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Model Generation for Applications —
A Tableaux Method
Complete for Finite Satisfiability

Francois Bry and Sunna Torge

Institut fiir Informatik, Ludwig-Maximilians-Universitdt Minchen, Germany**

Abstract. For many applications of automated reasoning, tableaux methods
have several advantages over theorem provers that do not generate models.
A couple of such applications are briefly discussed and it is argued that they
need methods that are not only refutation complete but also complete for fi-
nite satisfiability. The novel approach Eztended Positive Tableauz is introduced
which was developed for such applications. Extended Positive Tableaux rely on
positive unit hyper-resolution and “range restriction” for avoiding the “blind
instantiation” performed by the v rule of standard tableaux. Instead of relying
on Skolemization, as most refutation methods do, Extended Positive Tableaux
use an extended § rule. This rule makes the Extended Positive Tableaux method
complete not only for refutation, like standard tableaux methods, but also for
finite satisfiability. A prototype written in Prolog implements the Extended
Positive Tableaux method.

1 Introduction

For many practical applications of automated reasoning, tableaux methods [20, 10,
22,23] have the following advantages: They not only detect unsatisfiability but also
generate models; they are close to common sense reasoning, hence easy to enhance
with an explanation tool; and they are quite easy to adapt to the special syntax used
in some applications. In the next sections, a few applications are briefly recalled. For
these applications, the above mentioned particularities of tableaux methods, especially
their “model generation character”, are beneficial.

However, for most applications the standard tableaux methods suffer from the fol-
lowing drawbacks: They are often significantly less efficient than resolution based meth-
ods and they sometimes initiate the construction of infinite models, even if finite models
exist.

In this paper, a novel approach called Extended Positive Tableauz is introduced,
which aims at overcoming these drawbacks. Like the Positive Unit Hyper-Resolution
(short: PUHR) Tableaux [15,6, 7] they refine and extend, Extended Positive Tableaux
rely on positive unit hyper-resolution and “range restriction” [11] for avoiding the
“blind instantiation” performed by the « rule of standard tableaux [20,10]. Thanks
to range restriction, Extended Positive Tableaux can represent interpretations as sets
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of ground positive literals. This is beneficial for two reasons. First, it often consider-
ably reduces the search space. Second, it is well suited in application areas such as
Artificial Intelligence, Databases, and Logic Programming, where this representation
of interpretations and models is usual.

Instead of relying on Skolemization, as most refutation methods do, Extended Pos-
itive Tableaux use the extended & rule of [5,12,14]. This rule makes the Extended
Positive Tableaux method complete not only for refutation, like standard tableaux
methods, but also for finite satisfiability. Arguably, its completeness for both, un-
satisfiability and finite satisfiability, makes the Extended Positive Tableaux method
particularly convenient for applications.

A prototype written in Prolog implements the Extended Positive Tableaux method.

2 Applications of Model Generation

In several application areas, specific techniques have been developed that can be ex-
pressed as a systematic search for models of first-order logic specifications. In the
following, a few such areas are briefly described.

Diagnosis. The approach to diagnosis described in [17] relies on rules of the form
PiAN...ANP, —» C1V ...V (), interpreted as follows: the premisses P, ..., P,, are causes
for symptoms Ci, ..., or Cp,. Generating a diagnostic thus consists in building up
models of both the set of rules and in selecting those models that satisfy the observed
symptoms. Diagnosis in fact requires to seek for models that are as small as possible,
for simpler explanations are to be preferred to redundant ones: This principle is known
as “Occam’s razor”.

Database View Updates. A database view can be defined as the universal closure
of a rule of the form Py A... AP, — C. Such a view gives rise to compute instances of C
from instances of the P;, thus making it possible not to blow up the database with “C
data”. If the view, i.e. the set of derived “C data”, is to be updated, changes to the P;
corresponding to the desired view update have to be determined. This is conveniently
expressed as a model generation problem [2]. Meaningful solutions to a view update
problem obviously have to be finite. Thus, view updates can only be computed by
model generators that are complete for finite satisfiability.

Database Schema Design. In general, a database is “populated” from an initial
database consisting of empty relations and views, and integrity constraints [11]. It is,
however, possible that ill-defined integrity constraints prevent the insertion of any data.
A model generator can be applied to detect such cases [3]: populating the database will
be possible if and only if its schema has a nonempty and finite model. The system
described in [4] for assisting in the design of database integrity constraints relies on the
tableau method presented in the next sections.

Planning and Design. Solving planning and design problems can as well be seen
as model generation. The specifications might describe an environment, the possible
movements of a robot, a starting position, and a goal to reach. They can also describe
how a complex object can be built from atomic components. In both cases, each finite
model describes a solution while infinite models are meaningless.



In the above mentioned four applications, the models seeked for must be finite.

Finitely representable models — as generated e.g. by the method described in [9] — would
not provide with acceptable solutions in case of the above-mentioned applications.
Program Verification. In program verification, one tries to prove properties from
programs, e.g. loop invariants. Often enough, program drafts do not fulfill their specifi-
cations. Model generators can be applied to (a logic representation of) the programs to
generate “samples”, or “cases” in which a requirement is violated. These samples can
then be used for correcting the programs under development. Clearly Occam’s razor
applies: The simplest samples are preferable over larger ones, that would be interpreted
as “redundant” by programmers.
Theorem Proving. Refutation theorem proving can benefit from model generation
in a similar manner. If a conjecture C is not a consequence of a set S of formulas,
then, applying a model generator to S U {—C} will construct counterexamples to the
conjectured theorem, i.e. models of SU{—=C}. These models can be used for correcting
the conjecture C'. Here again Occam’s razor applies: if counterexamples can be found,
the “smallest” ones will better help in understanding the flaw in the conjecture than
redundant counterexamples.

Counterexamples to program specifications and conjectures do not have to be finite.
For these applications, counterexamples that can be found in finite time, i.e. that are
finitely representable, are sufficient. However, in case finite counterexamples exist, it
is desirable to detect them. For this purpose, a model generator complete for finite
satisfiability is needed.

Note that the applications mentioned here in general do not give hints for the size
of the finite models seeked for. Note also that most applications require that the model
generator constructs only “minimal models” [6]. This related issue is beyond the scope
of the present paper.

3 Preliminaries

Throughout this paper, a language with a denumerable number of constants, but with-
out function symbols other than constants, is assumed.

The interpretations (and models) considered are term interpretations (term models,
resp.) that, except for their domains, are defined like Herbrand interpretations (mod-
els, resp.) [10]. The domain of a term interpretation Z consists in all ground terms,
here constants, occurring in the ground atoms satisfied by Z, if this set is nonempty.
Otherwise, it is assumed to be {co}, where ¢g is a given constant. This definition is
natural for artificial intelligence and database applications.

A term interpretation is uniquely characterized by the set G of ground atoms it
satisfies, and will therefore be denoted by 7 (G). If S is a set (finite set, resp.) of formulas
and T (G) a term model of S, there might be constants (finitely many constants, resp.)
in & which do not occur in G. These constants are assumed to be interpreted over a
special constant ¢ which neither occur in S nor in G.

The subset relation C induces an order < on term interpretations: 7(G1) < T(G2)
iff G1 C Gs. A term model of a set of formulas is said to be minimal, if it is minimal
for <.



The first-order language considered is assumed to include two atoms L and T that
respectively evaluate to false and true in all interpretations. A negated formula —F will
always be treated as the implication F' — L. The multiple quantification Vz1zs ...z, F,
also noted VZF if Z is the tuple of variables z12s...%,, is a shorthand notation for
VriVes ... Vo, F. The notation VeF', where € denotes the empty tuple, is allowed and
stands for the formula F'. Except when otherwise stated, “formula” is used in lieu of
“closed formula”.

If z is a tuple of variables x; ...z, and if ¢ is a tuple of constants c¢; . ..c,, then
[¢/Z] will denote the substitution {c1/z1,... ,¢n/Tn}-

4 Positive Formulas with Restricted Quantifications

In this section, a fragment of first-order logic, that of “positive formulas with restricted
quantifications”, is introduced. Arguably, this fragment is convenient for applications.
It is shown to have the same expressive power as full first-order logic.

Positive formulas with restricted quantifications are defined relying on auxiliary
notions that are first introduced.

Definition 1.
e Positive conditions are inductively defined as follows:

1. Atoms except L are positive conditions.
2. Conjunctions and disjunctions of positive conditions are positive conditions.
3. AyF is a positive condition if F' is a positive condition.

e Ranges for variables x1,... ,x, are inductively defined as follows:

1. An atom in which all of xy,..., and x,, occur is a range for xi,... ,Ty.

2. A1V As is a range for xy, ... ,x, if both Ay and As are ranges for xy,... ,Z,.

3. A1NAs is a range for x1,... ,x, if A1 is a range for x1,. .. ,x, and Az is a positive
condition.

4. yR is a range for xy,...,x, if R is a range for y,xy,...,x, and if x; #y for all
1=1,...,n.

e Positive Formulas with Restricted Quantifications (short PRQ formulas) are induc-
tively defined as follows:

1. Atoms (in particular L and T ) are PRQ formulas.

2. Conjunctions and disjunctions of PRQ) formulas are PRQ formulas.

3. A formula of the form P — F is a PRQ formula if P is a positive condition and
F a PRQ formula.

4. A formula of the form V1 ...z, (R - F) (n > 1) is a PRQ formula if R is a
range for x1,...,x, and if F' is a PRQ formula.

5. A formula of the form 3x(R A F) is a PRQ formula if R is a range for  and if F
is a PRQ formula.

Note, that ranges are positive conditions. The following Lemma will be used in
proving Theorem 4.



Lemma 1. Let M and N be sets of ground atoms such that M C N and R a positive
condition. If T(M) = R, then T(N) = R.

Proof. (sketched) By induction on the structure of R. ]

The restriction to PRQ formulas is not a severe restriction for most applications
since (1) quantifications in natural languages are restricted, and (2) for every finite set
F of first-order formulas there exists a finite set PRQ(F) of PRQ formulas with the
“same” models as F in the following sense:

Theorem 1. (Expressive Power of PRQ Formulas) Let X be the signature of
the first-order language under consideration, D a unary predicate such that D &€ X,
Y''= X U{D}. Then for every finite set F of first-order formulas over X there exists
a finite set PRQ(F) of PRQ formulas over X' such that:

1. If (D,m) is a model of F with domain D and assignment function m and if m' is
the mapping over X' defined as follows:

1y . Jm(s)ifs#D
m'(s) = {D ifs=D
then (D,m’) is a model of PRQ(F).
2. If (D',m') is a model of PRQ(F ), then there exists D C D' such that (D,m' |x) is
a model of F, where m' |5 denotes the restriction of m' to X.

Proof. (sketched) Let F be a finite set of formulas. Recall that there exists a finite
set G of formulas in prenex conjunctive normal form such that F and G are logically
equivalent. Recall also that a disjunction D = D; V ---V D,, of atoms is equivalent
to the implication P — C with (1) P = PLA...A Py if the set {-F; |i=1,...,k}
of negative literals in D is nonempty, P = T otherwise, and (2) C = Ci V...V Cp,
if the set {C; | i = 1,...,m} of positive literals in D is nonempty, C' = L otherwise.
Call “in implication form” the formula obtained from a formula in prenex conjunctive
normal form by transforming each of its conjuncts into the above-mentioned, logi-
cally equivalent implication form. Hence, there exists a finite set F" of formulas in
implication form which is logically equivalent to F. Let F' be the finite set of PRQ
formulas obtained by applying the following transformation 7 to the formulas in F":
T(VzF) :=Vz(D(z) - T(F)), T(@zF) := 3z(D(z) AT (F)), and T(F) := F if Fis
not a quantified formula.

One easily verifies that PRQ(F) := F' U R(F) U C(F) fulfills the condition of
Theorem 1, where R(F) := {Vz1...2n(R(x1,...2n) = D(z1) A...AD(zy)) | R n-ary
predicate occurring in F} and C(F) := {D(c) | ¢ constant occurring in F} if some
constants occur in F, C(F) := {cg} for some arbitrary constant cp, otherwise. ]
Corollary 1. For every finite set F of first-order formulas there ezists a finite set
PRQ(F) of PRQ formulas such that F is finitely satisfiable if and only if PRQ(F) has
a finite term model.

Proof. From Theorem 1 follows that for every finite set F of first-order formulas there
exists a finite set PRQ(F) of PRQ formulas such that F is finitely satisfiable if and
only if PRQ(F) is finitely satisfiable. If PRQ(F) has a finite model M, then a term
model of PRQ(F) is obtained by a renaming of the elements of the universe of M. =



5 Extended Positive Tableaux

Extended Positive tableaux, short EP tableaux, are a refinement of the PUHR tableaux
defined in [6] as a formalization of the SATCHMO theorem prover [15]. The refinement
consists in the processing of PRQ formulas instead of (Skolemized) clauses, and in a
tableau expansion rule for existentially quantified subformulas which, as opposed to
the standard ¢ rule [20,10], performs no “run time Skolemization”.

Ezample 1. Consider S = {p(a),Vz(p(z) — Jyp(y))} and a Skolemized version Sk(S)
of S. Applied to Sk(S), the PUHR tableau method initiates the construction of the
infinite model {p(a),p(f(a)),p(f(f(a))),...}. A similar problem arises if the standard
0 rule is applied to S: The finite model {p(a)} of S is not detected by the PUHR
tableau method.

The expansion rule for existentially quantified subformulas considered below ensure
the completeness with respect to finite satisfiability of the EP tableaux method.

Definition 2. (EP Tableaux expansion rules)

3 rule:
JzE(z)
Elei/a] ... | Elex/a] | Elcnew/7]
where {c1 ...cy} is the set of all constants occurring in the root to node branch, and
where Cpeyw 18 a constant distinct from all ¢; fori=1,... k.
PUHR rule: V rule: A rule:
VSZ'(R(E') — F) E,V E, Ei NEs
Fl¢/z) E, | E> E;
Es

where R[¢/Z] is satisfied by the interpretation specified by the branch.

In the PUHR rule, ¢ is a tuple of constants occurring in the root to node branch.
These constants are determined by evaluating R against the already constructed in-
terpretation. This evaluation corresponds to an extension of positive unit hyperresolu-
tion. It coincides with (standard) positive unit hyperresolution if R — F has the form
PiAN...ANP, - CyV...Cp, where the P; (i = 1,...,n) and C; (j = 1,... ,m) are
atoms. Recall that the notation Ve(R — F'), where € denotes the empty tuple, is allowed
and stands for the formula R — F. Thus, the PUHR rule handles both, universally
quantified and implicative formulas.

Definition 3. (EP Tableaux) If L is a set of formulas, Atoms(L) will denote the
set of ground atoms in L. EP Tableauz for a set S of PRQ formulas are trees whose
nodes are sets of closed formulas. They are inductively defined as follows:

1. The tree consisting in the single node S is an EP Tableau for S.



2. If T is an EP Tableau for S, L a leaf of T, and ¢ a formula in L which is not
satisfied in the term interpretation T (Atoms(L)), then the tree obtained from T by
applying the relevant expansion rule to L with respect to ¢ is an EP Tableau for S.

A branch of an EP Tableau is open if it does not contain L. Otherwise, it is closed.
An EP tableau is open if at least one of its branches is open; otherwise, it is closed. If
B is a branch in an EP tableau, then UB denotes the union of the nodes in B. An EP
tableau is satisfiable if it has a branch B such that UB is satisfiable.

Note that the PUHR rule is the only expansion rule which can be applied more than
once to a same formula along a branch of an EP tableau. Indeed the condition “which
is not satisfied in the term interpretation 7 (Atoms(L))” prevents repeated applications
of rules other than the PUHR rule.

Ezample 2. An EP Tableau for S; = {p(a),Vz(p(z) = r(z) V Jyq(z,y))} is given by
Fig. 1.! For the sake of readability, the nodes in the figures are not labelled with
sets of formulas but with the single formula added at the corresponding node of the
represented EP tableau.

S

r(a) V Iy q(a,y)

T

r(a) 3y q(a,y)

N

Q(aaa) q(a,cnew)

Fig.1. An EP tableau for Example 2

Ezample 3. An infinite EP Tableau for S2 = {empl(cy), Vz(empl(xz) — Jy works-for(z,
v)), YaVy(works-for(z,y) — empl(z) Aempl(y))} is given by Fig. 2 (the predicates are
abbreviated to their first letters).

! Strictly, the syntax of Definition 1 would require Vz(p(z) — r(z) V Iy(q(z,y) AT)).



S

Jy w(co,y)
/ \
w(co, co) w(co, c1)
e(c1)
Fy wler,y)
/ \
w(er, o) w(er,e1) w(er, )

6(?2)

Fig. 2. An EP tableau for Example 3

6 Refutation Soundness and Completeness

The results of this section are standard. They can be established in the usual manner
(cf. e.g. [10]).

Lemma 2. The application of an expansion rule to a satisfiable EP tableau results in
a satisfiable EP tableau.

Proof. (sketched) For every expansion rule, one easily shows that if a node N of an EP
tableau is satisfiable, then there is at least one successor of N which is satisfiable. =

In the following, S denotes a set of PRQ formulas.

Theorem 2. (Refutation Soundness) If there exists a closed EP tableau for S, then
S is unsatisfiable.

Proof. Assume S is satisfiable. By Lemma 2 there exists no closed EP tableaux for S.
|

The following is a formalization of the standard concept of fairness [10]. Recall that
the nodes of an EP tableau are sets of PRQ formulas.



Definition 4.
e Let T be an EP tableau for S, and B a branch in T. Then UB is said to be saturated
if the following holds:
1. If By Vv E; € UB then Ey € UB or E, € UB.
2. If Ey NEy € UB then Ey € UB and Es € UB.
3. If3zE(x) € UB then thereis E[x/c1] € UB, or..., or E[z/c,] € UB, or E[z/cpew] €
UB. ¢1,...,¢, are all constants occurring in B above the node which is expanded

by the 3-rule, and cpeqy s a constant, not occurring in the branch.
4. IfVzZ(R(Z) = F) € UB, then for all substitutions o, such that T (AtomsUB) = Ro,
Fo € UB.

o An EP tableau T is called fair if UB is saturated for each open branch B of T'.

Lemma 3. (Model Soundness) Let T be an EP tableau for S and B an open branch
of T. If T is fair, then T (Atoms(UB)) = S.

Proof. (sketched) By induction on the structure of PRQ formulas. ]
From Lemma 3 follows immediately:

Theorem 3. (Refutation Completeness) If S is unsatisfiable, then every fair EP
tableau for S is closed.

Corollary 2. IfS is not finitely satisfiable, then every open branch of a fair EP tableau
for S is infinite.

Proof. Assume that S is not finitely satisfiable. Assume there is a fair EP tableau T
with a finite open branch B. By Lemma 3 T (Atoms(UB)) is a finite model of S, a
contradiction. [

7 Finite Satisfiability Completeness

In the following, it is shown that EP tableaux are complete for finite satisfiability in the
sense that they give rise to constructing up to a constant renaming all the finite term
models of satisfiable sets of PRQ formulas. The proof of this result is more complex
than that of other theorems given in this paper. It makes use of non standard notions,
that are first introduced.

Definition 5. (Simple Expansion) Let S be a satisfiable set of PRQ formulas, ¢
an element of S, and T(G) a term model of S. Simple expansions S’ of S with respect
to ¢ and T(G) are defined as follows:

1. If ¢ is a ground atom, then S' :== S.

2. If o = @1 Ao, then 8" := (S \ {¢}) U{p1, p2}.

3. If o = p1 Vs, then S' := (S\ {¢}) U{w;} for onei € {1,2} such that T(G) k= ;.2

4. If o = 3zpq, then S' := (S\ {¢}) U {pilc/z]}, where c is a constant, such that
T(9) E pilc/z]?

5. If o =VZ(R(Z) = F), then S’ := (S\ {¢}) U{F[Z/T] | € a tuple of constants s.t.
T(9) = R[z/e)}*

% Since T(G) ES and p € S, T(G) |= i for at least one of 4 =1, 2.
3 Such a constant exists necessarily since 7(G) =S and ¢ € S.
* If there are no constants ¢ such that 7(G) | R[Z/c], then &’ := S\ {¢}.



Note that for every S, every element ¢ of S, and every model T(G) of S, there
exists at least one simple expansion of S w.r.t. ¢ and T(G). A simple expansion &' of
S w.r.t. p and T(G) differs from S whenever ¢ is nonatomic. The existence of a simple
expansion S w.r.t. ¢ and 7 (G) such that S # &' does not necessarily mean that some
EP tableau expansion rule can be applied to some formula in S. Indeed, according to
Definition 3 an expansion rule can only be applied if T (Atoms(S)) = ¢. Every simple
expansion of a finite set S of PRQ formulas w.r.t a formula and a finite model T (G)
of § is finite. Because of 5. in Definition 5 this is not necessarily the case if 7(G) is
infinite.

Lemma 4. Let S be a set of PRQ formulas, ¢ € S, T(E) a finite, minimal term model
of S, and ' a simple expansion of S w.r.t. ¢ and T(£). T(E) is a minimal model of
S'.

Proof. (sketched) By a case analysis based on the structure of the PRQ formula ¢. =

Definition 6. (Rank)
o Let ¢ be a (non necessarily closed) PRQ formula and d a positive integer. The d-rank
rk(p,d) of a PRQ formula is inductively defined as follows:

1. If ¢ is an atom, then rk(p,d) := 0.

2. If o = o1 Apa, or o = p1 V p2, or p = p1 — 2, then rk(p,d) = rk(p1,d) +
rk(pa,d) + 1.

3. If ¢ = Az, then rk(p,d) == rk(,d) + 1.

4. If o =VTY, then rk(p,d) := rk(y,d) x d*, where n is the size of the tuple .

o Let S be a set of PRQ formulas, T(E) a finite minimal model of S, and d the
cardinality of the domain of T(E). The rank rk(S,T(E)) of S with respect to T(E)
is defined by rk(S, T (€)) = Y yes k¥, d) if Atoms(S) C & and rk(S, T (€)) :== 0 if
Atoms(S) = €.

Note that r&(S,T(£)) = 0 if and only if T(Atoms(S)) is a model of S. In other
words rk(S,T(€)) > 0 if and only if some EP tableau expansion rule can be applied
to some formula in §.

Lemma 5. Let S be a finitely satisfiable set of PRQ formulas, ¢ € S, ¢ nonatomic,
T(E) a finite minimal model of S, and S' a simple expansion of S wrt ¢ and T(£). If
rk(S,T(E)) # 0, then rk(S',T(E)) < rk(S, T (£)).

Proof. (sketched) By a case analysis based on the structure of the PRQ formula ¢. =

Theorem 4. (Completeness for Finite Satisfiability) Let T(€) be a finite term
model of S. If T(E) is a minimal model of S, then every fair EP tableaw for S has a
finite, open branch B such that, up to a renaming of constants, Atoms(UB) = &.

The proof is based on a double induction. This is needed since the PUHR rule can
repeatedly be applied to a same formula along a same branch. As a consequence, a
measure of the syntactical complexity of the set of formulas, which would be a natural
induction parameter, does not decrease after an application of the PUHR rule. This is
overcome by a second induction on the number of applications of the PUHR, rule to a
same formula.
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Proof. Let T(€) be a finite, minimal term model of S. The proof is by induction on
rk(S, T (£)). Induction hypothesis:

(%) If M is a set of PRQ formulas, if 7 (F) is a finite, minimal term model of
M, and if rk(M,T(F)) < n, then every fair EP tableau for M has a finite,
open branch B such that, up to a renaming of constants, Atoms(UB) = F.

Assume that 7k(S, T (£)) = 0. S has therefore a single minimal term model, namely
T (Atoms(S)), and every fair EP tableau for S consists in one single node equal to S.
Clearly, the result holds.

Assume that r&(S,7(£)) =n > 0.

Let T be a fair EP tableau for S. Since S is satisfiable, by Theorem 2 T is open. Since
rk(S,T(£E)) > 0 there exists at least one formula ¢ € S on which an expansion rule
can be applied. Since T is fair, its root necessarily has successor(s). Let ¢ € S be the
formula on which the application of an expansion rule yields the successor(s) of the
root of T

Case 1: ¢ = 1 A s, Or ¢ = 1 V 2, or ¢ = Jz1p. By Definition 5 there is at least
one successor N of the root such that N = {¢} US’ where, up to constant renaming
in case ¢ = Jxyp, S’ is a simple expansion of S w.r.t. ¢ and T (€). Since an EP tableau
expansion rule cannot be applied more than once to a formula like ¢, the tableau rooted
at NV is an EP tableau T" for the simple expansion S'. T" is fair because so is T'. For every
simple expansion &’ of S w.r.t. ¢ and T(£), by Lemma 4, T (€) is a minimal model of §'.
Since rk(S, T (£)) > 0 and ¢ is nonatomic, by Lemma 5 rk(S’,T(£)) < rk(S, T (£)).
Therefore, by induction hypothesis (x) , the tableau rooted at N has a finite open
branch B’ such that, up to a renaming of constants, Atoms(UB') = £. Hence, the same
holds of T'.

Case 2: ¢ = VZ(R(Z) — F). Let S’ be the (unique) simple expansion of S w.r.t.
and T (€). Along a branch of the fair EP tableau T for S, the PUHR rule is possibly
applied more than once to (. Therefore, the tree rooted at the successor N of the root
of T' is not necessarily an EP tableau for S’. In the following it is shown how parts of
T can be regarded as parts of an EP tableau for S’. For n € IN and a branch B of T,
let B™ denote the prefix of B up till (and without) the (n + 1)-th application of the
PUHR rule on ¢, if the PUHR rule is applied more than n times to ¢ in B; otherwise,
let B™ := B. The following is first established by induction on n: For all n € IN \ {0},

(#%) T has a branch B such that, up to a renaming of constants, Atoms(B™) C £.

Case 2.1: n = 1 : The successor N of the root of T results from an application of
the PUHR rule to ¢ = VZ(R(Z) — F), i.e., by Definition 2 and 3, there is a set G of
ground atoms and a substitution o such that G C S, T(G) E Ro, and T(G) £ Fo,
and N = SU{Fo}. Since by hypothesis T(€) is a model of S, G C £ and by Lemma 1
T(€) = Ro. Furthermore, since 7 (&) = ¢, T(€) = Fo. Since &' is by hypothesis the
(unique) simple expansion of S w.r.t. ¢ and T(€), Fo € §'. So, there is an EP-tableau
T' for S', which coincides with T' from N until the second application of the PUHR
rule on ¢ in all branches. Since by Lemma 4 7 (£) is a minimal model of &’ and since
by Lemma 5 rk(S',T(€)) < rk(S,T (£)), the induction hypothesis (%) is applicable:
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There is a branch B’ in T’ with, up to constant renaming, Atoms(UB') = £. So, for
the corresponding branch B in T Atoms(B!) C £.
Case 2.2: n > 1: Assume that (xx) holds for all m < n. Let By,..., B be all such
branches of T'.
If for somei =1,... ,k Bl = B{‘“ = B,, i.e. the PUHR rule is applied at most n times
to ¢ along B;, then by induction hypothesis (xx) Atoms(B"t!) C £.
Otherwise, since by induction hypothesis (xx) Atoms(B™) C £, by Lemma 1 and by def-
inition of &’ each formula Fo; resulting from an (n+1)-th application of the PUHR rule
to ¢ in the branch B; is in §'. Therefore, an EP tableau T for &’ can be constructed
from the subtree of T rooted at N as follows: First, replace N by S’. Second, keep
from each branch B; only the prefix Bz."“. Third, remove from each Bi"+1 those nodes
resulting from applications of the PUHR rule to ¢. Fourth, cut all other branches im-
mediately before the first application of the PUHR rule to ¢. T" is a finite EP tableau
for &', which is not necessarily fair. Since 7" is finite, a fair EP tableau T" for &'
can be obtained by further expanding T’. By Lemma 5, rk(S', T(£)) < rk(S, T (£)).
By induction hypothesis (x), T" has a branch B’ with, up to constant renaming,
Atoms(UB') = &. By definition of By,...,Br and T" there is a branch B; in T such
that Atoms(B'*™) =Atoms(B'?"). Hence, Atoms(Bith) C €.

Since by hypothesis 7(£) is finite, T' has a finite branch B for which (%) holds.
Hence, this branch is open. Since T is fair, by Lemma 3 T (Atoms(UB)) = S and since
T(€) is minimal, up to a renaming of constants, Atoms(UB) = £. [

8 Implementation

A Prolog program, called FINFIMO (FINd all FInite MOdels), implements a depth-first
expansion of EP tableaux, cf.: http://www.pms.informatik.uni-muenchen.de/software

Since the extensions ensuring the completeness for finite satisfiability do not com-
promise range restriction and the “positive preference” of PUHR tableaux, a concise
implementation in the style of [15] is possible. For space reasons, this implementation
cannot be commented here. First experiments point to a reasonable efficiency. The
system SIC [4] for assisting in the design of database integrity constraints relies on
FINFIMO.

9 Related Work

The method described in the present paper is related to approaches of three kinds: (1)
Generators of models of (or up to) a given cardinality, (2) tableaux methods complete
for finite satisfiability, and (3) generators of finitely representable models.

One of the best known generator of finite models of (or up to) a given cardinality is
FINDER [19]. Its strength lies in a sophisticated, very efficient implementation of the
exhaustive search for models up to a given cardinality. Most generators of finite models
up to a given cardinality can continue the search with a higher cardinality, if no models
of the formerly given cardinality can be found. However they always require an upper
bound for the cardinality of the models seeked for. For the applications mentioned in
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Section 2, this might be too strong a requirement. In this respect, the EP tableaux
method presented in the present paper is more flexible. This flexibility is exploited in
the applicatiioon described in [4].

Tableaux methods complete for finite satisfiability that process existentially quan-
tified formulas like described here have been proposed in [5,12,14]. They all replace
the 0 rule of classical tableaux [20,10] by an expansion rule like the 3 rule of Section 5.
The approach described in the present paper differs in the use of the PUHR (positive
unit hyper-resolution) rule which relies on resolution for avoiding the “blind instantia-
tion” and the resulting inefficiency of the classical  rule. In the implementation of the
procedure proposed by [14] this problem is resolved by giving a limit on the number
of v expansion for each « formula. In practice, it is however not always easy to set
such an upper bound. A further interest of the approach presented here is its short and
easily adaptable implementation. This is useful for practical applications such as that
described in [4].

Other extensions and refinements of tableau methods generate finite representa-
tion for (possibly infinite) models [8,21,9,16]. In [16] a method for extracting models
of (possibly infinite) branches by means of equational constraints is described. The
approaches [21,9] are based on resolution and therefore are much more efficient than
approaches based on the d rule of classical tableaux methods. In contrast to the method
described in the present paper, the method described in [21] only applies to the monadic
and Ackermann class. The method of [9] which, like the PUHR and EP tableaux, is
based on positive hyper-resolution, avoids splitting. In some cases, this results in gains
in efficiency. For most applications mentioned in Section 2, in particular for the database
problems, finitely representable models are not convenient. Instead finite models are
needed. This motivated the research reported in the present paper.

10 Conclusion and Perspectives

Some applications of theorem proving have been discussed that can benefit from a
model generator complete for finite satisfiability not imposing an upper bound on the
size of the models searched for. A novel approach Extended Positive Tableauz has been
developed for such applications. Like the PUHR Tableaux [6] they extend, Extended
Positive Tableaux rely on positive unit hyper-resolution and “range restriction” for
avoiding the “blind instantiation” performed by the  rule of standard tableaux [20, 10,
22, 23]. Instead of relying on Skolemization, as most refutation methods do, Extended
Positive Tableaux use the extended ¢ rule of [5,12,14]. It was shown that this rule
makes the Extended Positive Tableaux method complete not only for refutation, like
standard tableaux methods, but also for finite satisfiability. A prototype written in
Prolog in the style of SATCHMO [15] implements the Extended Positive Tableaux
method.

The following issues deserve further investigations.

First, for most applications it would be desirable to have typed variables. An ex-
tension based on a simple type system and many-sorted logic seem sufficient for the
application described in [4].
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Second, the method remains to be extended to languages with function symbols.
Even though the restriction to languages without function symbols is not stringent since
existential quantifiers are allowed, explicit function symbols would be more convenient
for applications. To handle explicit function symbols a promising direction could be
the use of constraint reasoning techniques in the manner of [1].

Third, for applications such as diagnosis and the database issues mentioned in Sec-
tion 2, it would be preferable to have a method not only complete for finite satisfiability,
but also which generates only minimal models, as investigated e.g. in [6].
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