datenbank nach einer Anderung 148t sich mit Hilfe von
modalen Operatoren beschreiben, die durch ein Metaprogramm als Relations-
symbole hoherer Stufe implementiert werden koénnen (s. Abschnitt 5.1). Dies
ermdglicht auch eine einfache Darstellung dynamischer Integritdtsbedingungen

als Regeln.

6.4 Anderungen einer materialisierten Datenbank

Wird eine Datenbank nach dem Materialisierungsansatz verwaltet, sind nicht
nur die explizit gefordeten Anderungen durchzufiihren, sondern sie miissen auch
iiber die Ableitungsregeln auf die materialisierten Fakten propagiert werden.
Schwierigkeiten treten insbesondere beim Entfernen von Fakten sowie in
Gegenwart von nicht-monotonen Operationen (Negation und Aggregation) auf.
Techniken von Truth-Maintenance-Systemen koénnen hier Anwendung finden.
Eine einfache Technik besteht darin, fiir jedes materialisierte Faktum tiber

11



die Zahl seiner Herleitungen Buch zu fithren. Erst wenn diese Zahl auf Null
zuriickgesetzt wird, kann das Faktum geloscht werden.

6.5 Sichteninderungen

Eine Sichtenfinderung (engl.: view update) ist eine Spezifikation einer inten-
dierten Anderung abgeleiteter Daten. Eine Anderung der explizit gespeicherten
Fakten soll ermittelt werden, um ein gegebenes nichtableitbares (bzw. ableit-
bares) Faktum ableitbar (bzw. nichtableitbar) zu machen.

Das Inferenzprinzip zur Bestimmung solcher Realisierungsméglichkeiten fiir
Sichtenanderungen wird oft Abduktion genannt [Bry90b]. Die Bestimmung
von “view updates” ist der Anderung einer generierten Datenbank #hnlich.
Im Gegensatz zu den Anderungen einer generierten Datenbank hat sie jedoch
im allgemeinen keine eindeutige Losung. Welche dieser Moglichkeiten letztlich
7u wihlen ist, hdngt von den tatsichlich vorliegenden Verdnderungen in der
Realitdt ab und kann nicht automatisiert werden. Imperative, regelbasierte
Anderungssprachen erweisen sich als besonders geeignet fiir die Spezifikation
von Sichtendnderungen.

7 Zukunft der deduktiven Datenbanken

Anfang der 80er Jahre haben sich einige Computer-Hersteller durch Forschungs-
zentren wie MCC in Austin, Texas, oder ECRC in Miinchen, sehr aktiv an der
Forschung im Bereich der deduktiven Datenbanken beteiligt. Die Griindung
beider Zentren war eine Reaktion der amerikanischen und européischen Indu-
strie auf das japanische “Fifth Generation Computer Systems” Projekt und die
Griindung des ICOT. Am ICOT selbst wurden ebenfalls deduktive Datenbanken
untersucht.

In den Turbulenzen der Wirtschaftskrise zu Beginn der 90er Jahre hat das
Interesse der Industrie an deduktiven Datenbanken deutlich nachgelassen. Ein
aus der Forschung am ECRC hervorgegangenes industrielles Projekt wird jedoch
beim franzésischen Unternehmen Bull weitergefithrt. Dieses Vorhaben wird seit
1992 wissenschaftlich unterstiitzt durch ein europédisches Kooperationsprojekt
(IDEA, ESPRIT-Projekt 6333). Ein Konsortium aus industriellen und akade-
mischen Partnern untersucht im IDEA-Projekt eine deduktive Datenbankspra-
che, genannt CHIMERA | die objektorientierte und aktive Datenbank-Konzepte
miteinbezieht, im Hinblick auf Methodik des Entwurfs, Implementierung und
Anwendungen [CM94].

Wihrend die industrielle Forschung und Entwicklung im Bereich der deduk-
tiven Datenbanken etwas ins Stocken geraten ist, setzt sie sich in der akade-
mischen Welt unvermindert fort. Theoretische Themen, wie etwa die Semantik
der nichtmonotonen Negation, sowie praktischere Aspekte, wie die Anfrageop-
timierung, werden weiter untersucht. Eine Ubersicht iiber aktuelle Projekte zur
Systementwicklung bieten [VLDB94, RU94].

Neue Datenbankthemen, wie z.B. Data Mining, Knowledge Discovery und
Constraint-Datenbanken, scheinen von Methoden der Logikprogrammierung
profitieren zu kénnen. Bei den angegebenen Beispielen sind dies insbesondere
die induktive Logikprogrammierung und die Constraint-Logikprogrammierung.

12



Dies kénnte die Fachrichtung “deduktive Datenbanken” mit neuen Fragestel-
lungen beleben.

Die Frage nach der Bedeutung deduktiver Datenbanken fiir die Datenbank-
forschung und -entwicklung stellt sich dennoch. Die Meinungen hieriiber sind
duflerst gespalten. Bei der Durchsetzung neuer Tdeen und Techniken fiir Daten-
banken spielen wirtschaftliche Gesichtspunkte eine noch entscheidendere Rolle
als etwa bel Programmiersprachen, da die Implementation eines Datenbankver-
waltungssystems hohe Anforderungen stellt und einen viel gréfieren Aufwand
bedeutet als bei vielen anderen Software-Systemen.

Auch in der kommerziellen Entwicklung von Datenbankverwaltungssystemen
setzen sich neue Ideen aus der Forschung bemerkenswert langsam durch. Die
relationalen Datenbanken, die in den letzten Jahren allgemein anerkannt wor-
den sind, galten noch zu Anfang der 80er Jahre unter Datenbankexperten als
fragwiirdige Technologie, obwohl sie bereits damals weitgehend erforscht waren.

Unserer Meinung nach gibt es keinen Grund daran zu zweifeln, dafl sich
viele, wenn nicht die meisten Methoden der deduktiven Datenbanken durch-
setzen werden, auch wenn wir nicht damit rechnen, dafl deduktive Datenbank-
verwaltungssysteme unter dieser Bezeichnung kommerziell angeboten werden.
Im Gegensatz zu relationalen und objektorientierten Datenbanken haben de-
duktive und aktive Datenbanken nie den Anspruch erhoben, neue vollstiandige
Datenbank-Paradigmen anzubieten, sondern sich stets auf die Untersuchung
einer Regelform beschrankt, die mit sonstiger Datenbank-Technologie kombi-
nierbar sein soll.

Literatur

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv und J. Ullman: “Magic sets and
other strange ways to implement logic programs”, in: Proc. 5th ACM
Symp. on Principles of Database Systems (PODS), 1986, 1-15

[Bid91] N. Bidoit: “Negation in rule-based database languages: a survey”, in:
Theoretical Computer Science, Vol. 78: | 1991

[Bry90a] F. Bry: “Query evaluation in recursive databases: bottom-up and
top-down reconciled”, in: Data and Knowledge Engineering, Vol. 5,

1990, 289-312

[Bry90b] F. Bry: “Intensional Updates: Abduction via Deduction”, in: Proc.
7th ICLP, 1990, 561-575

[BMMO91] F. Bry, B. Martens und R. Manthey: “Integrity Verification in Know-
ledge Bases”, in: Proc. 2nd Russian Logic Programming Conf., 1991,
LNAT 592, 114-139

[CGTI0] S. Ceri, G. Gottlob und L. Tanca: “Logic Programming and Da-
tabases”, Springer, 1990

[CM94] S. Ceri und R. Manthey: “Chimera: A Model and Language for Active
DOOD Systems”, in: Proc. 2nd Intern. East-West Database Workshop,
Klagenfurt, 1994, Springer, 1995

13



[CGH94] A.B. Cremers, U. Griefahn und R. Hinze: “Deduktive Datenban-
ken — Eine Einfithrung aus der Sicht der Logischen Programmie-
rung”, Vieweg, 1994

[GMN84] H. Gallaire, J. Minker, und J.-M. Nicolas: “Logic and Databases:
A Deductive Approach”, in: ACM Computing Surveys, Vol. 16
(2):153-185, 1984

[GM92] J. Grant und J. Minker: “The Impact of Logic Programming on Data-
bases”, in: CACM, Vol. 35 (3):66-81, 1992

[GKB87] U. Giintzer, W. Kiessling und R. Bayer: “On the Evaluation of Re-
cursion in (Deductive) Database Systems by Efficient Differential Fixpoint
Tteration”, in: Proc. Intern. Conf. on Data Engineering, 1987, 120-129

[KL89] M. Kifer und G. Lausen: “F-logic: A Higher-Order Language for Reaso-
ning about Objects, Inheritance and Scheme”, in: Proc. ACM-SIGMOD
Conf. 1989, 134-146

[MB88] R. Manthey und F. Bry: “SATCHMO: a theorem prover implemented
in Prolog”, in: Proc. 9th CADE, 1988, LNCS 310, 415-434

[Min88b] J. Minker: “Perspectives in Deductive Databases”, in: Journal of
Logic Programming, Vol. 5 (1):33-60, 1988

[Min88a] J. Minker (ed.): “Foundations of Deductive Databases and Lo-
gic Programming”, Morgan-Kaufmann, 1988

[NR91] J. Naughton und R. Ramakrishnan: “Bottom-Up Evaluation of Logic
Programs”, in: J.L. Lassez and G. Plotkin (eds.): “Computational Lo-
gic - Essays in Honor of Alan Robinson”, The MIT Press, 1991,
640-700

[RU94] R. Ramakrishnan und J. Ullman: “A survey of research on deducti-
ve database systems”, in: Journal of Logic Programming, Vol. 15,

125-149, 1995

[VLDB94] K. Ramamohanarao und J. Harland (eds.): Special Issue on Proto-
types of Deductive Database Systems, in: The VLDB Journal, Vol. 3
(2), 1994

[RLKS86] J. Rohmer, R. Lescoeur und J.M. Kerisit: “The Alexander Method — A
Technique for the Processing of Recursive Axioms in Deductive Database
Queries” | in: New Generation Computing, Vol. 4, 522-528, 1986

[TS86] H. Tamaki und T. Sato: “OLD Resolution with Tabulation”, in: Proc.
3rd ICLP, 1986, 84-98, LNCS 225

[Ul188] J. Ullman: “Principles of Database and Knowledge-Base Sy-
stems”, Computer Science Press, Rockville/USA, Vol. 1, 1988, Vol. 2,
1989

[Vie9] L. Vieille: “Database Complete Proof Procedures Based on SLD-Reso-
lution”, in: Proc. 4th TCLP, 1987, 74-103

14



[WC96] J. Widom und S. Ceri (eds.): “Active Database Systems”, Morgan
Kaufmann, 1996

[War92] D.S. Warren: “Memoing for Logic Programs”, in: CACM, Vol. 35
(3):93-111, 1992

15



