Positive Unit Hyperresolution Tableaux and Their
Application to Minimal Model Generation

Francois Bry ! Adnan Yahya, 2

! Institut fiir Informatik, Ludwig-Maximilians-Universitiat Miinchen,
Oettingenstrafie 67, D — 80538 Miinchen, Germany
http://www.pms.informatik.uni-muenchen.de

2 Electrical Engineering Department, Birzeit University, Birzeit,
Palestine

Keywords: Minimal Model, Model Generation, Tableau, Proof Theory.

Abstract. Minimal Herbrand models of sets of first-order clauses are use-
ful in several areas of computer science, e.g. automated theorem proving,
program verification, logic programming, databases, and artificial intelli-
gence. In most cases, the conventional model generation algorithms are
inappropriate because they generate nonminimal Herbrand models and can
be inefficient. This article describes an approach for generating the minimal
Herbrand models of sets of first-order clauses. The approach builds upon
positive unit hyperresolution (PUHR) tableauz, that are in general smaller
than conventional tableaux. PUHR tableaux formalize the approach ini-
tially introduced with the theorem prover SATCHMO. Two minimal model
generation procedures are described. The first one expands PUHR tableaux
depth-first relying on a complement splitting expansion rule and on a form
of backtracking involving constraints. A Prolog implementation, named
MM-SATCHMO, of this procedure is given and its performance on bench-
mark suites is reported. The second minimal model generation procedure
performs a breadth-first, constrained expansion of PUHR (complement)
tableaux. Both procedures are optimal in the sense that each minimal model
is constructed only once, and the construction of nonminimal models is in-
terrupted as soon as possible. They are complete in the following sense:
The depth-first minimal model generation procedure computes all minimal
Herbrand models of the considered clauses provided these models are all
finite. The breadth-first minimal model generation procedure computes all
finite minimal Herbrand models of the set of clauses under consideration.
The proposed procedures are compared with related work in terms of both
principles and performance on benchmark problems.

1 Introduction

Generating Herbrand models of sets of first-order clauses is useful in several
areas of computer science. In automated theorem proving, models can assist
in making conjectures, that can be later checked for provability with con-
ventional provers. In automated theorem proving and program verification,
model generation can also be applied to searching for counter-examples to
conjectures. In both application areas, it is worthwhile and helpful to re-
strict model generation to minimal models.

The generation of minimal models is useful in logic programming and
deductive databases for specifying their declarative semantics [40, 41], in
some approaches to query answering [24, 36, 78, 77|, for updating database
facts and views [22, 28, 72, 6, 2], in artificial intelligence for solving de-
sign synthesis and diagnosis problems [54, 61, 53, 4], and in nonmonotonic
reasoning [46, 34, 50, 49] — see also [60, 68]. Artificial intelligence produc-
tion systems can be seen as minimal model generators for propositional or
first-order logic Horn clauses.

The conventional tableaux methods [66, 25, 73, 74] are however inappro-
priate as model generation procedures because they often return redundant
or nonminimal models [34, 50, 68, 42]. The a posteriori detection of redun-
dant models is tedious and might be time consuming. Moreover, redundant
models are a source of inefficiency because they blow up the search space.
This article describes two procedures for generating the minimal Herbrand
models of a set of first-order clauses. The proposed procedures are optimal
in the sense that each minimal model is generated only once, and nonmini-
mal models are rejected as soon as possible, in general before their complete
construction. Measurements on an implementation in Prolog of one of the
procedures point to the efficiency of the approach.

Both procedures are based on positive unit hyperresolution tableauz (short
PUHR tableaur), a (novel) formalization of an approach first introduced with
the theorem prover SATCHMO [44, 45]. PUHR tableaux are ground and
positive, more precisely their nodes consist of sets of ground atoms and
disjunctions of ground atoms. They are expanded by means of only two
rules, the positive unit hyperresolution and the splitting (a simple version of
B expansion [66, 25]) rules, from range-restricted clauses. Range restrict-
edness is a syntactical property required in many applications, e.g. deduc-
tive database languages. A transformation of general clauses into range re-
stricted clauses is described which is comparable to Skolemization: although
requiring an extension of the language, it preserves models in a certain sense.
The branching factor, the size of PUHR tableaux, and the size of the nodes
of PUHR tableaux are in most cases significantly smaller than those of con-
ventional tableaux. Positive unit hyperresolution makes it possible not to
blindly instantiate universally quantified variables. Instead, it combines in
one step instantiations (or 7y expansions [66, 25]) and splittings (or [ex-

pansion [66, 25]), thus reducing the depth of PUHR tableaux. Thanks to
range-restrictedness full unification is not needed for computing positive unit
hyperresolvents. “Half-way unification” (or “merging”) suffices.

The first minimal model generation procedure expands PUHR tableaux
depth-first relying on a complement splitting expansion rule and on a form
of backtracking involving constraints. The complement splitting rule (intro-
duced under this name in [45], called “reduction” in [55] and “folding-down”
in [39]) cuts out some branches leading to nonminimal models. Because
PUHR tableaux are ground, complement splitting can be nicely and effi-
ciently built into the SATCHMO programs. While discarding many non-
minimal models, and preventing the generation of duplicate models, com-
plement splitting is not always sufficient to reject all nonminimal models.
In order to prune redundant models as soon as possible, a special depth-
first search strategy with extended backtracking is applied. The resulting
depth-first minimal model generation procedure is sound in the sense that
it generates only minimal Herbrand models, and complete in the sense that
it returns all minimal Herbrand models of the input clauses, provided these
minimal models are all finite. An interesting property is established: If all
minimal Herbrand models of a set of clauses are finite, then they are finitely
many. A variation, called MM-SATCHMO, of the SATCHMO program is
given, which implements the depth-first minimal model generation proce-
dure in Prolog. The previously mentioned property ensures the termination
of this procedure, in case all minimal models are finite.

The second minimal model generation procedure performs a breadth-
first, possibly constrained expansion of PUHR (complement) tableaux. It
is complete in the sense that it computes in finite time every finite minimal
Herbrand model of the set of clauses under consideration.

The plan of the paper is as follows. Section 2 introduces terminology and
notations, and defines range-restricted clauses. In Section 3, PUHR. tableaux
are introduced, they are compared with refutation methods, and their im-
plementation in Prolog — the program SATCHMO - is recalled. Section 4
is devoted to model generation using PUHR tableaux. Soundness and com-
pleteness results are given and PUHR tableaux are compared with model
generation methods. Section 5 defines the depth-first and breadth-first min-
imal model generation procedures as modified PUHR tableaux methods. In
this section, finiteness properties are first investigated, complement splitting
and its implementation are discussed, a minimal model generation procedure
based on depth-first search is defined and its implementation in Prolog — the
program MM-SATCHMO - is given, breadth-first minimal model generation
is investigated, the proposed minimal model generation procedures are com-
pared with related work, and finally the performance of MM-SATCHMO on
benchmarks is reported. The last Section is a conclusion.

A preliminary version of this paper (whithout proofs and whithout Sec-
tions 3.2, 4.2, 5.6, 5.7, and 5.8) has been published in the Proceedings of the

Fifth Workshop on Theorem Proving with Analytic Tableaux and Related
Methods [12].

2 Preliminaries

2.1 Terminology and Notations

Throughout the paper usual terminology and notations are used, as in e.g.
[66, 25]. When not explicitly otherwise stated, a first-order language L is
implicitly assumed. It is also assumed that two special atoms T and L
are available, expressing respectively truth and falsity, i.e. T is satisfied in
every interpretation, no interpretations satisfy L . The logical connectives
A and V are assumed to be right associative, i.e. if # = A or § = V, then
L10L29 . 0Ln,10Ln denotes (L10(L20 . O(LnflgLn) ..))

Every clause C = L; V ... V L with negative literals {— A4y, ...,7 A} and
positive literals {Bj, ..., By, } can be represented by a clause in implication
form: C'=A1N.... NA, = B1 V..V B,,. A1 A....A A, is called the body
of C', By V ...V By, its head. If C contains no negative literals, ¢’ = T —
B1 V...V By,. If C contains no positive literals, C' = A A A A, — L.

A unifier o of a conjunction of atoms (A1 A A Ay,) and a sequence of
atoms (By, ..., By) (possibly with repeated atoms) is defined as a substitution
o such that A;o = Bjo, foralli =1,...n. If (A1 A....AAy) and (B, ..., By)
have a unifier, they are unifiable. Note that, since repetitions in the sequence
(By,...,B,) are allowed, a conjunction (A; A A A,) might be unifiable
with a sequence containing less than n (distinct) atoms. A unifier 6 of
(A1 A ... N Ay) and (By, ..., By) is called a most general unifier (mgu) of
(A1 A ... NAp) and (By, ..., By), if for each unifier o of (A1 A.... A 4;) and
(B, ..., By), there exists a substitution 7 such that o = 6.

An atom A is said to subsume an atom B (a disjunction of atoms B; V
...V By, resp.) if there exists a substitution o such that Ao = B (Ao = B;
for some i € {1,...,n}, resp.).

An interpretation of £ will be denoted as a pair (D,m) where the
nonempty set D is the universe (or domain) and m is the mapping inter-
preting the symbols and expressions of the language.

The universal closure of a clause C is Vzi...Vx,C, where x1,...,x, are
the variables occurring in C. A clause (resp. a set of clauses) is said to
be satisfied by an interpretation when the universal closure of the clause
(resp. the set of the universal closures of the clauses) is satisfied by this
interpretation. A clause (resp. a set of clauses) is said to be satisfiable if it
has at least one interpretation in which it is satisfied. A clause (resp. a set of
clauses) is said to be finitely satisfiable if it is satisfied by an interpretation
with a finite domain.

A term or formula in which no variables occur is said to be ground. If A
is a set of ground atoms, H(A) denotes the Herbrand interpretation which

satisfies a ground atom B if and only if B € A. In this paper, a Herbrand
interpretation H(A) will be said to be finitely representable if A is finite.
Note that “finite representability of Herbrand interpretations” can be found
in the literature, e.g. in [23], with another meaning. Since confusions can be
avoided from the context, a set of formulas having a finitely representable
Herbrand model will be said to be finitely representable. Note that finite
representability (of sets of formulas) and finite satisfiability are two distinct
properties.

The subset relationship C over sets of ground atoms induces an order
< on Herbrand interpretations: given two sets A; and As of ground atoms,
H(A;) < H(Ay) if and only if A; C Ag. If S is a set of clauses, < induces
an order on Herbrand models of S. A Herbrand model H(A) of S is said
to be a minimal Herbrand model of S if it is minimal for <, i.e. for every
Herbrand model H(A’) of S, if H(A") < H(A), then A’ = A.

If € is a set of formulas, Atoms(£) denotes the set of atoms (i.e. positive
unit clauses) that are elements of £.

Variables are denoted by z and y with or without subscripts, constants
by a, b, ¢ or d, predicate symbols by D, P, (), and R, and function symbols
by f.

In the following, a tree denotes a pair (V, E) such that V is a set — the
elements of which are called vertices — and E is binary relation on V' — the
elements of which are called edges — containing no cycles and with respect to
which V' is connected. Vertices(T) denotes the set of vertices and Edges(T)
the set of edges of a tree T'. If T} and Ty are trees, T) UT5 is defined as (V, E)
with V' = Vertices(Ty) U Vertices(T») and E = Edges(T}) U Edges(T5).

In this paper tableaux methods and minimal model generation proce-
dures for sets of first-order clauses are defined, i.e. it is assumed that exis-
tential quantifications have been removed through Skolemization.

2.2 Range Restriction

Definition 1 (Range restricted clause) A clause (resp. a clause in im-
plication form) is said to be range restricted if every variable occurring in a
positive (resp. head) literal also appears in a negative (resp. body) literal.

Clearly, a range restricted clause in implication form is ground if its body
is ground, e.g. if it is T. Note that clauses considered in many applications
of minimal model generation — e.g. database view updates [6, 2], database
schema design [7], abductive reasoning [6, 16, 17], diagnosis [54, 61, 53] — are
range restricted. Also, clauses obtained from many-sorted formulas through
the standard representation in first-order logic [18] are range restricted.

A transformation is first defined, which associates a set RR(S) of range
restricted clauses in implication form with every set S of clauses in implica-
tion form.

Definition 2 (Range restriction transformation) Let L' be an exten-
sion of the language L with a unary predicate D (not belonging to L).

For every L-clause C = Ay A ... N A, — By V...V By, let RR(C) be the
following L'-clause:

RR(C) := C if C is range restricted;
") D(z1) Ao AD(z) NAL A .. A Ay, = By V...V By, otherwise,

where x1,...,x are the variables occurring in the B;s and in none of the
Ajs.

Let S be a set of L-clauses. For a term t distinct from o variable and
occurring in S, let Cy be the L'-clause:

o D(z1) A ... ND(xg) — D(t) if the variables x1, ...,z occur in t;
T T = D(t) if no variables occur in t.

Let T be the set of nonvariable terms occurring in S. Let S’ be the following
set of L'-clauses:

S {Cy | teT} if T contains a constant;
") {C.}U{C, | te T} otherwise, for some constant a.

RR(S) :={RR(C) | C € S} US' is the range restriction of S.

Note that by construction the clauses in RR(S) are range restricted and
that RR(S) is finite if S is finite. Strictly speaking, the range restriction
transformation does not preserve models because it extends the language £
with the unary predicate D.

Example 1

1. If § = {T — P(f(x))}, then RR(S) = {D(z) — P(f(z)), T —
D(a) , D(z) = D(f(z))} where, in the first clause, D(z) A T is sim-
plified into D(z).

2. I£S = {P(z,y) — P(f(2),9)}, then RR(S) = {P(z,y) — P(f(z),y),
T — D(a) , D(z) — D(f(x))}.

Example 1 shows that, if the range restriction transformation is applied
to a set of clauses that are already range restricted, a set of range restricted
clauses is obtained which is not identical with the initial set. Note that the
properties of the PUHR tableaux method and of the minimal model gener-
ation procedures given below only require that the method and procedures
are applied to sets S of range restricted clauses but not that S = RR(S).

The following theorem shows that the range restriction transformation
preserves models and minimal Herbrand models in a certain sense, similar
to the way Skolemization does.

Theorem 3 Let S be a set of clauses in a language L with no other function
symbols than those occurring in S except possibly a constant a. Let RR(S)
be the range restriction of S in an extension L' of L with a unary predicate
D.

1. If (D, m) is a model (Herbrand model, minimal Herbrand model, resp.)
of S and if m' is the mapping over L' defined as follows:

! ._ m(s) if s # D,
m(s)'_{D if s=D.

then (D,m') is a model (Herbrand model, minimal Herbrand model,
resp.) of RR(S).

2. If (D,m’) is a model (Herbrand model, minimal Herbrand model, resp.)
of RR(S) and if m'| denotes the restriction of m' to L, then (D, m/|.)
is a model (Herbrand model, minimal Herbrand model, resp.) of S.

Proof: Point 1 follows immediately from Definition 2. For point 2 the
nonemptiness of S’ (cf. Definition 2) is necessary, because the clauses
RR(C) such that RR(C') # C are satisfied over any interpretation mapping
the added unary predicate D to the empty set.]

This result means that range restrictedness can be seen as just a special
syntactic form rather than a real restriction — from a theoretical point of
view. For practical purposes, however, range restrictedness does make a
difference. In the context of PUHR tableaux, the range restriction transfor-
mation induces an enumeration of the ground terms, making the v expansion
rule of conventional tableaux [66, 25] superfluous. Thus, if the procedures
presented in this paper are applied to a set RR(S) obtained from S by the
transformation above, then the newly introduced atoms with predicate D
have basically the same effect as an instantiation, i.e. as the vy rule, for the
clauses of the original set S.

When applied in a refutation procedure, instantiation is often a source
of inefficiency. Note, however, that this is not the case for model generation.
In contrast to refutation, model generation requires instantiation anyway if,
like considered in the present paper, Herbrand models are to be represented
as sets of ground atoms.

Definition 4 (Positive unit hyperresolvent) Let C = A A ... N A, —
E\V ...V E,, be a clause in implication form, By, ..., By be n (not necessarily
distinct) atoms such that (Ay A ... N Ay) unifies with (By,...,By). If o is a
most general unifier of (A1 N...NAy) and (By, ..., By), then (E1V ...V Ey,)o
is a positive unit hyperresolvent of C and By, ..., By.

Lemma 5 The positive unit hyperresolvent of a range restricted clause in
implication form and ground atoms is a ground atom or a disjunction of
ground atoms.

Proof: Immediate. L]

Note that no occur-checks need to be performed for computing the posi-
tive unit hyperresolvent of a range restricted clause in implication form and
ground atoms. Indeed, half-way unification (or matching) suffices in comput-
ing a positive unit hyperresolvent of a range restricted clause in implication
form and of ground atoms.

In the next section, positive unit hyperresolution tableaux are defined for
range restricted clauses. This is not a significant restriction, for Definition 2
gives a transformation of (finite) sets of general clauses into (finite) sets
of range-restricted clauses which preserves models and minimal Herbrand
models in the sense of Theorem 3. Note that this transformation is not
necessary for applying the model generation methods described below, if
the considered clauses are already range restricted.

3 Positive Unit Hyperresolution Tableaux and
SATCHMO

3.1 Positive Unit Hyperresolution Tableaux

Starting from the set {T}, the PUHR tableaux method expands a tree —
or positive unit hyperresolution (PUHR) tableau — for a set S of range
restricted clauses in implication form by applying the following expansion
rules that are defined with respect to S. The nodes of a PUHR tableau are
sets of ground atoms or disjunctions of ground atoms.

Definition 6 (PUHR tableaux expansion rules) Let S be a set of
clauses in implication form.
e Positive unit hyperresolution (PUHR) rule:

B

By
Eo
where o is a most general unifier of the body of a clause

(ALN...NA, = E)€S and of (By,...,Bp).

e Splitting rule:

FE{V Ey

E | Es

In the following definition, thanks to the range restrictedness of clauses,
the splitting rule is applied to ground disjunctions.

Definition 7 (PUHR tableaux) Positive unit hyperresolution (PUHR)
tableauz for a set S of clauses in implication form are (finite or infinite)
trees whose nodes are sets of ground atoms and disjunctions of ground atoms.
Finite PUHR tableauz for S are inductively defined as follows:

1. {T} is a positive unit hyperresolution tableau for S.

2. If T is a positive unit hyperresolution tableau for S, if L is a leaf of
T such that an application of the PUHR rule (resp. splitting rule) to
formulas in L yields a formula E (resp. two formulas Ey and E3) not
subsumed by an atom in L, then the tree T' obtained from T by adding
the node L U{E} (resp. the two nodes L U {E;} and L U {Es}) as
successor(s) to L is a positive unit hyperresolution tableau for S.

Infinite PUHR tableauz for S are defined as follows: If (T;)ien is an infi-
nite sequence of finite PUHR tableaux for S such that for all 1 € N T;4
results from an application of a PUHR tableau expansion rule to T;, then
T = UsjenTi — i-e. the tree T with Vertices(T) = U;cp Vertices(T;) and
Edges(T) = U;en Edges(T;) — is a PUHR tableau for S.

A branch of a positive unit hyperresolution tableau is said to be closed,
if it includes a node containing the atom 1. A positive unit hyperresolution
tableau is said to be closed if all its branches are closed. A branch (resp.
tableau) which is not closed is said to be open.

A positive unit hyperresolution tableau T for S is said to be satisfiable if
the union of S with the nodes of a branch of T is satisfiable.

If P is a branch or a path from the root to a node N, then UP will
denote the union of the nodes in P. Note that if P is a path from the root
to a node N of a PUHR tableau, then by Definition 7, N = UP.

Convention. If N; and N, are the nodes of a PUHR tableau T' containing
respectively F; and Fs and resulting from an application of the splitting
rule to Ey V Es, it is assumed in the sequel that the PUHR tableau T is
ordered such that Nj is the left sibling of E5. This ordering induces an
ordering on the branches of a PUHR tableau in the natural way. Note that
this ordering — of nodes or branches of a PUHR tableau — is independent
from any strategy under which the PUHR, tableau can be built. Expressions
such as “a node appearing to the left of another node in a PUHR tableau”
(cf. Theorem 25) or “the leftmost branch of a PUHR tableau” (cf. Exam-
ple 3, Corollary 26, and Example 7) will refer to this ordering, not to an
ordering induced by a search strategy.

Example 2 Figure 1 gives a PUHR tableau for the following set of clauses
in implication form:

Pla)V Q)
Pw/////’ T
| |
P(f(a)V Q(f(2)) PO vV R(O)
— ~ - S
P(f(a)) Q(f(a)) %0 R()
| | |
1 1 1

Figure 1: A PUHR tableau for the set of clauses of Example 2.

T — P(a) vV Q(b) Pb) - L
P(z) = P(f(z)) v Q(f(2)) P(f(z)) — L
Q(z) = P(z) V R(z) Px)AQ(f(z)) — L

For the sake of readability, the nodes of the tree of Figure 1 are labeled
with the ground atoms or disjunctions of ground atoms added at these nodes.
We recall that by Definition 7 and Lemma 5 the nodes of a PUHR tableau
are sets of ground atoms and disjunctions of ground atoms.

Note that sets of clauses for which PUHR tableaux are defined may be
infinite. According to Definition 6 clauses whose heads are L only contribute
to close branches. Since negative formulas do not explicitly occur in PUHR
tableaux, closure is simply detected by the presence of L, which is simpler
than checking for atomic closure [25].

Definition 8 Let S be a set of range-restricted clauses in implication form
and A a set of ground atoms and disjunctions of ground atoms. A is said
to be saturated with respect to S for the positive unit hyperresolution and
splitting expansion rules when the following properties hold:

1. if (AiN..NA, > E)ES, B €A, ..., and B, € A, and (A1 N\...NAy,)
and (By, ..., B,) are unifiable, then Eo € A for a most general unifier
o of (A1 A ... \NAy) and (By, ..., By).

2. If (E1V Ey) € A, then E; € A or Ey € A.

Note that if B is an open or a closed branch of a PUHR tableau, then UB
is not necessarily saturated. As well, if UB is saturated, then B is neither
necessarily open, nor necessarily closed.

Lemma 9 The application of an expansion rule to a satisfiable PUHR tableau
results in a satisfiable PUHR tableau.

10

Proof: If M is a model of a set F of clauses, atoms and disjunctions, and if
E is a positive unit hyperresolvent of elements of F, then M | E. If M is
a model of F and Ey V Ey € F, then M |= E; or M = Es. n

Theorem 10 (Refutation soundness) Let S be a set of range-restricted
clauses in implication form. If there exists a closed PUHR tableau for S,
then S is unsatisfiable.

Proof: Assume S is satisfiable. By Lemma 9 there are no closed PUHR
tableaux for S. n

Definition 11 A PUHR tableau is said to be fair, if the union of the nodes
of each of its open branches is saturated for the expansion rules.

Informally, a PUHR tableau is fair if along each of its open branches,
each possible application of an expansion rule, which yields an atom or a
disjunction of atoms not subsumed by previously generated atoms, is per-
formed at least once.

If B is a branch of a tableau, then Atoms(UB) denotes the set of atoms
(i.e. positive unit clauses) that are elements of some nodes in B. In the
sequel, Atoms(€) will always be referred to in cases where all atoms in &
are ground. Recall that if Atoms(€) is a set of ground atoms, it characterizes
the Herbrand interpretation H(Atoms(&)).

Lemma 12 Let S be a set of range-restricted clauses in implication form
and & be a set of ground atoms and disjunctions of ground atoms. If SUE is
saturated for the expansion rules with respect to S and if £ does not contain

1, then H(Atoms(E)) is a model of S.
Proof: Immediate. n

Theorem 13 (Refutation completeness) Let S be a set of range-restricted
clauses in implication form. If S is unsatisfiable, then every fair positive unit
hyperresolution tableau for S is closed.

Proof: Let T be an open fair PUHR tableau for S, and B an open branch
of T. Since T is fair, then UB is saturated for the expansion rules. By
Lemma 12 H(Atoms(UB)) is a model of S. Hence S is satisfiable. "

PUHR tableaux are defined for sets of range restricted clauses. Com-
bined with the PUHR expansion rule of Definition 6, the range restriction
transformation induces an enumeration of the ground terms, as observed

e.g. in [43].

11

3.2 Comparison of PUHR Tableaux With Related Refuta-
tion Methods

The PUHR tableaux are a formalization of the principle of the SATCHMO
programs, one of them is recalled in the next section. Other formalizations
of the SATCHMO approach to theorem proving can be found in [16, 33, 17,
12,3, 37,11, 71]. A further more or less implicit formalization is subjacent to
[43]. In [71, 11], EP Tableaux are proposed that generalize PUHR Tableaux
to nonclausal formulas with “restricted quantification”. PUHR and hyper
tableaux [3, 37] are more in the “tableaux style” (cf. [66, 25, 73, 74]) than
the formalizations [16, 33, 17]. PUHR tableaux are simpler than hyper
tableaux [3] in which negative literals resolved away during hyperresolution
yield closed branches. PUHR and hyper tableaux [3] are closely related to
the positive tableaux of [30] that are defined for ground or propositional
logic clauses.

In [3], a refutation method & la SATCHMO is described, that does not
require clauses to be range-restricted. Variables occurring in more than
one positive literal of a clause are instantiated using the rule of standard
tableaux methods [66, 25]. Variables occurring in at most one positive lit-
eral do not have to be instantiated, since splitting disjunctions in which
such unbound variables occur does not compromise refutation correctness.
As pointed out in [3], this optimization is particularly interesting, because
it applies to Horn clauses that frequently appear in applications. Note how-
ever, that this optimization is not applicable to model generation if, as
assumed in the present paper, Herbrand models are to be represented by
the ground atoms they satisfy.

In [3], it is proposed to achieve fairness by iterative deepening on the
maximal depth of terms occurring in the generated clause instances. This
seems more convenient than the (iterative deepening based) backtracking
of free variable tableaux [25, 5]. However, it is debatable whether it is not
preferable to achieve fairness by “level saturation” as described in [44, 45]
and below in Section 3.3.

Note also the interesting optimization called “level cut” suggested in [3],
which can be applied to most tableaux methods used for refutation. The
“level cut” optimization consists in discarding branchings if one of the
branching subtrees can be closed without using the branching assumption.
This optimization is not applicable to model generation if, as it is assumed
here, Herbrand models are to be represented by all the ground atoms they
satisfy.

The data structure “model tree” described in [41] is related to PUHR
tableaux as follows: The tree consisting of the (open) branches correspond-
ing to minimal models of a PUHR tableau induces — by node relabeling and
chain compacting — a model tree. However, model trees are defined only for
ground clauses.

12

satisfiable :- findall(Clause, violated_instance(Clause), Set),
not (Set = []), !, satisfy_all(Set), satisfiable.
satisfiable.

violated_instance(B ---> H) :- (B ---> H), B, not H.

satisfy_all([]).
satisfy_all([_B ---> H | Taill]) :- H, !, satisfy_all(Tail).
satisfy_all([_B ---> H | Tail]) :- satisfy(H), satisfy_all(Tail).

satisfy(E) :- component(Atom, E), not (Atom = false), assume(Atom).

component (Atom, (Atom ; _Rest)).
component (Atom, (_ ; Rest)) :- !, component(Atom, Rest).
component (Atom, Atom) .

assume (Atom) :- asserta(Atom).
assume (Atom) :- once(retract(Atom)), fail.

Figure 2: The fair SATCHMO program.

In [44, 45], where SATCHMO was first presented, it is described in terms
of positive unit hyperresolution and splitting and not as a tableaux method.
This presentation has been retained by most authors referring to SATCHMO
or extensions of it, e.g. [60, 26, 67, 43, 31, 38]. In fact, SATCHMO has been
conceived as a tableaux method, as early publications [9, 8] on this project
report. This is because enhancing a tableaux method with resolution was
a new idea and because tableaux methods were considered inefficient that
this view is not explicitly mentioned in [44, 45].

3.3 Implementation in Prolog

The Prolog program of Figure 2 expands fair PUHR tableaux for sets of
range-restricted clauses in implication form under a depth-first search strat-
egy. The tableaux expanded by this program are strict [25] and subsumption-
free. Strictness means that no application of an expansion rule is performed
more than once to given clauses, atoms, or disjunctions. Subsumption-
freeness means that only ground disjunctions that are not subsumed by
previously generated atoms or disjunctions can be split.

Backtracking over satisfiable returns Herbrand models H(M). The
ground atoms of M are inserted into the Prolog database by the predicate
assume. On backtracking, they are removed. A clause A1 A ... A A, —
By V...V By, is represented in the Prolog database as

Al, ..., An ---> Bl ; ... ; Bm,
where —---> is declared as an infix binary predicate. L is represented as

false, T as the built-in predicate true, which is always satisfied.

13

Fairness is ensured by the call to the all-solutions built-in predicate
findall. The predicate component on backtracking successively returns
the atoms of a disjunction. The predicate satisfy on backtracking suc-
cessively returns the components of a disjunction that are not subsumed
by atoms previously inserted into the Prolog database. For each ground
instance _B ---> H of a clause returned by the call

findall(Clause, violated_instance(Clause), Set)

the predicate satisfy_all selects an atom in the head H and asserts it in
the Prolog database. On backtracking, the different ways to satisfy the head
H of each ground instance _B —--> H returned by the call to findall are
considered.

The program of Figure 2, called fair SATCHMO, as well as variations
of it have been first published in [44, 45]. In these articles, the programs
are explained in more detail and performance on benchmark examples is
reported.

It is worth pointing out that satisfy_all is a simple and straightfor-
ward implementation which, in some cases, has drawbacks. Consider for
example the following Prolog representations R and Ry of the same set of
clauses:

Rq: Ra:
true ---> p(a) true ---> p(b) ; p(a)
true ---> p(b) ; p(a) true ---> p(a)

Applied to R, the call to
findall(Clause, violated_instance(Clause), Set),
instantiates the variable Set with the list:
[(true ---> p(a)), (true ---> p(b) ; p(a))]

Then the call to satisfy_all first asserts p(a) into the Prolog database
so as to satisfy the head of true ---> p(a). Since now p(b) ; p(a) is
satisfied, no further actions are taken, as specified by the second clause of
satisfy_all. If in contrast Ry is considered, the call to

findall(Clause, violated_instance(Clause), Set)
binds the variable Set to the list:

[(true ---> p(b) ; p(a)), (true ———> p(a))]

14

The call to satisfy_all now satisfies first p(b) ; p(a), then p(a). That
is p(b) is first asserted, then p(a). On backtracking, p(a) only is asserted.

Such a behaviour depending on the order of the clauses in Prolog can be
avoided with a more sophisticated implementation of satisfy_all which
satisfies the considered set of heads of ground clauses by a minimal set of
atoms. Since such a refined implementation of satisfy_all is not needed
for the purpose of this report, it is not given here.

4 Model Generation With PUHR Tableaux

4.1 Soundness and Completeness Results

In the previous section, PUHR tableaux were considered from the angle of
refutation. In this section, their properties with respect to model generation
are investigated.

Theorem 14 (Model soundness) Let S be a satisfiable set of range-
restricted clauses in implication form and T o fair PUHR tableau for S.
If B is an open branch of T, then H(Atoms(UB)) is a model of S.

Proof: Fairness ensures saturation with respect to the expansion rules. The-
orem 14 follows from Lemma 12. m

Theorem 15 Let S be a satisfiable set of range-restricted clauses in impli-
cation form, T be a PUHR tableau for S, and M a set of ground atoms. If
H(M) is a model of S, then there exists an open branch B of T such that
Atoms(UB) C M.

Proof: Let B be the set of branches B of T such that Atoms(UB) € M. If
B is empty, the result is established. Assume that B # (). By the axiom
of choice, for each B € B there exists Ag € Atoms(UB) \ M. Let &' =
SU{Ag — L : B € B}. By definition of &', since no Ap is in M, H(M)
is also a model of S’. Furthermore T' can be extended into a positive unit
hyperresolution tableau T” for S’ by adding L to the successor nodes of
those nodes of T that contain some Ag. Let B’ denote such an extension of
the branch B in T”. By construction, if B € B, then B’ is a closed branch
of T". By Theorem 10, since H(M) is a model of &’ and T" is positive unit
hyperresolution tableau for §’, 77 has an open branch, say By. Since By is
open, it is no branch B’ of T" extending a branch B of T such that B € B.
Since all clauses of S, whose heads are L, are also in S’, By is also an open
branch of T'. Since By ¢ B, by definition of B, Atoms(UBy) C M. "

Corollary 16 (Minimal model completeness) Let S be a satisfiable set

of range-restricted clauses in implication form, T be a fair positive unit
hyperresolution tableau for S, and M a set of ground atoms. If H(M) is a

15

P(a) v P(b)
P T
| |
P(b) v P(d) P(a) V P(c)
PG o~
P(b) P(d) P(a) P(c)
|
P(a) v P(d)
_— N
P(a) P(d)

Figure 3: A PUHR tableau for Example 3 with nonminimal and duplicate
models.

minimal model of S, then there is a branch B of T such that Atoms(UB) =
M.

Proof: By Theorem 15, there is a branch B of T such that Atoms(UB) C M.
Since T is fair, by Theorem 14 H(Atoms(UB)) is a model of S. Since H (M)
is a minimal model of S, Atoms(UB) = M. .

The following example demonstrates that a plain PUHR tableau can
generate both, nonminimal and duplicate models.

Example 3 Let S be the following set of clauses:

T = P(a) vV P(b) P(a) — P(b) v P(d)
T = P(a) V P(c) P(b) — P(a) v P(d)

Figure 3 is a PUHR tableau for §. The minimal model H({P(a), P(b)})
of § is generated twice, at the leftmost branch and at the third branch
from the left of the PUHR tableau. The fourth branch from the left of
the PUHR tableau generates the nonminimal model H ({P(a), P(b), P(c)}).
Note that the PUHR tableau returns among others all minimal models of
S, ie. H({P(a), P(b)}), H({P(a), P(d)}), and H{P(b), P(c), P(d)}).

Corollary 16 is established, though in a different context, in [16, 17] and
mentioned without proof in [36]. Since {T} is a PUHR tableau for every
set S of clauses, fairness is clearly necessary in Corollary 16, although not
in Theorem 15. A further interesting example is as follows.

Example 4 With the set of clauses
§ ={T = P(a), P(z) = P(f(x)) vV P(b), P(a) = P(b)}

16

consistently expanding on the second clause will not allow the generation of
the (only) minimal model H({P(a), P(b)}) of S.

4.2 Comparison With Other Model Generation Methods

As a model generation method, the PUHR tableaux method can be com-
pared with model generators for given cardinalities. Possibly, one of the
first such generator of models has been described in [35]. Nowadays, among
the best known generators of finite models of (or up to) a given cardinality
are FINDER [65] and SEM [79]. Their strength lies in a sophisticated very
efficient implementation of the exhaustive search for models up to a given
cardinality. The models generated by these methods are not necessarily
minimal in the sense of the present paper. Moreover, they require to specify
the cardinality of the universe. With PUHR tableaux, this is not necessary.

For ground clauses, the Davis-Putnam procedure [15] can be used as a
model generator. A significant difference between PUHR tableaux and the
trees expanded by the Davis-Putnam procedure is the PUHR. rule which,
also for ground clauses, gives a preference to positive atoms and expands
the search space according to the implications. For applications such as e.g.
query answering [24, 36, 78, 77], database fact and view updates [22, 28, 72,
6, 2], design synthesis and diagnosis [54, 61, 53, 4], this “positive preference”
is a useful feature.

In [13, 70, 23, 52] tableaux methods are described that generate finite
representations — in another sense than that considered in the present paper
— for (possibly infinite) models. The method presented in [52] extracts mod-
els of possibly infinite tableaux branches by means of equational constraints.
The methods [70, 23] make use of resolution and therefore are much more
efficient than approaches based on the ¢ rule of classical tableaux methods.
The method described in [70] applies only to the monadic Ackermann class.
Like PUHR tableaux the method of [23] is based on positive hyperresolution
but avoids splitting. In some cases this method builds finite representations
of infinite models.

In [11, 71] an extension of the PUHR tableaux method is described which
is complete for both, unsatisfiability and finite satisfiability. Completeness
for finite satisfiability is achieved by generating models with minimal uni-
verses. This notion of “model minimality”, which can be called “domain” or
“universe minimality”, is different and complementary to that investigated
in the present article. For many applications — such as those addressed in
[54, 61, 53, 6, 7, 20, 51, 2] — both notions of minimality, on the one hand do-
main minimality, on the other hand minimality of the set of satisfied ground
atoms, are needed.

In [34, 42] a tableaux method is defined for first-order logic formulas
which generates models with minimal universes by relying on so-called ghost
subtableaux. Ghost subtableaux correspond to the extended 3 or ¢ rule

17

of [11, 71]. Note, however, that the “universe minimality” of [34, 42] does
not fully coincide with that of [11, 71]. In the implementation described
in [42] the blind instantiation of the «y rule is controlled by giving a limit on
the number of v expansions for each « formula.

Thus, the methods described in [34, 42, 11, 71] rely on an extended §
rule — also called 0* rule — for processing existentially quantified variables.
The approach investigated in the present paper in contrast relies on Skolem-
ization.

Most forward chaining — also called bottom up — query answering meth-
ods for disjunctive databases, e.g. [57, 59, 77] can be seen as model gen-
erators similar to the PUHR tableaux methods. Like the PUHR tableaux
method, these methods require the clauses to be range restricted and in-
stantiate all variables. In [58, 32, 76], methods are proposed that, relying on
forward chaining query answering methods for disjunctive databases, imple-
ment backwards chaining through an extension of the Magic Sets rewriting
technique. These methods too can be seen as a tableaux method.

5 Minimal Model Generation

By Corollary 16 fair PUHR tableaux generate all minimal models. However,
they often also generate duplicate and/or nonminimal models, as e.g. in Ex-
ample 3 above. A naive approach to minimal model generation consists in
first expanding (fair) PUHR tableaux, and later pruning them from redun-
dant branches. In this section a more efficient approach is described which
consists in a depth-first expansion of PUHR tableaux combined with an ex-
tended backtracking which prunes the search space from redundant branches
as soon as possible. Under certain finiteness conditions, this depth-first min-
imal model generation procedure is complete. However, it is inappropriate if
some minimal models are infinite. The generation of minimal models based
on breadth-first expansion of (fair) PUHR tableaux is also discussed.

5.1 Finiteness Properties

Recall that a Herbrand interpretation H(.A) is called finitely representable
if the set A of ground atoms it satisfies is finite.

Theorem 17 Let S be a set of formulas. If S has a finitely representable
Herbrand model it also has a finite model.

Proof: Let (D, m) be a finitely representable Herbrand model of S, and A
be the set of ground atoms that are satisfied in (D, m). A finite model of §
is built by identifying the elements of the universe D over which no terms
occurring in A are mapped. Formally, let ~ be the equivalence relation over
D defined by: dy ~ dy if and only if d; = ds or for all R(ty,...,t,) € A and

18

for all i = 1,...,n, m(t;) # di and m(t;) # ds. Let f be the mapping of an
element of D to its equivalence class for ~ in D/ ~. Let D' = D/ ~ and
m’ = f om. Since A is finite, D/ ~ is finite. By definition of D" and m’,
a ground atom is satisfied in (D', m’) if and only if it is satisfied in (D, m).
Since (D, m) = S, it follows that (D',m’) E S. u
The following result relates the finiteness of the set of minimal models to
the finite representability of the minimal models. Let us call finitary a set
of clauses, whose minimal Herbrand models are all finitely representable.

Theorem 18 Let S be a set of clauses. If S is finitary, then S has finitely
many minimal Herbrand models.

Proof: Let F be the set of finitely representable minimal Herbrand models
of §. Assume F is infinite. If A is a finite set of atoms {Aq,..., Ay}, let
Neg(A) denote the (singleton) set of clauses {A; A...A Ay — L}. For every
finite subset F of F | let Sp = SUU{Neg(A) : H(A) € F}. By the axiom of
choice, for every finite subset F' of F there exists a minimal Herbrand model
H(Mp) of § such that H(Mp) € F \F. Since all Herbrand models of S
in F are minimal and since H(Mp) ¢ F, H(Mp) is a model of Neg(A) for
every H(A) € F. Therefore, H(MF) is a model of Sp. By the compactness
theorem, 8’ = U{Sp : F C F and F finite } is satisfiable. Since S’ a set of
clauses, it has a Herbrand model, and therefore also some minimal Herbrand
model H(M). By definition of §’, H(M) ¢ F. Therefore M is infinite. m

Conjectures. Although finite representability is a stronger property than
finite satisfiability, we conjecture that it is semi-decidable like finite satisfi-
ability. We also conjecture that the finitary property is semi-decidable.

Let S be a set of clauses whose minimal Herbrand models are all finitely
representable. By Theorem 18 a PUHR tableau for S pruned from those
branches corresponding to nonminimal models is finite.

In applications, the finite representability of the minimal Herbrand mod-
els is often implicitly assumed. This is the case in particular of disjunctive
databases [41] and of some forms of nonmonotonic reasoning [61, 34, 53, 60,
46, 49]. Thus, Theorem 18 is particularly interesting. Note that mentions of
Theorems 17 and 18 or of similar results could not be found in the literature.

5.2 Complement Splitting

IfC = Ay V...V A, is an atom or a disjunction of atoms, let Neg(C') denote
the finite set of clauses in implication form Neg(C) := {4; — L,..., A, —
1}

19

Definition 19 (Complement splitting rule)

E|V Ey
E; E5
Neg(E3)

The complement splitting rule is referred to under this name in [45]. It
was inspired from the Davis-Putnam procedure [15] and from the “com-
plement searching” technique of [56]. Other authors came to the same
idea: Complement splitting is called “reduction” in [55] and “folding-down”
in [39].

Like the splitting rule, the complement splitting rule is applied in the
following definitions to ground disjunctions. Tableaux expanded with the
positive unit hyperresolution and the complement splitting rules are defined
inductively, similarly as in Definition 7. Let us call such tableaux PUHR
complement tableauz. Note that nodes of PUHR complement tableaux are
sets of ground atoms, disjunctions of ground atoms, and ground implications
of the form A — 1.

Definition 20 (PUHR complement tableaux) Positive unit hyperres-
olution (PUHR) complement tableauz for a set S of clauses in implication
form are (finite or infinite) trees whose nodes are sets of ground atoms,
disjunctions of ground atoms, and ground implications of the form A — L.
Finite PUHR complement tableauz for S are inductively defined as follows:

1. {T} is a positive unit hyperresolution complement tableau for S.

2. If T is a positive unit hyperresolution complement tableau for S, if L
is a leaf of T such that an application of the PUHR rule (resp. comple-
ment splitting rule) to formulas in L yields a formula E (resp. two sets
of formulas {E1, Neg(E2)} and {E2}), then the tree T' obtained from
T by adding the node LU{E} (resp. the two nodes LU{E,, Neg(E)}
and LU {Ey}) as successor(s) to L is a positive unit hyperresolution
complement tableau for S.

Infinite PUHR complement tableauz for S are defined as follows: If (T;)ien
s an infinite sequence of finite PUHR complement tableauz for S such that
for all 1 € N T;4q results from an application of the PUHR or complement
splitting rule to T;, then T = (J;c T is a PUHR complement tableau for S.

Convention. The same convention is made for PUHR complement tableaux
as for PUHR tableaux: If Ny and Ny are the nodes of a PUHR tableau T
containing respectively {E1, Neg(E2)} and {FE3} and resulting from an ap-
plication of the complement splitting rule to FqV Fs, the PUHR complement
tableau T is ordered such that Nj is the left sibling of E5. This ordering

20

induces an ordering on the branches of a PUHR complement tableau which
is independent from strategies under which the PUHR complement tableau
can be built.

Note the following similarity between PUHR complement tableaux and
the method proposed in [48]: For the leftmost open branch of a PUHR
complement tableau, the condition expressed by complement splitting is
equivalent to that expressed by the “groundedness test” of [48] (cf. also
Section 5.7).

For PUHR complement tableaux, closedness and openness of branches
and tableaux are defined like in Definition 7: A branch of a PUHR comple-
ment tableau is said to be closed, if it includes a node containing the atom
1. A PUHR complement tableau is said to be closed if all its branches are
closed. A branch (resp. PUHR complement tableau) which is not closed is
said to be open.

Definition 21 Let S be a set of range-restricted clauses in implication form
and A a set of ground atoms, disjunctions, and clauses in implication form.
A is said to be saturated with respect to S for the positive unit hyperresolution
and the complement splitting expansion rules when the following properties

hold:

o if AIN.NA, - E)eS, BieA,...B, €A, and (A1 N...NAyp) and
(By,..., By) are unifiable, then Ec € A for some most general unifier
oof (A1 N...NAy) and (By, ..., By).

o If(E1V E3) € A, then {E1} U Neg(E2) C A, or Ey € A.

Note that if A is saturated with respect to S for the positive unit hy-
perresolution and the complement splitting expansion rules, then it is also
saturated for the positive unit hyperresolution and the splitting expansion
rules.

Model soundness for PUHR complement tableaux follows from Theo-
rem 14.

Lemma 22 Let S be a set of clauses and Ay, ..., Ap(n > 1) be ground atoms.

1. If M is a minimal Herbrand model of S such that M = A1 A ... N Ay,
then M is a minimal Herbrand model of SU{A1 A ... N A, — L}

2. If M is a minimal Herbrand model of SU{A1 A... N A, — L}, then
M is also a minimal Herbrand model of S.

Proof: 1. Let H(M) be a nonminimal model of SU {A; A... A A, — L}
There exists M; C M such that H(M;) is a model of SU{A1A...A4,, — L}.
Hence, H(M) is not a minimal model of S.

21

2. Assume that (x) H(M) is a minimal Herbrand model of S U {4; A
. NA, — L}, If H(M) is no minimal Herbrand model of S then there
is My C M such that H(M;) is a model of S. Since H(M) = A; for
some i = 1,...,n and since M; C M, H(M;) & A;. H(M,) is therefore a
Herbrand model of SU{A; A... A A, — L}. This contradicts the minimality
of H(M) assumed with (). "

Lemma 23 Let £ be a set of clauses in implication form, ground atoms and
disjunctions of ground atoms, F1V Fo € £ be a ground clause, and M be a
set of ground atoms. H(M) is a minimal model of £ if and only if

1. either it is a minimal model of £ U{E:1} U Neg(E>)

2. or it is a minimal model of E U{Es} and for all My C M, H(M,) is
not a minimal model of £ U Neg(E>).

Proof: Let H(M) be a minimal model of £. If H(M) does not satisfy Es,
then H(M) is a model of EU{Ey — 1}. By Lemma 22, H(M) is a minimal
model of £ U Neg(E3). If H(M) satisfies Es it is a model of £ U {Ey}. If it
is not a minimal model of £ U {Ey}, then there exists M; C M such that
H(M;) is a model of £ U {E>}, hence of £, contradicting the hypothesis
that H (M) is a minimal model of £. By Lemma 22, if H(M) is a minimal
model of £ U Neg(E»), then it is also a minimal model of £. Let H(M) be
a minimal model of £ U {Es}. If H(M) is not a minimal model of £, then
there exists M; C M such that H(M;) is a minimal model of £. Since
H(M) is a minimal model of £ U {Es}, H(M) does not satisfy Es. Since
E\VE,in &, H(M,) satisfies E; . Therefore, H (M) satisfies EU{Ey — 1},
i.e. there exists My C My C M, such that H(My) is a minimal model of
EUNeg(E2). "

For PUHR complement tableaux, fairness is defined similarly to fairness
of PUHR tableaux: A PUHR complement tableau is said to be fair, if the
union of the nodes of each of its open branches is saturated for the positive
unit hyperresolution and complement splitting expansion rules.

Theorem 24 (Minimal model completeness of complement ta-
bleaux) Let S be a satisfiable set of range-restricted clauses in implication
form, T be a fair PUHR complement tableau for S, and M a set of ground
atoms. If H(M) is a minimal model of S, then there is a branch B of T
such that Atoms(UB) = M.

Proof: Follows from Corollary 16 since by definition every PUHR comple-
ment tableau for a set S can be constructed from a PUHR (noncomplement)
tableau by adding L to some of its nodes, and from Lemma 23 which ba-
sically states that minimal models are preserved by complement splitting.
|

22

P(a)V P(b)
/
P(a) T P(b)
Pb)— L |
|
P(b) V P(d) P(a)V P(c)
RN ~ ~
P(b) P(d) P(a) P(c)
P(d) — L P(c) = L |
|
1 P(a) vV P(d)
— AN
P(a) P(d)
P(d) — L

Figure 4: A PUHR complement tableau.

The following example shows that complement splitting is not always
sufficient to prune all nonminimal models.

Example 5 Let S be the set of clauses of Example 3, i.e.:

T = P(a) V P(b) P(a) — P(b) vV P(d)
T = P(a) V P(c) P(b) - P(a) V P(d)

Figure 4 gives a PUHR complement tableau for S. The models generated by
this PUHR complement tableau are H ({ P(a), P(d)}), H({P(b), P(c), P(a)}),
H({P(b),P(a)}), and H({P(b), P(c), P(d)}). Note that although some are
not minimal, the PUHR complement tableau returns no duplicates.

Although possibly having branches corresponding to nonminimal models,
PUHR complement tableaux never have two distinct branches defining the
same model, as established next.

Lemma 25 Let S be a satisfiable set of range-restricted clauses in impli-
cation form, T be a fair PUHR complement tableau for S, and By, and Bpr
be two open branches of T. If By appears to the left of Br in T, then
Atoms(UBr) € Atoms(UBy,).

Proof: Let Ar be an atom in the first node of Br (in a root to leaf traversal)
which is not not in By. By definition of the complement splitting rule,
(AR — J_) € UBr. Hence Ar &€ UB;..]

23

cs_satisfiable :- findall(Clause, violated_instance(Clause), Set),
not (Set = [1), !, cs_satisfy_all(Set), cs_satisfiable.
cs_satisfiable.

cs_satisfy_all([]).
cs_satisfy_all([_B ---> H | Tail]) :- H, !, cs_satisfy_all(Tail).
cs_satisfy_all([_B ---> H | Taill) :- cs_satisfy(H), cs_satisfy_all(Tail).

cs_satisfy(E) :- cs_component(Atom, Suffix, E), not (Atom = false),
assume (Atom) , assume_neg(Suffix).

cs_component (Atom, Suffix, (Atom ; Suffix)).
cs_component (Atom, Suffix, (_Atom ; Rest)) :- !,

cs_component (Atom, Suffix, Rest).
cs_component (Atom, false, Atom).

assume_neg(false) :- !.
assume_neg(E) :- assume(E ---> false).

The procedures assume and violated_instance are defined like in fair SATCHMO (cf.
Figure 2).

Figure 5: The CS-SATCHMO program

Corollary 26 Let S be a satisfiable set of range-restricted clauses in impli-
cation form, T be a fair PUHR complement tableau for S and By, ..., B;, ...
a left-to-right enumeration of the open branches of T.

1. H(Atoms(UBy)) is a minimal model of S.

2. If i # j, then Atoms(UB;) # Atoms(UB;)

Proof: 1. Since By is the leftmost branch of T', by Lemma 25 H (Atoms(By))
is a minimal model of S.
2. Follows directly from Lemma 25. L]

5.3 Implementation of Complement Splitting

Complement splitting can be built into SATCHMO by replacing the pro-
cedure satisfy by the cs_satisfy given in Figure 5. cs_component re-
turns not only the atoms of a disjunction, like component does, but also
the rest of the disjunction on the right hand side of the returned atom
(false if this right hand side is empty). This implementation, which we
call CS-SATCHMO, departs slightly from Definition 19 since it represents
Neg(A1 V...V Ap) as Ay V...V A, — L instead of {41 — L,..., A, — L}
Since the A; are ground, the two representations are equivalent.

24

5.4 Constrained Depth-First Search for Minimal Model Gen-
eration

By Corollary 26 the first model returned from a depth-first-left-first traver-
sal of a PUHR complement tableau is minimal, and by Lemma 25 no models
are <-larger than subsequently returned models. In order to prune PUHR
complement tableaux from nonminimal models, it therefore suffices to con-
strain any model under construction not to be <-larger than any previously
returned model. This is easily achieved by adding to the set of clauses a
constraint Neg({A1,.....,An}) = {A1 A ... AN A, — L} once a (finite) model
H({Ai,....,Ap}) has been constructed. In the following, such constraints
are called “model constraints”.

Definition 27 (Depth-first minimal model generation procedure)
Let S be a set of range restricted clauses in implication form. Applying the
depth-first minimal model generation procedure to S consists in a depth-first-
left-first construction of a fair PUHR complement tableau for S such that S
is augmented with Neg(M) after each computation of a model H(M) of S.

As pointed out in Section 5.2, complement splitting has similarities with
the “groundedness test” of [48]. This test can discard nonminimal mod-
els without relying on constraints Neg(M) for each previously constructed
minimal model H(M). The price for this are on the one hand repeated
computations of a test more complex than those performed by the depth-
first minimal model generation procedure, on the other hand that repeated
generations of the same minimal model are not precluded.

Note that, by Definitions 7 and 19, if §; and Sy are sets of range-
restricted clauses in implication form such that S; C Sy and all clauses
in Sy \ &1 are of the form A3 A... AN A, — L, then every PUHR complement
tableau for Ss can be obtained from a PUHR complement tableau for Sy by
adding L to some nodes. Conversely, every PUHR complement tableau for
S1 can be obtained from a PUHR complement tableau for Sy by discarding
1 from some nodes.

Recall that a set of clauses is finitary if its minimal Herbrand models
H(M) are all finitely representable, i.e. such that M is finite.

Lemma 28 Let S be a finitary and finite set of range-restricted clauses in
implication form, and T be a PUHR complement tableau for S.

If t is a node in T, let By, ..., By, be branches of T to the left of t such
that H(Atoms(UBy)), ..., H(Atoms(UB,,)) are minimal models of S.

Let Ty be the PUHR complement tableau for SUNeg(UBy)U...UNeg(UB,,)
corresponding to T. If B is a branch of T, let B, denote the corresponding
branch in T, and conversely.

By is open in Ty if and only if B is open in T and Atoms(UB;)
Atoms(UBy), for all i =0, ...,n.

25

Proof: Assume that B is an open branch of T'and Atoms(UB;) € Atoms(UB),
for all i = 0,...,n;. For all 1 = 0,...,n; there exists an atom A; € UB such
that A; € UB\ UB;. Therefore, H(Atoms(UB)) = Neg(UB;). Hence B; is
open in T}.

Assume that By is an open branch of T;. If Atoms(UB;) € Atoms(UB),
for all ¢ =0, ...,n¢, then | &€ UB. Hence B is open in T m

Theorem 29 (Soundness and completeness of the depth-first mini-
mal model generation procedure) Let S be a finite set of range-restricted
clauses in implication form. If S is finitary, then applied on S, the depth-
first minimal model generation procedure terminates, returns all minimal
models of S (i.e. it is complete), does not return any nonminimal model of
S (i.e. it is sound), and does not return any minimal model more than once.

Proof: Let S be a finitary and finite set of range restricted clauses in impli-
cation form.
Soundness: By Corollary 26 the first model returned by the procedure is a
minimal model of S. Assume that the first n models H(M,), ..., H(Mp_1)
returned by the procedure are minimal models of S. Let T' be the tableau
expanded so far. After returning the first n models, the procedure backtracks
to anode t of T', such that the branches corresponding to previously returned
models are to the left of t. The (n + 1)-th model returned by the procedure
corresponds to the first open branch of a tableau T} for SU Neg(Mjp)U...U
Neg(M,_1). By Lemma 28, this model is not <-larger than any previously
returned model. By Corollary 26 it is a minimal model of S U Neg(M,) U
...UNeg(M;,_1). Hence, by Lemma 22 it is a minimal model of S as well.
By induction, all models returned are minimal models of S.
Completeness: For any two minimal models H(M;) and H(Mz) of S,
My € My and My € M;. Therefore, H(M;) = Neg(Ms) and H(Ms)
Neg(Mj). Consequently, no branches corresponding to a minimal model
H(M) of § with M & {M,,..., M, } of a PUHR complement tableau for
S can be closed in a tableau for S U Neg(My) U ... U Neg(M,,), for some
minimal models H(My), ..., H(M,) of §. From Theorem 24, it follows that
the procedure returns all minimal models. From Lemma 28, it follows that
no minimal models are generated more than once.
Termination: Since § is finitary, it has by Theorem 18 finitely many minimal
models. Since the procedure returns all and only minimal models of S,
and since no minimal models are generated more than once, the procedure
terminates.]
The following example shows how the depth-first minimal model gener-
ation procedure generates only minimal models and does not return dupli-
cates.

Example 6 Figure 6 gives the search spaces of the depth-first minimal
model generation procedure for the set of clauses of Examples 3 and 5, i.e.:

26

P(a) Vv P(b)
/ T~
P(a) P(b)
Pb)— L Pla)AP(d) — L
| |
P(b) Vv P(d) P(a) Vv P(c)
PN o~
P(b) P(d) P(a) P(c)
P(d)— L Ple)— L Pb)AP(a) > L
| |
€ P(a) Vv P(d)
/ \
P(a) P(d)
P(d)— L Pb)AP(c)ANP(a) > L
|
1

Figure 6: A run of the depth-first minimal model generation procedure.

T = P(a) V P(b) P(a) — P(b) vV P(d)
T = P(a) V P(c) P(b) — P(a) vV P(d)

Note that all models returned by the procedure are minimal.

It is worth noting that fairness is necessary for the depth-first minimal
model generation procedure, as the following counter-example shows.

Example 7 Let S = {T — P(a),P(z) — P(f(z)) V P(b),P(a) — P(b)}.
An unfair PUHR complement tableau for S with leftmost branch {P(a),
P(f(a)), ..., P(f™(a)), ...} not containing P(b) does not return the minimal
model H({P(a), P(b)}) and does not give rise to applying the constraint
P(a) A P(b) — L for pruning redundant branches.

5.5 MM-SATCHMO

Figure 7 gives the program MM-SATCHMO which implements the depth-
first minimal model generation procedure. It builds upon the implementa-
tion of complement splitting described in Section 5.2. A slight modification
of satisfiable suffices to construct the constraints induced by a (minimal)
model.

27

minimal_model :- mm(true).

mm(_) :- false, !, fail.

mm(C1) :- findall(Clause, violated_instance(Clause), Set),
not (Set = [1), !, mm_satisfy_all(Set, C1, C2), mm(C2).

mm(C) :- asserta(C ---> false).

mm_satisfy_all([1, C, C).

mm_satisfy_all([_B ---> H | Taill, C1, C3) :- H, !,
mm_satisfy_all(Tail, C1, C3).

mm_satisfy_all([_B ---> H | Taill, C1, C3) :- mm_satisfy(H, A),
and_merge(A, C1, C2), mm_satisfy_all(Tail, C2, C3).

mm_satisfy(E, Atom) :- cs_component(Atom, Suffix, E), assume(Atom),
assume_neg (Suffix) .

and_merge (Atom, true, Atom) :- !.
and_merge (Atom, Conj, (Atom, Conj)).

The procedures assume and violated_instance are defined like in SATCHMO (cf. Fig-
ure 2). The procedures assume_neg, and cs_component are defined like in CS-SATCHMO
(cf. Figure 5).

Figure 7: The MM-SATCHMO program.

The argument of the procedure mm is the body of the constraint under
construction. This data structure is redundant, for the model under con-
struction is also represented in the Prolog database. This redundancy can
be easily removed, at the cost of a less readable program. A more serious
source of inefficiency lies in the way how violated clauses are detected: the
last inserted atoms are not used for an incremental detection. Although
quite simple, an incremental evaluation requires longer and more compli-
cated programs. An incremental clause evaluation turns out to be especially
beneficial for the constrained search.

5.6 Breadth-First Minimal Model Generation

If some minimal model M of the set S of clauses under consideration is
infinite, then the depth-first minimal model generation procedure fails to
generate those finite minimal models that were not constructed before M.
In this Section, it is shown how this can be avoided with a breadth-first
expansion of PUHR. tableaux. To this aim, revised definitions of PUHR
tableaux and PUHR complement tableaux are convenient.

28

Definition 30 (PUHR splitting and PUHR complement splitting
rules) Let S be a set of clauses in implication form.

e PUHR splitting rule:
By

B,
E10' ‘ ‘ EmO'

e PUHR complement splitting rule:
By
By,
FEio ‘ ‘ E;o ‘ ‘ E, o

Neg(Eyo V ...V E,0) Neg(Eit10V ...V Ep0)

In both rules, o denotes a most general unifier of the body of a clause
(AtAN.NA, = E1V..VE;V..VE,)€S and of (By,...,By).

Definition 30 gives rise to revised definitions of PUHR tableaux and of
PUHR complement tableaux similar to Definition 7 and Definition 20:

Definition 31 (Revised PUHR (complement) tableaux) PUHR (com-
plement) tableauz for a set S of clauses in implication form are (finite or
infinite) trees whose nodes are sets of ground atoms, disjunctions of ground
atoms and ground implications of the form A — L1, resp. Finite revised
PUHR complement tableaux for S are inductively defined as follows:

1. {T} is a revised PUHR (complement) tableau for S.

2. If T is a revised PUHR (complement) tableau for S, if L is a leaf of
T such that an application of the PUHR (complement) splitting rule
to formulas in L yields m sets of formulas S, ..., Sm, then the tree T'
obtained from T by adding the m nodes LU S, ..., LU Sy as successors
to L is a revised PUHR (complement) tableauz for S.

Infinite revised PUHR (complement) tableaux for S are defined as follows: If
(T3)ien is an infinite sequence of finite revised PUHR (complement) tableauz
for S such that for oll i € N T;1 results from an application of the PUHR
(complement) splitting rule to T;, then T = U;enTi is a revised PUHR
(complement) tableau for S.

29

P(a) P(b) Vv (P(c) V P(d))
\
P(b) — P(¢) v P(d)
~
P(e) — P(d)

a. PUHR tableau for S = {T — P(a) V (P(b) V (P(c) vV P(d)))}.

.
7 N~
P(a) ~ P(b) P(c) P(d)

b. Revised PUHR tableau for S.
Figure 8: PUHR and revised PUHR tableaux compared.

Convention. The same convention is made for revised PUHR (comple-
ment) tableaux as for (complement) PUHR tableaux: The immediate suc-
cessors N1, N, ..., N, of anode in a revised PUHR (complement) tableau T
resulting from an application of the PUHR (complement) splitting rule are
assumed to be ordered from left to right like the formulas they are defined
from are ordered in the PUHR (complement) splitting rule of Definition 30.

Closedness and openness of branches or tableaux as well as fairness are
defined for revised PUHR (complement) tableaux like for PUHR (comple-
ment) tableaux (cf. Definitions 7 and 11).

In contrast with the tableaux considered in the previous sections, an
atom is introduced at each node of a revised PUHR (complement) tableau.
This is illustrated by Figure 8.

Theorem 32 Under breadth-first expansion of a fair revised PUHR (com-
plement) tableau for a set S of clauses:

1. The first model returned is minimal.

2. Let {H(M1),..., H(My)} be the set of minimal models generated so far
during a breadth-first expansion of a fair revised PUHR (complement)
tableau. Any subsequently generated model H(M) is minimal if and
only if for all i € {1,....,.n}, M; ¢ M.

Proof: 1. Every model returned is necessarily finite. Since an atom is in-
troduced at each node of a revised PUHR (complement) tableau, the first

30

Herbrand model H (M) returned during a breadth-first expansion of a re-
vised PUHR (complement) tableau T for S necessarily corresponds to an
open branch B of T' with minimal length. Therefore, there are no Herbrand
models H(N') of § such that N'C M, i.e. H(M) is minimal.

2. Let {Mj, ..., My} be the set of minimal models generated so far during a
breadth-first expansion of a fair revised PUHR (complement) tableau. Let
H(M) be the model returned next. H(M) is a minimal model if for no
(previously or subsequently) returned model H(N), N C M. By hypothe-
sis, this holds if H(N) is a model returned by the procedure before H(M),
ie. if N = M; for some i € {1,....,n}. Let H(N) be a model returned
by the procedure after H(M). Since an atom is introduced at each node
of a revised PUHR (complement) tableau and since the procedure expands
tableaux breadth-first, necessarily || > |M|. Hence, N ¢ M. .

Note that while in the previous sections the formalization of PUHR
tableaux in terms of two expansion rules gives rise to a simpler treatment, the
formalization in terms of revised PUHR tableaux is much more convenient
for Point 1 of Theorem 32.

Since the first model generated during a breadth-first expansion of a re-
vised PUHR (complement) tableau is minimal, adding the same “model con-
straints” as in the depth-first procedure prevents the generation of nonmin-
imal as well as of duplicate minimal models without affecting the soundness
and completeness properties of model generation. The result is a minimal
model generation procedure capable of dealing with sets of clauses having
infinite minimal models.

Definition 33 (Breadth-first minimal model generation procedure)
Let S be a set of range restricted clauses in implication form. Applying the
breadth-first minimal model generation procedure to S consists in a breadth-
first construction of a fair revised PUHR tableau or of a fair revised PUHR
complement tableau for S such that S is augmented with Neg(M) after each
computation of a model H(M) of S.

Note that, in contrast to the depth-first minimal model generation pro-
cedure, the breadth-first minimal model generation procedure does not have
to rely on complement splitting. However, relying on complement splitting
in the breadth-first minimal model generation procedure guarantees that no
duplicate models are produced, that the “leftmost model” is minimal and
that no models can be subsumed by another “on its right”.

Since infinite models necessarily are “generated” last, the breadth-first
minimal model generation procedure will eventually return all the finite
minimal models of the considered set of clauses. A branch corresponding
to a nonminimal infinite model H(M,) is abandoned as soon as a finite
minimal model H(M) is produced such that M is a subset of the already
computed part of My, as the following example illustrates.

31

Figure 9: A revised PUHR tableau for the set of clauses of Example 8.

Example 8 Let S = {T — P(a), P(z) — Q(x),P(z) — P(f(z)) VQ(b)}.
H({P(a), Q(a), P(f(a)), Q(f (@), P(f(f(@))),Q(f(f(@))),..}) is an infinite
minimal model of S and H({P(a), Q(a), Q(b)}) is a finite minimal model of
S. The revised PUHR tableau for S is given by Figure 9 (no constraints are
displayed in the figure). Note that many models can be abandoned as a re-
sult of the constraint induced by the first minimal model {P(a), Q(a), Q(b)}
Applied on S, the depth-first minimal model generation procedure is stuck
on the infinite (minimal) model and does not return the finite minimal
model.

5.7 Comparison With Other Minimal Model Generators

In [48], a minimal model generation method for propositional logic is pro-
posed. Like the approaches described here, the approach of [48] is a tableaux
method. Unlike the the approaches described here, it performs no direct
comparisons of minimal models specified by different branches. Instead, it
relies on a “groundedness test” based on the following property. A Herbrand
model H(M) of a set S of ground clauses is minimal if and only if

(k%) VAEM SUMEA
where M denotes {=B | B ground atom and B ¢ M}. As already pointed
out in Section 5.2, for the leftmost open branch of a PUHR complement

32

tableau, the condition expressed by complement splitting is equivalent to
the “groundedness test” (%x). Note that while complement splitting is syn-
tactically defined, the “groundedness test” is a model theoretic condition.
This might make it less immediate to check than complement splitting. As
opposed to the combination of complement splitting and “model constraints”
proposed here, the “groundedness test” does not preclude repeated genera-
tions of the same minimal model. Because it relies on “model constraints”,
i.e. a form of memoization, the depth-first minimal model generation has,
according to [48], an “exponential worst-case space complexity”. In con-
trast, the method described in [48] is said there to have a “polynomial space
complexity”. A comparison of the run times of MM-SATCHMO with those
reported in [48] is given below in Section 5.8: Both minimal model genera-
tion procedures achieve a comparable efficiency. It is a debatable question,
which of the two approaches is preferable in practice. As it is often the case,
the trade-off is between time and space: The one method saves computation
time by storing results of previous computations, the other method relies on
additional computations for avoiding any storage. For some applications, a
method with restricted storage is needed. For others, storing minimal mod-
els might be preferable, e.g. if the minimal models have to be compared
or further processed. Comparisons of minimal models are needed e.g. for
comparing semantics of logic programs and deductive databases [40, 41],
for comparing semantics of nonmonotonic reasoning [46, 68], for comparing
answers to queries [24, 36, 78, 77], for choosing database (fact or view) up-
dates [22, 28, 72, 6, 2], and for comparing alternative solutions to design and
diagnosis problems [54, 61, 53, 4].

In [50], “minimal entailment” for propositional logic is investigated. A
formula B is “minimaly entailed” by a formula A, if no minimal models
of A falsify B. It is proposed in [50] to establish this property using two
special tableaux methods. The first one, the “Algorithm TABLEAU for
AT B” [50, p. 107], is a tableaux method for signed, free syntax proposi-
tional logic formulas. Nonminimal models are detected at step 4 of the algo-
rithm, i.e. after each expansion of a branch, by a comparison of the atoms
in this branch with the previously generated models. A further test, at step
6 of the algorithm, is necessary for discarding so-called ignorable branches
containing meaningless combinations of signed literals. The second tableaux
method proposed with Definition 9 [50, p. 110] is an improvement of the
previously mentioned algorithm for those cases where A is a set of (propo-
sitional logic) clauses, and B is a single (propositional logic) clause. The
improvement basically consists in simpler expansion rules for the restricted
syntax and, more importantly, in the addition of positive unit resolution
(through Rule R3 [50, p. 110]). Referring to the first method, the author
of [50] writes: “we regard it mainly as a theoretical tool”. Techniques such
as the “groundedness test” of [48] or complement splitting that speed up
the abandonment of branches corresponding to nonminimal or redundant

33

models are not considered in [50]. Moreover, it is questionable whether
considering signed formulas does not introduce an overhead compared with
tableaux methods for unsigned formulas [66, 25, 73, 74, 27].

Some deductive database query answering methods can be used for gen-
erating minimal models. The system DisLog [63, 64] implements several
query answering methods for disjunctive databases [41]. Its forward chain-
ing procedure can be used as a minimal model generator similar to the
breadth-first minimal model generation of Section 5.6, although without
special treatment of negative clauses, i.e. clauses all literals of which are
negative. Moreover, DisLog proceeds by first generating (possibly nonmini-
mal) models, then test for minimality. It therefore explores in general more
interpretations than the approaches presented here and in [50, 21, 48]. The
approach of [78] to constructing so-called “ordered minimal model trees” can
as well be applied to generate minimal Herbrand models. This approach is
however restricted to ground disjunctive deductive databases. This restric-
tion makes it possible to simplify the considered clauses at every assignment
of a truth value to an atom. It also demands that a fixed order, albeit not
necessarily known in advance, for atom expansion be defined to achieve the
uniqueness of the constructed tree under the given ordering.

Most semantics proposed for nonmonotonic reasoning — cf. e.g. [46, 68]
— rely more or less explicitly on notions of model minimality. Thus, meth-
ods like e.g. [14, 47] for computing models according to such semantics can,
with more or less adaptations, be applied to computing minimal Herbrand
models in the sense of this paper. However, most such methods do not
fully address the issues investigated here. Indeed, as explained e.g. in [68,
Section 5, p. 251], they have to cope with notions such as “default” or
“negation as failure” that are not relevant to the generation of minimal
Herbrand models of sets of first-order clauses. Many of them, like e.g. the
method described in [14], are only applicable to normal logic programs, i.e.
they cannot cope with non-Horn clauses. The method of [14] is in addition
restricted to ground clauses and makes use of this restriction like [78] for
simplifying the considered clauses at every assignment of a truth value to
an atom. Minimal model generators can be adapted to computing seman-
tics for nonmonotonic reasoning, as shown e.g. in [49]. Note that most
investigations of nonmonotonic reasoning, such as [68], are proof-theoretic
in nature and neither rely on, nor specify algorithms for the generation of
minimal models. In this respect, the article [50] is an exception: Although it
is devoted to minimal entailment, it defines, as already mentioned, minimal
model generation algorithms for propositional logic.

In [34, 42] an approach to “model minimization” is investigated. In fact,
both articles [34, 42] are devoted to generating models with minimal uni-
verses, not to generating minimal Herbrand models in the sense considered
here. The issue of “universe” or “domain minimization”, also investigated
in [10, 33, 68, 11, 71], is interesting, for two reasons. On the one hand, meth-

34

ods for universe minimization give rise to algorithms that are complete for
both, unsatisfiability and finite satisfiability [11, 71]. On the other hand, the
issue has practical applications, e.g. to designing database schemas [9, 7].
In [34, Section 9, p. 11] a modification of the tableaux method proposed
there is sketched, so as to “minimize predicate extensions”, i.e. to generate
minimal Herbrand models in the sense considered in the present paper. This
modification, which does not seem to be fully worked out, is basically in the
spirit of complement splitting and of the constrained search as well as of the
“groundedness test” of [48].

5.8 Experiments with MM-SATCHMO

In this Section, the performance of MM-SATCHMO on four benchmark
suites, called A, B, D and F, are reported. Each suite includes 24 examples,
each example consists of 5 to more than 100 000 clauses, each clause has up
to 10 literals. The number of minimal models of an example ranges from 1
to 100 000.

The run times reported below have been obtained with MM-SATCHMO
run under ECLiPSe Prolog Version 3.5.1 [19] on a Hewlett Packard Unix
(HP-UX 10.20) Workstation HP Visualise C 160 (PA-8000 processor at 160
MHz, 192 MB RAM). Note that ECLiPSe Version 3.5.1 uses 32 bit words
instead of 64 bit words as possible on a HP Visualise C 160.

ECLiPSe was started anew for each problem, thus avoiding any speed
up or overhead resulting from a previously constructed symbol table or un-
collected garbage. The reported CPU times were obtained using the time
command of ECLiPSe.

The programs and benchmark suites referred to in this section are avail-
able at:

http://www.pms.informatik.uni-muenchen.de/software/ MM-SATCHMO/

Worst-case Examples: The A Benchmark Suite. For nonnegative
integers n and m, A(n,m) denotes the set of n clauses of length m defined
by:

A(n,m):={ true ---> a_i_ 1 ; ... ; aim|i=1,...,n }

Applied on A(n,m), SATCHMO computes m™ models by selecting an atom
a_i_j for each i € {1,...,n}. Since a_i_j # a_h_k for (i, j) # (h, k),
all models returned by SATCHMO are pairwise distinct and each of them
is a minimal model of A(n,m). Thus, for these examples, the additions
MM-SATCHMO makes to SATCHMO have no effects. Therefore, examples
of the A suite can be seen as worst-case examples for MM-SATCHMO.

The run times of MM-SATCHMO on the examples of the A suite are
given by Table 1.

35

m 3 4 5 6 7 8 9 10

0.01 | 0.02 0.05 0.11 0.22 0.40 0.72 1.22
0.03 | 0.15 0.60 2.08 7.48 22.57 58.34 134.76
0.15 | 1.44 | 13.74 | 85.05 | 413.62 | 1 445.91 | 4 782.78 | 13 317.30

T | W B

Table 1: CPU times in seconds for computing all minimal models of
A(n,m).

Already for small n and m, computing all minimal models of A(n,m)
involves a tremendous potential search space. For computing the 5% = 625
minimal models of A(4,5), truth value assignments for 4 x 5 = 20 propo-
sitional variables, i.e. 220 = 1 048 576 assignments, are possible. For com-
puting the 10° minimal models of A(5,10), truth value assignments for 50
propositional variables, i.e. 2% = 1 125 899 906 842 624 (more than 1
million billions) assignments are possible. Of course, the search space ac-
tually expanded by MM-SATCHMO is significantly smaller: As soon as
MM-SATCHMO assigns the value “true” to an a_i_j, it implicitly assigns
the value “false” to all a_i_k such that k € {1,...,m}\{j }.

More informative than the overall time needed for computing all minimal
models is the average time per minimal model. For example, if generating
all minimal models of A(5,10) takes as much as 3 hours 42 minutes, each of
the 100 000 minimal models of this example is computed on average in less
than one and a half tenth of a second.

m 3 4 5 6 7 8 9 10

0.37 | 0.31 | 0.40 0.51 0.64 0.78 0.99 1.22
0.37 | 0.58 | 0.96 1.60 3.12 5.51 8.90 13.48
0.62 | 1.41 | 4.40 | 10.94 | 24.61 | 44.12 | 81.00 | 133.17

T (Wl =

Table 2: Average CPU times in 10~3 seconds for computing one minimal
model of A(n,m).

The (n,m) entry to(n,m) of Table 2 is defined by to(n,m) = tl(g—;m) x 103
where ¢1(n,m) denotes the (n,m) entry of Table 1.

Tables 1 and 2 suggest that t;(n,m) = O(m?") and t3(n,m) = O(m").
This can be confirmed as follows. In order to avoid a repeated generation
of already returned models, MM-SATCHMO relies on adding “constraints”,
i.e. clauses with false as head, during complement splitting and after a
minimal model is generated. We remind of the name of “model constraints”
— cf. Section 5.4 — for those constraints introduced after the generation of
minimal models . During the generation of all minimal models of A(n,m)

m*—1
n_1 n
k=0

36

evaluations of “model constraints” take place since no such constraints are
present when the first minimal model is returned, and exactly k& — 1 such
constraints are present when the k-th minimal model is generated. Thus, it
is reasonable to assume that ¢ (n,m) = O(m??). It follows that t5(n,m) =
O(m'™) since, by definition, t2(n,m) = 'h(;ll—;m) x 103.

Note that, since complement splitting introduces further constraints,
more than 100 000 constraints are involved in the generation of all mod-

els of A(5,10).

The Price of Constraints: The B Benchmark Suite. The large num-
ber of constraints is a source of inefficiency, because at each cycle of the main
procedure of MM-SATCHMO, all constraints are evaluated. In order to es-
timate the cost of this evaluation, the B benchmark suite is now considered.

For nonnegative integers n and m, B(n,m) denotes the set of clauses
A(n,m) augmented with the m™ — 1 model constraints that exclude all
minimal models of A(n,m) except the last one returned by MM-SATCHMO:

B(n,m) := C(n,m,m™) U A(n,m)
where
C(n,m,k):={ false :- Mj | j=1,....,k—1}

and Mj denotes the conjunction of the atoms representing the j-th minimal
model of A(n,m) returned by MM-SATCHMO. Clearly, B(n,m) has exactly
one minimal model. Note that B(n,m) consists of n +m"™ — 1 clauses, e.g.
B(4,5) consists of 628, B(5,10) of 100 004 clauses.

Following a basic optimization mentioned in [45], a model constraint is
expressed as a Prolog clause false :- Mj instead of Mj ---> false. If
false is derivable, this optimization avoids asserting false in the Prolog
database just before retracting it while backtracking.

By definition of B(n,m), generating the one minimal model of B(n,m)
with MM-SATCHMO amounts to generating all minimal model of A(n,m)
with MM-SATCHMO. While the constraints are progressively introduced
during the generation of all models of A(n,m), they are present from the
beginning during the construction of the first (and only) model of B(n,m).
Comparing Table 1 with Table 3 below shows how this presence affects the
run times.

m 3 4 5 6 7 8 9 10
n
3 0.01 | 0.01 0.03 0.08 0.16 0.32 0.60 1.06
4 0.02 | 0.10 0.49 2.07 7.95 24.81 66.35 162.20
5 0.10 | 1.29 | 14.93 | 102.43 | 451.75 | 1 799.27 | 5 737.51 | 15 398.20

Table 3: CPU times in seconds for computing the first (and only) minimal
model of B(n,m).

37

In order to estimate the overhead introduced by the model constraints, one
has to consider the number of times such constraints are evaluated. As
already observed, for A(n,m) this number is

For B(n,m), it is

mt—1
cp(n,m) = (Z k) +m" —1=cy(n,m)+m" —1
k=0

for the following reasons. The set C(n,m,m™) of model constraints of
B(n,m) was generated by running MM-SATCHMO on A(n,m) and the
model constraints were stored using asserta in the order of their genera-
tion. Thus, a Prolog call to false evaluates the model constraints in the
reverse order of their generation. While computing the single model of
B(n,m), all the m™ — 1 model constraints in B(n,m) are evaluated after the
first interpretation is generated. The bodies of all these constraints but the
last one evaluate to “false”. After the k-th (2 < k < m™ — 1) interpretation
is constructed, only m™ — k model constraints need to be evaluated, because
the body of the (m™ — k)-th model constraint evaluates to “true”, thus de-
riving the atom false. When the (m™)-th interpretation, i.e. the single
model of B(n,m), is generated, all the m™ — 1 model constraints in B(n,m)
are evaluated once again, the body of all of them evaluating to “false”.

Table 4 gives, for those values of n and m for which the estimations make
sense, the overall times spent for one evaluation of the clauses in C(n, m, m™)
during the computation of the single model of B(n,m), i.e. the times spent
for one evaluation of all model constraints generated during the computation
of all models of A(n,m).

m 5 6 7 8 9 10
n
4 - - 0.48 2.25 8.00 27.40
5 1.19 | 17.42 | 38.15 | 353.23 | 954.81 | 2 080.10

Table 4: CPU times in seconds spent for one evaluation of all clauses in
C(n,m,m™) during the computation of the first (and only) minimal model
of B(n,m).

The (n,m) entry t4(n,m) of Table 4 is defined by t4(n,m) = t3(n,m) —
t1(n,m), where t;(n, m) denotes the (n,m) entry of Table 7. In Table 4 as
well as in other tables, the sign - expresses meaningless data or times below
the measure threshold of the operating system.

Table 5 gives the average times for evaluating one model constraint dur-
ing the computation of the first (and only) minimal model of B(n,m).

38

m 5 6 7 8 9 10
n
4 - - 0.20 0.55 1.22 2.74
5 0.38 | 2.24 | 2.27 | 10.78 | 16.17 | 20.81

Table 5: Average CPU times in 10~2 seconds for evaluating one clause in
C(n,m,m™) during the computation of the first (and only) minimal model
of B(n,m) .

The (n,m) entry t5(n,m) of Table 5 is defined by:

t3(nam) - tl(nam) % 103 = t3(nam) — tl(nam)

x 103
cg(n,m) —ca(n,m) m* —1

ts(n,m) =

where t;(n, m) denotes the (n,m) entry of Table .

Comparing Table 1 and Table 4 shows that the time needed for one
evaluation of the model constraints is much less than the time needed for
the rest of the computation.

Admittedly, the B benchmark suite might be less meaningful for mini-
mal model generators that, unlike MM-SATCHMO, do not rely on model
constraints.

Niemeld’s Scheme: The D Benchmark Suite. In [48] an approach
to minimal model generation is described and two examples are considered.
The D benchmark suite is a generalization of these examples. For nonneg-
ative integers n, m, and k:

D(n,m,k) := E(n,m,k) U A(n,m)

where

k
E(n,m,k) = |J{a.i*1_j :- ai jli=1,...,n—1}
j=1

The clauses E(n, m, k) can be seen as k “chains” of implications between
literals. These chains express — simple — dependencies between literals, thus
conveying — in a rather simple manner — the often more complex literal de-
pendencies present in most practical applications. Arguably, the D bench-
mark suite is better an approximation of “real life applications” than the A
suite.

Following an already mentioned optimization, the clauses in E(n,m, k)
are expressed using :- instead of --->. As discussed in [45], this does not
affect the correctness and completeness of the method, since the considered
clauses are Horn clauses and their head atoms are not involved in recursion
cycles.

The chains considerably reduce the search space, as Tables 6 to 11 show.

39

m 3 4 5 6 7 8 9 10

n
3 - 0.01 | 0.03 0.10 0.15 0.31 0.58 1.02
4 0.02 | 0.10 | 0.39 1.34 4.42 14.26 40.86 98.74
5 0.07 | 0.63 | 5.19 | 42.13 | 229.14 | 928.12 | 3 165.38 | 8 819.52

Table 6: CPU times in seconds for computing all minimal models of
D(n,m,1).

Proposition 34 The number d(n,m,k) of minimal models of D(n,m,k)
(1 <k <m)is given by the equations:

d(1,m,k) =m
din+1,m,k) =k+ ((m — k) xd(n,m,k))

Proof: SATCHMO and MM-SATCHMO clearly generate m minimal models
from a single positive clause of length m, thus d(1,m, k) = m. Consider now
the set of clauses D(n+1,m,k) = E(n+1,m,k)UA(n+1,m) and the “first”

clause true -—=> a_1_1 ; a_1_2 ; ...;a_1_mof A(n+1,m). 1. If one
of the a_1_j for j = 1,...,k is assigned the truth value “true”, so are the
atomsa_h_jforh=2...,nand j=1,...,k also assigned the value “true”

because of the k& “implication chains” in E(n+1,m, k), and the remaining n
clauses of A(n+1,m) are all satisfied. Therefore, there are exactly k¥ minimal
models of D(n+1,m, k) such that one of thea_1_j for j =1,...,k is true. 2.
If now for some j = k+1,...,m, a_1_j is true, there are exactly d(n,m, k)
minimal models of the remaining clauses in D(n + 1,m, k). Since a_h_1 #
a_p_q for (h, 1) # (p, q), each of these minimal models results in a minimal
model of D(n + 1,m, k) when extended with the assignment of “true” to
a_1_j. 3. Thus, d(n+1,m,k) = k+ ((m — k) x d(n,m, k)). .

Table 7 gives the average times needed for computing one minimal model
of D(n,m,1).

m 3 4 5 6 7 8 9 10
n
3 - 0.24 | 0.35 0.64 0.58 0.77 0.99 1.24
4 0.65 | 0.83 | 1.14 1.72 2.84 5.09 8.73 13.38
5 1.11 | 1.73 | 3.80 | 10.79 | 24.56 | 47.33 | 84.52 | 132.76

Table 7: Average CPU times in 10~3 seconds for computing one minimal
model of D(n,m,1).

The (n,m) entry t7(n,m) of Table 7 is defined by t7(n,m) = jgsnr’nml)) x 103

where tg(n,m) denotes the (n,m) entry of Table 6.

Tables 8 to 11 give the overall and average times per minimal model for
D(n,m, |5]) and D(n,m,m—1). Tables 9 and 11 are obtained from Tables
8 and 10, respectively, like Table 7 is computed from Table 6 by considering
the relevant values of d(n,m, k).

40

m 3 4 5 6 7 8 9 10

n
3 - 0.02 | 0.04 | 0.06 0.12 0.18 0.33 0.45
4 0.02 | 0.06 | 0.23 | 0.47 1.42 2.41 6.90 10.70
5 0.07 | 0.29 | 1.84 | 4.38 | 28.98 | 57.45 | 315.45 | 542.96
Table 8: CPU times in seconds for computing all minimal models of
D(n,m, |5]).
m 3 4 5 6 7 8 9 10

n

3 - 0.71 | 0.62 | 0.62 | 0.69 | 0.78 0.89 0.98

4 0.65 | 0.73 | 0.89 | 1.00 | 1.37 | 1.50 2.36 2.61

5 1.11 | 1.19 | 1.80 | 1.87 | 4.66 | 5.13 | 13.48 | 14.71

Table 9: Average CPU times in 10~2 seconds for computing one minimal
model of D(n,m, %]).

m 3 4 5 6 7 8 9 10

- 0.01 | 0.02 | 0.04 | 0.07 | 0.11 0.16 0.23
0.02 | 0.06 | 0.13 | 0.27 | 0.49 | 0.86 1.43 2.23
0.05 | 0.28 | 0.63 | 1.59 | 3.51 | 7.09 | 13.14 | 22.88

o | ol B

Table 10: CPU times in seconds for computing all minimal models of
D(n,m,m —1).

m 3 4 5 6 7 8 9 10

- 0.62 | 0.80 | 1.11 | 1.43 | 1.72 | 1.97 | 2.30
1.18 | 1.39 | 1.46 | 1.68 | 1.85 | 2.11 | 2.41 | 2.69
1.52 | 226 | 1.83 | 2.02 | 2.25 | 2.52 | 2.80 | 3.10

o s ||| =

Table 11: Average CPU times in 1072 seconds for computing one minimal
model of D(n,m,m —1).

The run times for the D suite are significantly smaller than for the A
suite. Moreover, the average times significantly decrease when the number
of “implication chains” increases, showing that MM-SATCHMO well prop-
agates truth values assignments through (“chains” of) implications. Ar-
guably, this is a significant factor of efficiency. Since Niemeld’s scheme
is a good approximation of “real life examples” the performance of MM-
SATCHMO on these examples gives support to the claim, that this rather
simple implementation is sufficient for many practical applications.

A Strengthening of Niemela’s Scheme: The F Benchmark Suite.
Like the B suite strengthens the A suite by adding model constraints,
Niemel&’s scheme (or D suite) suite can be strengthened into the F' suite as
follows:

41

F(n,m,k) = C(n,m,m™)UD(n,m,k) = C(n,m,m")UE(n,m,k)JA(n,m)

m 3 4 5 6 7 8 9 10
n
3 - 0.02 0.03 0.08 0.17 0.33 0.61 1.14
4 0.02 | 0.11 0.50 2.19 8.81 26.46 67.39 154.71
5 0.12 | 1.40 | 16.60 | 100.38 | 462.95 | 1 688.92 | 5 704.90 | 15 242.60
Table 12: CPU times in seconds for computing all minimal models of
F(n,m,1).
m 3 4 5 6 7 8 9 10
n
3 - 0.01 0.03 0.07 0.15 0.28 0.52 0.84
4 0.02 | 0.09 0.43 1.55 6.70 17.80 49.20 99.84
5 0.12 | 0.97 | 12.69 | 60.84 | 303.68 | 989.93 | 3 585.84 | 8 608.44
Table 13: CPU times in seconds for computing all minimal models of
F(n,m, |3]).
m 3 4 5 6 7 8 9 10
n
3 - 0.01 | 0.03 0.06 0.10 0.19 0.31 0.50
4 0.02 | 0.07 | 0.24 0.94 3.53 9.69 23.17 50.03
5 0.08 | 0.59 | 6.06 | 32.30 | 134.27 | 482.85 | 1 498.11 | 4 202.49

Table 14: CPU times in seconds for computing all minimal models of
F(n,m,m —1).

The comparison of Table 12, 13 and 14 with Table 6, 8, and 10 respec-
tively confirms the observation made with the B suite: Even in presence
of a huge number of constraints good run times are achieved. This fur-
ther supports the claim that MM-SATCHMO, in spite of its simplicity, is a
convenient minimal model generator for many applications.

Optimization Potential. Like SATCHMO, MM-SATCHMO emphasizes
a principle, not implementation aspects. In implementing SATCHMO and
MM-SATCHMO, no attention has been paid to efficiency. The reported run
times are therefore noticeable.

In [69, 29] it is shown how natural optimizations dramatically improve
the efficiency of SATCHMO. These optimizations consist in (1) computing
violated clause instances incrementally, so as to avoid useless repeated com-
putations, (2) specializing the SATCHMO meta-interpreter with respect to
the considered set of clauses, so as to avoid the meta-interpretation overhead
— a technique called “compilation” in [69, 29] —, (3) a more efficient imple-
mentation of complement-splitting, (4) a more efficient search strategy for
ensuring fairness, and (5) enhancing the representation language — e.g. with
disjunctions in clause bodies. In some cases, gains in efficiency of several
orders of magnitudes can be achieved with these techniques.

42

All these techniques are applicable to MM-SATCHMO, too. The more
efficient implementation of complement splitting is especially promising. In
contrast, the model constraints upon which MM-SATCHMO relies for avoid-
ing a repeated generation of minimal models do not seem easily amenable
to the optimization and compilation techniques investigated in [69, 29].
Nonetheless, these techniques are promising for MM-SACHTMO, since, as
observed with the A suite (cf. Tables 1 and 4), the time spent for one eval-
uation of all model constraints is much smaller than the time needed for the
rest of the computation.

First-order Logic vs. Propositional Logic. The examples considered
above are all propositional logic examples. For three reasons, examples with
first-order variables have not been retained. First, the techniques applied by
the approach considered here for restricting the model generation to minimal
models do not depend on variables. Second, considering propositional logic
examples makes it possible to compare the run times with that of other min-
imal model generators that do not handle variables. Finally, most problems
can be naturally expressed both, without and with first-order variables, and
with MM-SATCHMO the representations with variables often yield better
run times than the propositional logic representation.

The last claim is conveniently illustrated by the following example. B(n,
m) = C(n,m,m"™) U A(n,m) includes 99 999 clause in C'(n,m, m™) of the
form false :- Mj where Mj is the Prolog conjunction of the atoms true
in one of the first 99 999 minimal models of A(n,m) returned by MM-
SATCHMO. With variables, A(5,10) is conveniently and naturally repre-
sented by the five facts index(1) ,..., index(5) and the clause:

index(J) ---> a_1(J) ; a_2(J) ;... ; a_10(J)

With this representation, it is natural to replace the 99 999 clauses of
C(n,m,m™) by the following 9 clauses:

false :- a_1(J)
false :- a_2(J)

false :- a_9(J)

Indeed, in every minimal model of A(5,10) except the last one returned by
MM-SATCHMO, a_i(j) is true for some i € {1,...,5} and j € {1,...,9}.
For generating the single minimal model of the propositional logic repre-
sentation of B(5,10), MM-SATCHMO takes 15 398.20 seconds (CPU time)
— cf. Table 3 — with clauses for false declared dynamic and the loading
times not considered. With the first-order representation of the same exam-
ple given above, MM-SATCHMO needs only 27.89 seconds (CPU time) for
the same task. Admittedly, this example is an extreme case. In general, the
speed up obtainable by changing the representation is less considerable.

43

Comparison of Performances. Up to a renaming of the propositional
variables, D(4,5,1) is identical with the example T U S, of [48]. That
article reports a run time of “less than 2 seconds” for generating all minimal
models of this example with an implementation in ECLiPSe Prolog run “on
a SUN Sparc 4” workstation. For the same task, MM-SATCHMO needs
0.39 seconds (cf. Table 6). A second run time reported in [48] is “less
than 0.5 seconds” for generating all minimal models of an example denoted
TUS,US,US.USy which, up to a variable renaming, corresponds to
D(4,5,4). For the same task, MM-SATCHMO needs 0.13 seconds (cf. Table
10). Obviously, the method described in [48] and MM-SATCHMO achieve
comparable efficiencies on these examples.

In [48] the implementation [21] of a method described in [47] is mentioned
without detailed comparisons, because this “implementation was not able
to handle very large examples” like Y U S, or Y U S, U S, U S, U Sy. Under
“large”, not only the number of clauses, but also the number of minimal
models is meant. Obviously, the system presented in [21] could not run the
benchmark examples considered here, some of which having up to 100 000
clauses, others up to 100 000 minimal models.

A comparison with the performances of DisLog [63, 64], of [50], of [78], or
of [14] would not really make sense, because these approaches have not been
primarily developed for an efficient generation of minimal Herbrand models.
Note that the system DisLog [63, 64] cannot cope with large numbers of
minimal models, as considered in this section, and that run times of the
algorithms described in the other papers are not available.

6 Conclusion

In this article, positive unit hyperresolution (PUHR) tableaux are defined
and their properties investigated. PUHR tableaux formalize the approach
to theorem proving of [44, 45]. Then, PUHR tableaux are applied to speci-
fying two procedures for computing the minimal Herbrand models of sets of
range restricted clauses. The first minimal model generation procedure per-
forms a depth-first expansion of PUHR (complement) tableaux relying on a
form of backtracking involving constraints. The second minimal model gen-
eration procedure performs a breadth-first, constrained expansion of PUHR
(complement) tableaux. Both procedures are optimal in the sense that each
minimal model is constructed only once, and the construction of nonmini-
mal models is interrupted as soon as possible. They are sound and complete
in the following sense: The depth-first minimal model generation procedure
computes all minimal Herbrand models of the considered clauses provided
these models are all finite. The breadth-first minimal model generation pro-
cedure computes all finite minimal Herbrand models of the set of clauses
under consideration.

44

A compact implementation in Prolog of the depth-first minimal model
generation procedure in the form of a short Prolog program called MM-
SATCHMO is also presented. Its efficiency on extensive benchmarks is re-
ported. The prototype is able to deal with sets of clauses with a very large
number of minimal models. Its performances are comparable to the best re-
ported in the literature [48]. MM-SATCHMO has a considerable potential
for optimizations like discussed in [69, 29].

As tableaux methods, the proposed approaches enjoy a good degree of
efficiency stemming from restricted search spaces, limited applications of
expansion rules and the use of matching (without occur-check) rather than
full unification. The proposed approaches expand ground tableaux. Since
it makes instantiation necessary, this might be considered as a source of
inefficiency in a refutation procedure. However, if Herbrand models are to
be characterized as sets of ground atoms, as it is considered in this paper,
this objection does not apply to a model generation procedure.

As model generation procedures, the approaches to minimal model gen-
eration proposed in this paper compare well with those reported in the liter-
ature, many of which generate nonminimal models [66, 35, 44, 25, 45, 34, 26,
24, 36, 5, 67, 73, 74, 39, 42, 43, 30, 23, 3, 37, 69, 31, 1, 29, 52, 27, 11]. Com-
pared with approaches based on “blind” model construction then testing for
minimality— as e.g. the methods reported in [24, 63, 64] — the approaches
proposed here avoid nonminimal model generation altogether. The con-
struction of nonminimal models is aborted as soon as possible, in general
before they are fully developed. Also, the methods proposed in this pa-
per are applicable to first-order clauses and not confined to propositional or
ground clauses as the algorithms reported in [24, 78, 48]. Note, however,
that most of the techniques increasing the efficiency for propositional or
ground clauses proposed in e.g. [78, 48] can be incorporated into the algo-
rithms described here. Moreover, the approaches proposed here require no
order to be placed on the sequence in which individual atoms are expanded,
although, if needed, such an order can be incorporated without substantial
changes to the algorithm [78].

Among the limitations of the procedures described in this paper are
their applicability only to range restricted and so-called finitary sets of first-
order clauses. However, range restrictedness is not much of a constraint,
because a model preserving transformation of general clauses into range
restricted ones was given. Moreover, most database and artificial intelligence
applications naturally yield range-restricted specifications. Arguably, much
of real-life tasks enjoy the finiteness properties needed for the applicability of
the depth-first minimal model generation procedure. For those applications
with infinite minimal models, the breadth-first minimal model generation
procedure can be applied for an exhaustive construction of all finite minimal
models.

45

Acknowledgments

The authors thank Norbert Eisinger, Tim Geisler, Heribert Schiitz, and the
anonymous referees for useful suggestions. Part of this research was done
while the second author was visiting at Ludwig-Maximilians-Universitat
Miinchen on an Alexander von Humboldt Research Fellowship. The sup-
port of Alexander-von-Humboldt-Stiftung is appreciated.

References

[1]

S. Abdennadher and H. Schiitz. Model Generation With Existentially
Quantified Variables and Constraints. In Proc. Sizth Int. Conf. on
Algebraic and Logic Programming, Springer-Verlag, LNCS 1298, 256—
272, 1997.

C. Aravindan and P. Baumgartner. A Rational and Efficient Algorithm
for View Deletion in Databases. In Logic Programming — Proc. Int.
Logic Programming Symp., MIT Press, 1997.

P. Baumgartner, U. Furbach, and I. Niemela. Hyper Tableaux. In Proc.
Fourth European Workshop on Logic in Artificial Intelligence, Springer-
Verlag, LNCS 1126, 456-459, 1996.

P. Baumgartner, U. Furbach, and I. Niemela. A Tableau Calculus for
Diagnosis Applications. In Proc. Sizth Workshop on Theorem Proving
with Analytic Tableauz and Related Methods, Springer-Verlag, LNCS
1227, 1997.

B. Beckert and R. Hahnle. An Improved Method for Adding Equality
to Free Variable Semantic Tableaux. In Proc. Eleventh Int. Conf. on
Automated Deduction. Springer-Verlag, LNCS 607, 507-521, 1992.

F. Bry. Intensional Updates: Abduction via Deduction. In Proc. Sev-
enth Int. Conf. on Logic Programming, MIT Press, 561-575, 1990.

F. Bry, N. Eisinger, H. Schiuitz, and S. Torge. SIC: An Interactive Tool
for the Design of Integrity Constraints (System Description). In Proc.
Demo Session, Session of the Sizth Int. Conf. on Eztending Database
Technology, 45-46, 1998.

F. Bry and R. Manthey. Detecting Consistency of Database Rules by
Adapting Theorem Proving Methods. Technical Report KB-8, ECRC,
Munich, 1985.

F. Bry and R. Manthey. Checking Consistency of Database Constraints:
A Logical Approach. In Proc. Twelfth Int. Conf. on Very Large Data
Bases, 1986.

46

[10]

[11]

[13]

[14]

F. Bry and R. Manthey. Proving Finite Satisfiability of Deductive
Databases. In Proc. First Workshop on Computer Science Logic,
Springer-Verlag LNCS 329, 44-55, 1987.

F. Bry and S. Torge. A Deduction Method Complete for Refutation
and Finite Satisfiability. In Proc. Sizth European Workshop on Logics
in AI, Springer LNCS 1489, 1998.

F. Bry and A. Yahya. Minimal Model Generation With Positive Unit
Hyper-Resolution Tableaux. In Proc. Fifth Workshop on Theorem

Proving with Analytic Tableaux and Related Methods, Springer-Verlag,
LNCS 1071, 1996.

R. Caferra and N. Zabel. Building Models by Using Tableaux Extended
by Equational Problems. In Jour. of Logic and Computation, 3, 3-25,
1993.

W. Chen and D. S. Warren Computation of Stable Models and its Inte-
gration with Logical Query Processing. IEEFE Transactions on Knowl-
edge and Data Engineering, 8(5), 742-757, 1996.

M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory, Jour. of the ACM, 7(3), 201-215, 1960.

M. Denecker and D. Schreye. A Framework for Indeterministic Model
Generation With Equality. In Proc. Conf. on Fifth Generation Com-
puter Systems, 650-657, 1992.

M. Denecker and D. Schreye. On the Duality of Abduction and Model
Generation in a Framework for Model Generation With Equality. The-
oretical Computer Science, 122, 225-262, 1994.

H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer-Verlag, 1996.

ECLiPSe - ECRC Common Logic Programming System. User Manual,
ECRC, Munich, 1994.

N. Eisinger and T. Geisler. Problem Solving with Model-Generation
Approaches based on PUHR Tableaux. In Proc. Workshop on Problem-
solving Methodologies with Automated Deduction, Workshop at the Fif-
teenth Int. Conf. on Automated Reasoning, 1998.

R. Emery. Computing Circumscriptive Databases. Master’s Thesis,
University of Maryland, 1992. Cited in [48].

R. Fagin, J.D. Ullman, and M.Y. Vardi. On the Semantics of Updates
in Databases. In Proc. Second ACM Symp. on Principles of Database
Systems, 1983

47

[23]

[24]

[25]

[26]

[27]

C. Fermiiller and A. Leitsch. Hyperresolution and Automated Model
Building. Jour. of Logic and Computation, 6(2),173-203, 1996.

J.A. Ferniandez and J. Minker. Bottom-up Evaluation of Hierarchical
Disjunctive Deductive Databases. In Proc. Eighth Int. Conf. on Logic
Programming, MIT Press, 660-675, 1991.

M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, 1987, second edition 1990.

H. Fujita and R. Hasegawa. A Model Generation Theorem Prover in
KL1 Using a Ramified Stack Algorithm. In Proc. Eighth Int. Conf. on
Logic Programming, MIT Press, 1991.

U. Furbach, ed. Tableaux and Connection Calculi. Part I. In Automated
Deduction — A Basis for Applications. Kluwer Academic Publishers,
1998.

P. Gardenfors. Knowledge in Fluz: Modeling the Dynamic of Epistemic
States. MIT Press, 1988.

T. Geisler, S. Panne, and H. Schiitz. Satchmo: The Compiling and
Functional Variants. Jour. Automated Reasoning, 18(2), 227-236, 1997.

R. Hahnle. Positive Tableaux. Research Report, Computer Science
Department, University of Karlsruhe, 1995. Cited in [3].

R. Hasegawa, H. Fujita and M. Koshimura. MGTP: A Model Gener-
ation Theorem Prover — Its Advanced Features and Applications. In

Proc. Sizth Workshop on Theorem Proving with Analytic Tableauz and
Related Methods, Springer-Verlag, LNCS 1227, 1-15, 1997.

R. Hasegawa, K. Inoue, Y. Ohta, and M. Koshimura. Magic Sets to
Incorporate Top-Down Inference Into Bottom-Up Theorem Proving. In
Proc. Fourteenth Int. Conf. on Automated Deduction. Springer-Verlag,
LNCS 1249, 176-190, 1997.

L. Herr. E-SATCHMO: Introduction de I’Egalité Dans le Démons-
trateur Automatique SATCHMO. Technical Report, ECRC, Munich,
1993. In French.

J. Hintikka. Model Minimization — an Alternative to Circumscription.
Jour. of Automated Reasoning, 4, 1-13, 1988.

K. M. Hornig. Generating Small Models of First Order Axioms. Proc.
Sizth German Workshop on Artificial Intelligence, Springer-Verlag, IFB
47, Springer-Verlag, 1981.

48

[36]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

K. Inoue, M. Koshimura, and R. Hasegawa. Embedding Negation as
Failure Into a Model Generation Theorem Prover. In Proc. Eleventh
Int. Conf. on Automated Deduction, 400-415, 1992.

M. Kiihn. Rigid Hypertableaux. In KI’97: Advances in Artificial In-
telligence, Proc. of Twentyfirst Annual German Conf. on Artificial In-
telligence, Springer-Verlag, LNCS 1303, 1997.

A. Leitsch. The Resolution Calculus. Springer-Verlag, 1997.

R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut
Rule Into Connection Tableau Calculi. Jour. of Automated Reasoning,
13(3), 297-338, 1994.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984,
second edition 1987.

J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic
Programming. MIT Press, 1992.

S. Lorenz. A Tableau Prover for Domain Minimization. Jour. of Auto-
mated Reasoning, 13, 375-390, 1994.

D. Loveland, D. Reed, and D. Wilson. SATCHMORE: SATCHMO
With RElevancy. Jour. of Automated Reasoning, 14, 325-351, 1995.

R. Manthey and F. Bry. A Hyperresolution-Based Proof Procedure and
its Implementation in Prolog. In Proc. Eleventh German Workshop on
Artificial Intelligence, Springer-Verlag, IFB 152, 456-459, 1987.

R. Manthey and F. Bry. SATCHMO: a Theorem Prover Implemented
in Prolog. In Proc. Ninth Int. Conf. on Automated Deduction, Springer-
Verlag, LNCS 310, 415-434, 1988.

V. W. Marek and M. Truszczynski. Nonmonotonic Logic. Context De-
pendent Reasoning. Springer-Verlag, 1993.

A. Nerode, R. T. Ng, and V. S. Subrahmanian. Computing Circum-
scriptive Databases: 1. Theory and Algorithms. Information and Com-
putation, 116, 58-80, 1995. Cited in [48].

[. Niemela. A Tableau Calculus for Minimal Model Reasoning. In
Proc. Fifth Workshop on Theorem Proving with Analytic Tableaux and
Related Methods, Springer-Verlag, LNCS 1071, 1996.

I. Niemela. Implementing Circumscription Using a Tableau Method.
In Proc. Twelfth European Conf. on Artificial Intelligence, John Wiley
& Sons, Ldt, 1996

49

[50]

[51]

[52]

[53]

54]

[55]

[56]

N. Olivetti. Tableaux and Sequent Calculus for Minimal Entailment.
Jour. of Automated Reasoning, 9, 99-139, 1992.

M. Paramasivam and D. Plaisted. Automated Deduction Techniques
for Classification in Description Logic Systems. Jour. of Automated
Reasoning, 20(3), 1998.

N. Peltier. Simplifying and Generalizing Formulae in Tableaux. Pruning
the Search Space and Building Models. In Proc. Sizth Workshop on
Theorem Proving with Tableauz and Related Methods, Springer LNCS
1227, 313-327, 1997.

D. Poole. Explanation and Prediction: An Architecture for Default and
Abductive Reasoning. Computational Intelligence, 5(2), 97-110, 1989.

D. Poole, R. Goebel, and R. Aleliunas. THEORIST: A Logical Rea-
soning System for Default and Diagnosis. In The Knowledge Frontier:
Essays in the Representation of Knowledge, N. Cercone and G. Mc-
Calla, eds., Springer-Verlag, 1987.

D. Prawitz. A new Improved Proof Procedure. Theoria, 26, 102-139,
1960.

P. W. Purdom, Jr. Solving Satisfiability With Less Searching. IEEFE
Trans. on Pattern Analysis and Maschine intelligence, PAMI-6, 4, 510—
513, 1984.

A. K. Rajasekar. Semantics for Disjunctive Logic Programs. PhD
Thesis, Institute for Advanced Studies and Department of Computer
Science, University of Maryland, 1989.

A. K. Rajasekar. Magic Set Evaluation in Disjunctive Databases. Re-
search Report, Computer Science Department, University of Kentucky,
1995.

A. K. Rajasekar and J. Minker. A Fixpoint Semantics for Disjunctive
Logic Programs. Jour. of Logic Programming, 9(1), 45-74, 1990.

A. Ramsay. Formal Methods in Artificial Intelligence. Cambridge Uni-
versity Press, 1988, second edition 1989.

R. Reiter. A Theory of Diagnosis From First Principles. Artificial
Intelligence, 32, 57-95, 1987.

J. A. Robinson. Automatic Deduction With Hyper-Resolution. Int.
Jour. of Computational Mathematics, 1, 227-234, 1965.

D. Seipel. DisLog - A Disjunctive Deductive Database Prototype. In
Proc. Twelfth Workshop on Logic Programming, 1997.

50

[64]

D. Seipel. DisLog - A System for Reasoning in Disjunctive Deduc-
tive Databases. In Proc. Int. Workshop on the Deductive Approach to
Information Systems and Databases, 1994.

J. Slaney. Finder (finite domain enumerator): Notes and Guides. Tech.
Rep., Australian National University Automated Reasoning Project,
Canberra, 1992.

R. Smullyan. First-Order Logic. Springer-Verlag, 1968.

M. E. Stickel. Automated Theorem Proving Research in the Fifth
Generation Computer Systems Project: Model Generation Theorem
Provers. Future Generation Computer Systems, 9(2), 143-152, 1993.

M. A. Suchenek. First-Order Syntactic Characterizations of Minimal
Entailment, Domain-Minimal Entailment, and Herbrand Entailment.
Jour. of Automated Reasoning, 10, 237-263, 1993.

H. Schutz and T. Geisler. Efficient Model Generation Through Compi-
lation. Jour. of Information and Computation, to appear. Short version

in Proc. Thirteenth Conf. on Automated Deduction, Springer-Verlag,
LNCS 1104, 433447, 1996.

T. Tammet. Using Resolution for Deciding Solvable Classes and Build-
ing Finite Models. In Proc. Baltic Computer Science Conf., Springer-
Verlag, LNCS 502, 33-64, 1991.

S. Torge. Uberpriifung der Erfullbarkeit im Endlichen: Ein Verfahren
und seine Anwendung. PhD Thesis, Institute for Computer Science,
University of Munich, 1998. In German.

M. Winslett. Reasoning About Actions Using a Possible Models Ap-
proach. Proc. Seventh Nat. Conf. on Artificial Intelligence, 1988.

G. Wrightson, ed. Special Issue on Automated Reasoning With Analytic
Tableaux, Part 1. Jour. of Automated Reasoning, 13(2), 173-281, 1994.

G. Wrightson, ed. Special Issue on Automated Reasoning With Analytic
Tableaux, Part I1. Jour. of Automated Reasoning, 13(3), 283-421, 1994.

A. Yahya. Model Generation in Disjunctive Normal Databases.
Tech. Rep. PMS-FB-1996-10, Institute for Computer Science, Univer-
sity of Munich, 1996. http://www.informatik.uni-muenchen.de/pms/
publikationen/berichte/ PMS-FB-1996-10.ps.gz

A. Yahya. A Goal-Driven Approach to Efficient Query Processing in
Disjunctive Databases. Tech. Rep. PMS-FB-1996-12, Institute for Com-
puter Science, University of Munich, 1996. http://www.informatik.uni-
muenchen.de/pms/publikationen/ berichte/ PMS-FB-1996-12.ps.gz

o1

[77]

A. Yahya. Generalized Query Answering in Disjunctive Deduc-
tive Databases: Procedural and Nonmonotonic Aspects. In Proc.
Fourth Int. Conf. on Logic Programming and Nonmonotonic Reasoning,
Springer-Verlag, LNCS 1265, 1997.

A. Yahya, J.A. Fernandez, and J. Minker. Ordered Model Trees: A
Normal Form for Disjunctive Deductive Databases. Jour. of Automated
Reasoning, 13(1), 117-144, 1994.

J. Zhang and H. Zhang. SEM: A System for Enumerating Models. In
Proc. International Joint Conference on Artificial Intelligence, 1995.

52

