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Abstract� Minimal Herbrand models of sets of �rst�order clauses are use�
ful in several areas of computer science� e�g� automated theorem proving�
program veri�cation� logic programming� databases� and arti�cial intelli�
gence� In most cases� the conventional model generation algorithms are
inappropriate because they generate nonminimal Herbrand models and can
be ine�cient� This article describes an approach for generating the minimal
Herbrand models of sets of �rst�order clauses� The approach builds upon
positive unit hyperresolution �PUHR� tableaux� that are in general smaller
than conventional tableaux� PUHR tableaux formalize the approach ini�
tially introduced with the theorem prover SATCHMO� Two minimal model
generation procedures are described� The �rst one expands PUHR tableaux
depth��rst relying on a complement splitting expansion rule and on a form
of backtracking involving constraints� A Prolog implementation� named
MM�SATCHMO� of this procedure is given and its performance on bench�
mark suites is reported� The second minimal model generation procedure
performs a breadth��rst� constrained expansion of PUHR �complement�
tableaux� Both procedures are optimal in the sense that each minimal model
is constructed only once� and the construction of nonminimal models is in�
terrupted as soon as possible� They are complete in the following sense	
The depth��rst minimal model generation procedure computes all minimal
Herbrand models of the considered clauses provided these models are all
�nite� The breadth��rst minimal model generation procedure computes all
�nite minimal Herbrand models of the set of clauses under consideration�
The proposed procedures are compared with related work in terms of both
principles and performance on benchmark problems�






� Introduction

Generating Herbrand models of sets of �rst�order clauses is useful in several
areas of computer science� In automated theorem proving� models can assist
in making conjectures� that can be later checked for provability with con�
ventional provers� In automated theorem proving and program veri�cation�
model generation can also be applied to searching for counter�examples to
conjectures� In both application areas� it is worthwhile and helpful to re�
strict model generation to minimal models�

The generation of minimal models is useful in logic programming and
deductive databases for specifying their declarative semantics ��
� �
�� in
some approaches to query answering ���� ��� ��� ���� for updating database
facts and views ���� ��� ��� �� ��� in arti�cial intelligence for solving de�
sign synthesis and diagnosis problems ���� �
� ��� ��� and in nonmonotonic
reasoning ���� ��� �
� ��� � see also ��
� ���� Arti�cial intelligence produc�
tion systems can be seen as minimal model generators for propositional or
�rst�order logic Horn clauses�

The conventional tableaux methods ���� ��� ��� ��� are however inappro�
priate as model generation procedures because they often return redundant
or nonminimal models ���� �
� ��� ���� The a posteriori detection of redun�
dant models is tedious and might be time consuming� Moreover� redundant
models are a source of ine�ciency because they blow up the search space�
This article describes two procedures for generating the minimal Herbrand
models of a set of �rst�order clauses� The proposed procedures are optimal
in the sense that each minimal model is generated only once� and nonmini�
mal models are rejected as soon as possible� in general before their complete
construction� Measurements on an implementation in Prolog of one of the
procedures point to the e�ciency of the approach�

Both procedures are based on positive unit hyperresolution tableaux �short
PUHR tableaux�� a �novel� formalization of an approach �rst introduced with
the theorem prover SATCHMO ���� ���� PUHR tableaux are ground and
positive� more precisely their nodes consist of sets of ground atoms and
disjunctions of ground atoms� They are expanded by means of only two
rules� the positive unit hyperresolution and the splitting �a simple version of
� expansion ���� ���� rules� from range�restricted clauses� Range restrict�
edness is a syntactical property required in many applications� e�g� deduc�
tive database languages� A transformation of general clauses into range re�
stricted clauses is described which is comparable to Skolemization	 although
requiring an extension of the language� it preserves models in a certain sense�
The branching factor� the size of PUHR tableaux� and the size of the nodes
of PUHR tableaux are in most cases signi�cantly smaller than those of con�
ventional tableaux� Positive unit hyperresolution makes it possible not to
blindly instantiate universally quanti�ed variables� Instead� it combines in
one step instantiations �or � expansions ���� ���� and splittings �or � ex�
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pansion ���� ����� thus reducing the depth of PUHR tableaux� Thanks to
range�restrictedness full uni�cation is not needed for computing positive unit
hyperresolvents� �Half�way uni�cation� �or �merging�� su�ces�

The �rst minimal model generation procedure expands PUHR tableaux
depth��rst relying on a complement splitting expansion rule and on a form
of backtracking involving constraints� The complement splitting rule �intro�
duced under this name in ����� called �reduction� in ���� and �folding�down�
in ����� cuts out some branches leading to nonminimal models� Because
PUHR tableaux are ground� complement splitting can be nicely and e��
ciently built into the SATCHMO programs� While discarding many non�
minimal models� and preventing the generation of duplicate models� com�
plement splitting is not always su�cient to reject all nonminimal models�
In order to prune redundant models as soon as possible� a special depth�
�rst search strategy with extended backtracking is applied� The resulting
depth��rst minimal model generation procedure is sound in the sense that
it generates only minimal Herbrand models� and complete in the sense that
it returns all minimal Herbrand models of the input clauses� provided these
minimal models are all �nite� An interesting property is established	 If all
minimal Herbrand models of a set of clauses are �nite� then they are �nitely
many� A variation� called MM�SATCHMO� of the SATCHMO program is
given� which implements the depth��rst minimal model generation proce�
dure in Prolog� The previously mentioned property ensures the termination
of this procedure� in case all minimal models are �nite�

The second minimal model generation procedure performs a breadth�
�rst� possibly constrained expansion of PUHR �complement� tableaux� It
is complete in the sense that it computes in �nite time every �nite minimal
Herbrand model of the set of clauses under consideration�

The plan of the paper is as follows� Section � introduces terminology and
notations� and de�nes range�restricted clauses� In Section �� PUHR tableaux
are introduced� they are compared with refutation methods� and their im�
plementation in Prolog � the program SATCHMO � is recalled� Section �
is devoted to model generation using PUHR tableaux� Soundness and com�
pleteness results are given and PUHR tableaux are compared with model
generation methods� Section � de�nes the depth��rst and breadth��rst min�
imal model generation procedures as modi�ed PUHR tableaux methods� In
this section� �niteness properties are �rst investigated� complement splitting
and its implementation are discussed� a minimal model generation procedure
based on depth��rst search is de�ned and its implementation in Prolog � the
program MM�SATCHMO � is given� breadth��rst minimal model generation
is investigated� the proposed minimal model generation procedures are com�
pared with related work� and �nally the performance of MM�SATCHMO on
benchmarks is reported� The last Section is a conclusion�

A preliminary version of this paper �whithout proofs and whithout Sec�
tions ���� ���� ���� ���� and ���� has been published in the Proceedings of the
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Fifth Workshop on Theorem Proving with Analytic Tableaux and Related
Methods �
���

� Preliminaries

��� Terminology and Notations

Throughout the paper usual terminology and notations are used� as in e�g�
���� ���� When not explicitly otherwise stated� a �rst�order language L is
implicitly assumed� It is also assumed that two special atoms � and �
are available� expressing respectively truth and falsity� i�e� � is satis�ed in
every interpretation� no interpretations satisfy � � The logical connectives
� and � are assumed to be right associative� i�e� if � � � or � � �� then
L��L�� � � � �Ln���Ln denotes �L���L�� � � � ��Ln���Ln� � � ����

Every clause C � L� � ����Lk with negative literals f�A�� �����Ang and
positive literals fB�� ���� Bmg can be represented by a clause in implication

form	 C � � A� � ���� �An � B� � ��� �Bm� A� � ���� �An is called the body
of C �� B� � ��� � Bm its head� If C contains no negative literals� C � � � �
B� � ��� �Bm� If C contains no positive literals� C � � A� � ���� �An � ��

A uni�er � of a conjunction of atoms �A� � ���� �An� and a sequence of
atoms �B�� ���� Bn� �possibly with repeated atoms� is de�ned as a substitution
� such that Ai� � Bi�� for all i � 
� ���� n� If �A�� �����An� and �B�� ���� Bn�
have a uni�er� they are uni�able� Note that� since repetitions in the sequence
�B�� ���� Bn� are allowed� a conjunction �A� � ���� � An� might be uni�able
with a sequence containing less than n �distinct� atoms� A uni�er � of
�A� � ���� � An� and �B�� ���� Bn� is called a most general uni�er �mgu� of
�A� � ���� �An� and �B�� ���� Bn�� if for each uni�er � of �A� � ���� �An� and
�B�� ���� Bn�� there exists a substitution � such that � � ���

An atom A is said to subsume an atom B �a disjunction of atoms B� �
��� � Bn� resp�� if there exists a substitution � such that A� � B �A� � Bi

for some i � f
� ���� ng� resp���
An interpretation of L will be denoted as a pair �D�m� where the

nonempty set D is the universe �or domain� and m is the mapping inter�
preting the symbols and expressions of the language�

The universal closure of a clause C is 	x����	xnC� where x�� ���� xn are
the variables occurring in C� A clause �resp� a set of clauses� is said to
be satis�ed by an interpretation when the universal closure of the clause
�resp� the set of the universal closures of the clauses� is satis�ed by this
interpretation� A clause �resp� a set of clauses� is said to be satis�able if it
has at least one interpretation in which it is satis�ed� A clause �resp� a set of
clauses� is said to be �nitely satis�able if it is satis�ed by an interpretation
with a �nite domain�

A term or formula in which no variables occur is said to be ground� If A
is a set of ground atoms� H�A� denotes the Herbrand interpretation which
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satis�es a ground atom B if and only if B � A� In this paper� a Herbrand
interpretation H�A� will be said to be �nitely representable if A is �nite�
Note that ��nite representability of Herbrand interpretations� can be found
in the literature� e�g� in ����� with another meaning� Since confusions can be
avoided from the context� a set of formulas having a �nitely representable
Herbrand model will be said to be �nitely representable� Note that �nite
representability �of sets of formulas� and �nite satis�ability are two distinct
properties�

The subset relationship 
 over sets of ground atoms induces an order
� on Herbrand interpretations	 given two sets A� and A� of ground atoms�
H�A�� � H�A�� if and only if A� 
 A�� If S is a set of clauses� � induces
an order on Herbrand models of S� A Herbrand model H�A� of S is said
to be a minimal Herbrand model of S if it is minimal for �� i�e� for every
Herbrand model H�A�� of S� if H�A�� � H�A�� then A� � A�

If E is a set of formulas� Atoms�E� denotes the set of atoms �i�e� positive
unit clauses� that are elements of E �

Variables are denoted by x and y with or without subscripts� constants
by a� b� c or d� predicate symbols by D� P � Q� and R� and function symbols
by f �

In the following� a tree denotes a pair �V�E� such that V is a set � the
elements of which are called vertices � and E is binary relation on V � the
elements of which are called edges � containing no cycles and with respect to
which V is connected� Vertices�T � denotes the set of vertices and Edges�T �
the set of edges of a tree T � If T� and T� are trees� T��T� is de�ned as �V�E�
with V � Vertices�T�� � Vertices�T�� and E � Edges�T�� � Edges�T���

In this paper tableaux methods and minimal model generation proce�
dures for sets of �rst�order clauses are de�ned� i�e� it is assumed that exis�
tential quanti�cations have been removed through Skolemization�

��� Range Restriction

De�nition � �Range restricted clause� A clause �resp� a clause in im�
plication form� is said to be range restricted if every variable occurring in a

positive �resp� head� literal also appears in a negative �resp� body� literal�

Clearly� a range restricted clause in implication form is ground if its body
is ground� e�g� if it is �� Note that clauses considered in many applications
of minimal model generation � e�g� database view updates ��� ��� database
schema design ���� abductive reasoning ��� 
�� 
��� diagnosis ���� �
� ��� � are
range restricted� Also� clauses obtained from many�sorted formulas through
the standard representation in �rst�order logic �
�� are range restricted�

A transformation is �rst de�ned� which associates a set RR�S� of range
restricted clauses in implication form with every set S of clauses in implica�
tion form�
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De�nition � �Range restriction transformation� Let L� be an exten�

sion of the language L with a unary predicate D �not belonging to L��
For every L�clause C � A� � ��� �An � B� � ��� �Bm� let RR�C� be the

following L��clause�

RR�C� 	�

�
C if C is range restricted	

D�x�� � ��� �D�xk� �A� � ��� �An � B� � ��� �Bmotherwise�

where x�� ���� xk are the variables occurring in the Bis and in none of the

Ajs�

Let S be a set of L�clauses� For a term t distinct from a variable and

occurring in S� let Ct be the L��clause�

Ct 	�

�
D�x�� � ��� �D�xk� � D�t� if the variables x�� ���� xk occur in t	
� � D�t� if no variables occur in t�

Let � be the set of nonvariable terms occurring in S� Let S � be the following
set of L��clauses�

S � 	�

�
fCt j t � �g if � contains a constant	

fCag � fCt j t � �g otherwise� for some constant a�

RR�S� 	� fRR�C� j C � Sg � S � is the range restriction of S�

Note that by construction the clauses in RR�S� are range restricted and
that RR�S� is �nite if S is �nite� Strictly speaking� the range restriction
transformation does not preserve models because it extends the language L
with the unary predicate D�

Example �


� If S � f� � P �f�x��g� then RR�S� � fD�x� � P �f�x�� � � �
D�a� � D�x� � D�f�x��g where� in the �rst clause� D�x� � � is sim�
pli�ed into D�x��

�� If S � fP �x� y� � P �f�x�� y�g� then RR�S� � fP �x� y� � P �f�x�� y� �
� � D�a� � D�x� � D�f�x��g�

Example 
 shows that� if the range restriction transformation is applied
to a set of clauses that are already range restricted� a set of range restricted
clauses is obtained which is not identical with the initial set� Note that the
properties of the PUHR tableaux method and of the minimal model gener�
ation procedures given below only require that the method and procedures
are applied to sets S of range restricted clauses but not that S � RR�S��

The following theorem shows that the range restriction transformation
preserves models and minimal Herbrand models in a certain sense� similar
to the way Skolemization does�
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Theorem 	 Let S be a set of clauses in a language L with no other function

symbols than those occurring in S except possibly a constant a� Let RR�S�
be the range restriction of S in an extension L� of L with a unary predicate

D�


� If �D�m� is a model �Herbrand model� minimal Herbrand model� resp��
of S and if m� is the mapping over L� de�ned as follows�

m��s� 	�

�
m�s� if s 
� D�
D if s � D�

then �D�m�� is a model �Herbrand model� minimal Herbrand model�

resp�� of RR�S��

�� If �D�m�� is a model �Herbrand model� minimal Herbrand model� resp��
of RR�S� and if m�jL denotes the restriction of m� to L� then �D�m�jL�
is a model �Herbrand model� minimal Herbrand model� resp�� of S�

Proof� Point 
 follows immediately from De�nition �� For point � the
nonemptiness of S � �cf� De�nition �� is necessary� because the clauses
RR�C� such that RR�C� 
� C are satis�ed over any interpretation mapping
the added unary predicate D to the empty set�

This result means that range restrictedness can be seen as just a special
syntactic form rather than a real restriction � from a theoretical point of
view� For practical purposes� however� range restrictedness does make a
di�erence� In the context of PUHR tableaux� the range restriction transfor�
mation induces an enumeration of the ground terms� making the � expansion
rule of conventional tableaux ���� ��� super�uous� Thus� if the procedures
presented in this paper are applied to a set RR�S� obtained from S by the
transformation above� then the newly introduced atoms with predicate D
have basically the same e�ect as an instantiation� i�e� as the � rule� for the
clauses of the original set S�

When applied in a refutation procedure� instantiation is often a source
of ine�ciency� Note� however� that this is not the case for model generation�
In contrast to refutation� model generation requires instantiation anyway if�
like considered in the present paper� Herbrand models are to be represented
as sets of ground atoms�

De�nition 
 �Positive unit hyperresolvent� Let C � A� � ��� � An �
E�� ����Em be a clause in implication form� B�� ���� Bn be n �not necessarily

distinct� atoms such that �A� � ��� � An� uni�es with �B�� ���� Bn�� If � is a

most general uni�er of �A�� ����An� and �B�� ���� Bn�� then �E�� ����Em��
is a positive unit hyperresolvent of C and B�� ���� Bn�

Lemma � The positive unit hyperresolvent of a range restricted clause in

implication form and ground atoms is a ground atom or a disjunction of

ground atoms�
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Proof� Immediate�
Note that no occur�checks need to be performed for computing the posi�

tive unit hyperresolvent of a range restricted clause in implication form and
ground atoms� Indeed� half�way uni�cation �or matching� su�ces in comput�
ing a positive unit hyperresolvent of a range restricted clause in implication
form and of ground atoms�

In the next section� positive unit hyperresolution tableaux are de�ned for
range restricted clauses� This is not a signi�cant restriction� for De�nition �
gives a transformation of ��nite� sets of general clauses into ��nite� sets
of range�restricted clauses which preserves models and minimal Herbrand
models in the sense of Theorem �� Note that this transformation is not

necessary for applying the model generation methods described below� if
the considered clauses are already range restricted�

� Positive Unit Hyperresolution Tableaux and

SATCHMO

��� Positive Unit Hyperresolution Tableaux

Starting from the set f�g� the PUHR tableaux method expands a tree �
or positive unit hyperresolution �PUHR� tableau � for a set S of range
restricted clauses in implication form by applying the following expansion
rules that are de�ned with respect to S� The nodes of a PUHR tableau are
sets of ground atoms or disjunctions of ground atoms�

De�nition � �PUHR tableaux expansion rules� Let S be a set of

clauses in implication form�

� Positive unit hyperresolution �PUHR� rule�

B�
���
Bn

E�
where � is a most general uni�er of the body of a clause

�A� � ��� �An � E� � S and of �B�� ���� Bn��

� Splitting rule�

E� �E�

E� E�

In the following de�nition� thanks to the range restrictedness of clauses�
the splitting rule is applied to ground disjunctions�
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De�nition 
 �PUHR tableaux� Positive unit hyperresolution �PUHR�

tableaux for a set S of clauses in implication form are ��nite or in�nite�

trees whose nodes are sets of ground atoms and disjunctions of ground atoms�

Finite PUHR tableaux for S are inductively de�ned as follows�


� f�g is a positive unit hyperresolution tableau for S�

�� If T is a positive unit hyperresolution tableau for S� if L is a leaf of

T such that an application of the PUHR rule �resp� splitting rule� to

formulas in L yields a formula E �resp� two formulas E� and E�� not

subsumed by an atom in L� then the tree T � obtained from T by adding
the node L � fEg �resp� the two nodes L � fE�g and L � fE�g� as

successor�s� to L is a positive unit hyperresolution tableau for S�

In�nite PUHR tableaux for S are de�ned as follows� If �Ti�i�N is an in��

nite sequence of �nite PUHR tableaux for S such that for all i � N Ti��
results from an application of a PUHR tableau expansion rule to Ti� then
T �

S
i�N Ti � i�e� the tree T with Vertices�T � �

S
i�N Vertices�Ti� and

Edges�T � �
S
i�N Edges�Ti� � is a PUHR tableau for S�

A branch of a positive unit hyperresolution tableau is said to be closed�

if it includes a node containing the atom �� A positive unit hyperresolution

tableau is said to be closed if all its branches are closed� A branch �resp�

tableau� which is not closed is said to be open�

A positive unit hyperresolution tableau T for S is said to be satis�able if

the union of S with the nodes of a branch of T is satis�able�

If P is a branch or a path from the root to a node N � then �P will
denote the union of the nodes in P� Note that if P is a path from the root
to a node N of a PUHR tableau� then by De�nition �� N � �P�

Convention� If N� and N� are the nodes of a PUHR tableau T containing
respectively E� and E� and resulting from an application of the splitting
rule to E� � E�� it is assumed in the sequel that the PUHR tableau T is
ordered such that N� is the left sibling of E�� This ordering induces an
ordering on the branches of a PUHR tableau in the natural way� Note that
this ordering � of nodes or branches of a PUHR tableau � is independent
from any strategy under which the PUHR tableau can be built� Expressions
such as �a node appearing to the left of another node in a PUHR tableau�
�cf� Theorem ��� or �the leftmost branch of a PUHR tableau� �cf� Exam�
ple �� Corollary ��� and Example �� will refer to this ordering� not to an
ordering induced by a search strategy�

Example � Figure 
 gives a PUHR tableau for the following set of clauses
in implication form	
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P �a� �Q�b�

� � � � � �
� � � � � �

� �
�����

�����

P �a� Q�b�

P �f�a�� �Q�f�a��

� � � �
� ����

� P �b� � R�b�

� � �
� ���

�

P �f�a�� Q�f�a�� P �b� R�b�

� � �

Figure 
	 A PUHR tableau for the set of clauses of Example ��

� � P �a� �Q�b� P �b� � �
P �x� � P �f�x�� �Q�f�x�� P �f�x�� � �
Q�x� � P �x� �R�x� P �x� �Q�f�x�� � �

For the sake of readability� the nodes of the tree of Figure 
 are labeled
with the ground atoms or disjunctions of ground atoms added at these nodes�
We recall that by De�nition � and Lemma � the nodes of a PUHR tableau
are sets of ground atoms and disjunctions of ground atoms�

Note that sets of clauses for which PUHR tableaux are de�ned may be
in�nite� According to De�nition � clauses whose heads are � only contribute
to close branches� Since negative formulas do not explicitly occur in PUHR
tableaux� closure is simply detected by the presence of �� which is simpler
than checking for atomic closure �����

De�nition � Let S be a set of range�restricted clauses in implication form

and A a set of ground atoms and disjunctions of ground atoms� A is said

to be saturated with respect to S for the positive unit hyperresolution and

splitting expansion rules when the following properties hold�


� if �A�� ����An � E� � S� B� � A� ���� and Bn � A� and �A�� ����An�
and �B�� ���� Bn� are uni�able� then E� � A for a most general uni�er

� of �A� � ��� �An� and �B�� ���� Bn��

�� If �E� �E�� � A� then E� � A or E� � A�

Note that if B is an open or a closed branch of a PUHR tableau� then �B
is not necessarily saturated� As well� if �B is saturated� then B is neither
necessarily open� nor necessarily closed�

Lemma � The application of an expansion rule to a satis�able PUHR tableau

results in a satis�able PUHR tableau�







Proof� If M is a model of a set F of clauses� atoms and disjunctions� and if
E is a positive unit hyperresolvent of elements of F � then M j� E� If M is
a model of F and E� �E� � F � then M j� E� or M j� E��

Theorem �� �Refutation soundness� Let S be a set of range�restricted

clauses in implication form� If there exists a closed PUHR tableau for S�
then S is unsatis�able�

Proof� Assume S is satis�able� By Lemma � there are no closed PUHR
tableaux for S�

De�nition �� A PUHR tableau is said to be fair� if the union of the nodes

of each of its open branches is saturated for the expansion rules�

Informally� a PUHR tableau is fair if along each of its open branches�
each possible application of an expansion rule� which yields an atom or a
disjunction of atoms not subsumed by previously generated atoms� is per�
formed at least once�

If B is a branch of a tableau� then Atoms��B� denotes the set of atoms
�i�e� positive unit clauses� that are elements of some nodes in B� In the
sequel� Atoms�E� will always be referred to in cases where all atoms in E
are ground� Recall that if Atoms�E� is a set of ground atoms� it characterizes
the Herbrand interpretation H�Atoms�E���

Lemma �� Let S be a set of range�restricted clauses in implication form

and E be a set of ground atoms and disjunctions of ground atoms� If S�E is

saturated for the expansion rules with respect to S and if E does not contain

�� then H�Atoms�E�� is a model of S�

Proof� Immediate�

Theorem �	 �Refutation completeness� Let S be a set of range�restricted

clauses in implication form� If S is unsatis�able� then every fair positive unit

hyperresolution tableau for S is closed�

Proof� Let T be an open fair PUHR tableau for S� and B an open branch
of T � Since T is fair� then �B is saturated for the expansion rules� By
Lemma 
� H�Atoms��B�� is a model of S� Hence S is satis�able�

PUHR tableaux are de�ned for sets of range restricted clauses� Com�
bined with the PUHR expansion rule of De�nition �� the range restriction
transformation induces an enumeration of the ground terms� as observed
e�g� in �����







��� Comparison of PUHR Tableaux With Related Refuta�

tion Methods

The PUHR tableaux are a formalization of the principle of the SATCHMO
programs� one of them is recalled in the next section� Other formalizations
of the SATCHMO approach to theorem proving can be found in �
�� ��� 
��

�� �� ��� 

� �
�� A further more or less implicit formalization is subjacent to
����� In ��
� 

�� EP Tableaux are proposed that generalize PUHR Tableaux
to nonclausal formulas with �restricted quanti�cation�� PUHR and hyper
tableaux ��� ��� are more in the �tableaux style� �cf� ���� ��� ��� ���� than
the formalizations �
�� ��� 
��� PUHR tableaux are simpler than hyper
tableaux ��� in which negative literals resolved away during hyperresolution
yield closed branches� PUHR and hyper tableaux ��� are closely related to
the positive tableaux of ��
� that are de�ned for ground or propositional
logic clauses�

In ���� a refutation method �a la SATCHMO is described� that does not
require clauses to be range�restricted� Variables occurring in more than
one positive literal of a clause are instantiated using the � rule of standard
tableaux methods ���� ���� Variables occurring in at most one positive lit�
eral do not have to be instantiated� since splitting disjunctions in which
such unbound variables occur does not compromise refutation correctness�
As pointed out in ���� this optimization is particularly interesting� because
it applies to Horn clauses that frequently appear in applications� Note how�
ever� that this optimization is not applicable to model generation if� as
assumed in the present paper� Herbrand models are to be represented by
the ground atoms they satisfy�

In ���� it is proposed to achieve fairness by iterative deepening on the
maximal depth of terms occurring in the generated clause instances� This
seems more convenient than the �iterative deepening based� backtracking
of free variable tableaux ���� ��� However� it is debatable whether it is not
preferable to achieve fairness by �level saturation� as described in ���� ���
and below in Section ����

Note also the interesting optimization called �level cut� suggested in ����
which can be applied to most tableaux methods used for refutation� The
�level cut� optimization consists in discarding branchings if one of the
branching subtrees can be closed without using the branching assumption�
This optimization is not applicable to model generation if� as it is assumed
here� Herbrand models are to be represented by all the ground atoms they
satisfy�

The data structure �model tree� described in ��
� is related to PUHR
tableaux as follows	 The tree consisting of the �open� branches correspond�
ing to minimal models of a PUHR tableau induces � by node relabeling and
chain compacting � a model tree� However� model trees are de�ned only for
ground clauses�
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satisfiable �� findall�Clause� violated�instance�Clause�� Set��

not �Set � 	
�� �� satisfy�all�Set�� satisfiable�

satisfiable�

violated�instance�B ���
 H� �� �B ���
 H�� B� not H�

satisfy�all�	
��

satisfy�all�	�B ���
 H � Tail
� �� H� �� satisfy�all�Tail��

satisfy�all�	�B ���
 H � Tail
� �� satisfy�H�� satisfy�all�Tail��

satisfy�E� �� component�Atom� E�� not �Atom � false�� assume�Atom��

component�Atom� �Atom � �Rest���

component�Atom� �� � Rest�� �� �� component�Atom� Rest��

component�Atom� Atom��

assume�Atom� �� asserta�Atom��

assume�Atom� �� once�retract�Atom��� fail�

Figure �	 The fair SATCHMO program�

In ���� ���� where SATCHMO was �rst presented� it is described in terms
of positive unit hyperresolution and splitting and not as a tableaux method�
This presentation has been retained by most authors referring to SATCHMO
or extensions of it� e�g� ��
� ��� ��� ��� �
� ���� In fact� SATCHMO has been
conceived as a tableaux method� as early publications ��� �� on this project
report� This is because enhancing a tableaux method with resolution was
a new idea and because tableaux methods were considered ine�cient that
this view is not explicitly mentioned in ���� ����

��� Implementation in Prolog

The Prolog program of Figure � expands fair PUHR tableaux for sets of
range�restricted clauses in implication form under a depth��rst search strat�
egy� The tableaux expanded by this program are strict ���� and subsumption�
free� Strictness means that no application of an expansion rule is performed
more than once to given clauses� atoms� or disjunctions� Subsumption�
freeness means that only ground disjunctions that are not subsumed by
previously generated atoms or disjunctions can be split�

Backtracking over satisfiable returns Herbrand models H�M�� The
ground atoms of M are inserted into the Prolog database by the predicate
assume� On backtracking� they are removed� A clause A� � ��� � An �
B� � ��� �Bm is represented in the Prolog database as

A�� ���� An ���� B� � ��� � Bm�

where ���� is declared as an in�x binary predicate� � is represented as
false� � as the built�in predicate true� which is always satis�ed�
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Fairness is ensured by the call to the all�solutions built�in predicate
findall� The predicate component on backtracking successively returns
the atoms of a disjunction� The predicate satisfy on backtracking suc�
cessively returns the components of a disjunction that are not subsumed
by atoms previously inserted into the Prolog database� For each ground
instance �B ���� H of a clause returned by the call

findall	Clause� violated�instance	Clause
� Set


the predicate satisfy�all selects an atom in the head H and asserts it in
the Prolog database� On backtracking� the di�erent ways to satisfy the head
H of each ground instance �B ���� H returned by the call to findall are
considered�

The program of Figure �� called fair SATCHMO� as well as variations
of it have been �rst published in ���� ���� In these articles� the programs
are explained in more detail and performance on benchmark examples is
reported�

It is worth pointing out that satisfy�all is a simple and straightfor�
ward implementation which� in some cases� has drawbacks� Consider for
example the following Prolog representations R� and R� of the same set of
clauses	

R�	 R�	

true ���� p	a
 true ���� p	b
 � p	a


true ���� p	b
 � p	a
 true ���� p	a


Applied to R�� the call to

findall	Clause� violated�instance	Clause
� Set
�

instantiates the variable Set with the list	

�	true ���� p	a

� 	true ���� p	b
 � p	a

�

Then the call to satisfy�all �rst asserts p	a
 into the Prolog database
so as to satisfy the head of true ���� p	a
� Since now p	b
 � p	a
 is
satis�ed� no further actions are taken� as speci�ed by the second clause of
satisfy�all� If in contrast R� is considered� the call to

findall	Clause� violated�instance	Clause
� Set


binds the variable Set to the list	

�	true ���� p	b
 � p	a

� 	true ���� p	a

�
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The call to satisfy�all now satis�es �rst p	b
 � p	a
� then p	a
� That
is p	b
 is �rst asserted� then p	a
� On backtracking� p	a
 only is asserted�

Such a behaviour depending on the order of the clauses in Prolog can be
avoided with a more sophisticated implementation of satisfy�all which
satis�es the considered set of heads of ground clauses by a minimal set of
atoms� Since such a re�ned implementation of satisfy�all is not needed
for the purpose of this report� it is not given here�

� Model Generation With PUHR Tableaux

��� Soundness and Completeness Results

In the previous section� PUHR tableaux were considered from the angle of
refutation� In this section� their properties with respect to model generation
are investigated�

Theorem �
 �Model soundness� Let S be a satis�able set of range�

restricted clauses in implication form and T a fair PUHR tableau for S�
If B is an open branch of T � then H�Atoms��B�� is a model of S�

Proof� Fairness ensures saturation with respect to the expansion rules� The�
orem 
� follows from Lemma 
��

Theorem �� Let S be a satis�able set of range�restricted clauses in impli�

cation form� T be a PUHR tableau for S� and M a set of ground atoms� If

H�M� is a model of S� then there exists an open branch B of T such that

Atoms��B� 
M�

Proof� Let B be the set of branches B of T such that Atoms��B� 

 M� If
B is empty� the result is established� Assume that B 
� �� By the axiom
of choice� for each B � B there exists AB � Atoms��B� n M� Let S � �
S � fAB � � 	 B � Bg� By de�nition of S �� since no AB is in M� H�M�
is also a model of S �� Furthermore T can be extended into a positive unit
hyperresolution tableau T � for S � by adding � to the successor nodes of
those nodes of T that contain some AB� Let B� denote such an extension of
the branch B in T �� By construction� if B � B� then B� is a closed branch
of T �� By Theorem 

� since H�M� is a model of S � and T � is positive unit
hyperresolution tableau for S �� T � has an open branch� say B�� Since B� is
open� it is no branch B� of T � extending a branch B of T such that B � B�
Since all clauses of S� whose heads are �� are also in S �� B� is also an open
branch of T � Since B� 
� B� by de�nition of B� Atoms��B�� 
M�

Corollary �� �Minimal model completeness� Let S be a satis�able set

of range�restricted clauses in implication form� T be a fair positive unit

hyperresolution tableau for S� and M a set of ground atoms� If H�M� is a
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P �b� P �d� P �a� P �c�

P �a� � P �d�

� � � �
� � ���

�

P �a� P �d�

Figure �	 A PUHR tableau for Example � with nonminimal and duplicate
models�

minimal model of S� then there is a branch B of T such that Atoms��B� �
M�

Proof� By Theorem 
�� there is a branch B of T such that Atoms��B� 
M�
Since T is fair� by Theorem 
� H�Atoms��B�� is a model of S� Since H�M�
is a minimal model of S� Atoms��B� � M�

The following example demonstrates that a plain PUHR tableau can
generate both� nonminimal and duplicate models�

Example 	 Let S be the following set of clauses	

� � P �a� � P �b� P �a� � P �b� � P �d�
� � P �a� � P �c� P �b� � P �a� � P �d�

Figure � is a PUHR tableau for S� The minimal model H�fP �a�� P �b�g�
of S is generated twice� at the leftmost branch and at the third branch
from the left of the PUHR tableau� The fourth branch from the left of
the PUHR tableau generates the nonminimal model H�fP �a�� P �b�� P �c�g��
Note that the PUHR tableau returns among others all minimal models of
S� i�e� H�fP �a�� P �b�g�� H�fP �a�� P �d�g�� and H�fP �b�� P �c�� P �d�g��

Corollary 
� is established� though in a di�erent context� in �
�� 
�� and
mentioned without proof in ����� Since f�g is a PUHR tableau for every
set S of clauses� fairness is clearly necessary in Corollary 
�� although not
in Theorem 
�� A further interesting example is as follows�

Example 
 With the set of clauses

S � f� � P �a�� P �x� � P �f�x�� � P �b�� P �a� � P �b�g
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consistently expanding on the second clause will not allow the generation of
the �only� minimal model H�fP �a�� P �b�g� of S�

��� Comparison With Other Model Generation Methods

As a model generation method� the PUHR tableaux method can be com�
pared with model generators for given cardinalities� Possibly� one of the
�rst such generator of models has been described in ����� Nowadays� among
the best known generators of �nite models of �or up to� a given cardinality
are FINDER ���� and SEM ����� Their strength lies in a sophisticated very
e�cient implementation of the exhaustive search for models up to a given
cardinality� The models generated by these methods are not necessarily
minimal in the sense of the present paper� Moreover� they require to specify
the cardinality of the universe� With PUHR tableaux� this is not necessary�

For ground clauses� the Davis�Putnam procedure �
�� can be used as a
model generator� A signi�cant di�erence between PUHR tableaux and the
trees expanded by the Davis�Putnam procedure is the PUHR rule which�
also for ground clauses� gives a preference to positive atoms and expands
the search space according to the implications� For applications such as e�g�
query answering ���� ��� ��� ���� database fact and view updates ���� ��� ���
�� ��� design synthesis and diagnosis ���� �
� ��� ��� this �positive preference�
is a useful feature�

In �
�� �
� ��� ��� tableaux methods are described that generate �nite
representations � in another sense than that considered in the present paper
� for �possibly in�nite� models� The method presented in ���� extracts mod�
els of possibly in�nite tableaux branches by means of equational constraints�
The methods ��
� ��� make use of resolution and therefore are much more
e�cient than approaches based on the � rule of classical tableaux methods�
The method described in ��
� applies only to the monadic Ackermann class�
Like PUHR tableaux the method of ���� is based on positive hyperresolution
but avoids splitting� In some cases this method builds �nite representations
of in�nite models�

In �

� �
� an extension of the PUHR tableaux method is described which
is complete for both� unsatis�ability and �nite satis�ability� Completeness
for �nite satis�ability is achieved by generating models with minimal uni�
verses� This notion of �model minimality�� which can be called �domain� or
�universe minimality�� is di�erent and complementary to that investigated
in the present article� For many applications � such as those addressed in
���� �
� ��� �� �� �
� �
� �� � both notions of minimality� on the one hand do�
main minimality� on the other hand minimality of the set of satis�ed ground
atoms� are needed�

In ���� ��� a tableaux method is de�ned for �rst�order logic formulas
which generates models with minimal universes by relying on so�called ghost
subtableaux� Ghost subtableaux correspond to the extended � or � rule
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of �

� �
�� Note� however� that the �universe minimality� of ���� ��� does
not fully coincide with that of �

� �
�� In the implementation described
in ���� the blind instantiation of the � rule is controlled by giving a limit on
the number of � expansions for each � formula�

Thus� the methods described in ���� ��� 

� �
� rely on an extended �
rule � also called �� rule � for processing existentially quanti�ed variables�
The approach investigated in the present paper in contrast relies on Skolem�
ization�

Most forward chaining � also called bottom up � query answering meth�
ods for disjunctive databases� e�g� ���� ��� ��� can be seen as model gen�
erators similar to the PUHR tableaux methods� Like the PUHR tableaux
method� these methods require the clauses to be range restricted and in�
stantiate all variables� In ���� ��� ���� methods are proposed that� relying on
forward chaining query answering methods for disjunctive databases� imple�
ment backwards chaining through an extension of the Magic Sets rewriting
technique� These methods too can be seen as a tableaux method�

� Minimal Model Generation

By Corollary 
� fair PUHR tableaux generate all minimal models� However�
they often also generate duplicate and�or nonminimal models� as e�g� in Ex�
ample � above� A naive approach to minimal model generation consists in
�rst expanding �fair� PUHR tableaux� and later pruning them from redun�
dant branches� In this section a more e�cient approach is described which
consists in a depth��rst expansion of PUHR tableaux combined with an ex�
tended backtracking which prunes the search space from redundant branches
as soon as possible� Under certain �niteness conditions� this depth��rst min�
imal model generation procedure is complete� However� it is inappropriate if
some minimal models are in�nite� The generation of minimal models based
on breadth��rst expansion of �fair� PUHR tableaux is also discussed�

��� Finiteness Properties

Recall that a Herbrand interpretation H�A� is called �nitely representable

if the set A of ground atoms it satis�es is �nite�

Theorem �
 Let S be a set of formulas� If S has a �nitely representable
Herbrand model it also has a �nite model�

Proof� Let �D�m� be a �nitely representable Herbrand model of S� and A
be the set of ground atoms that are satis�ed in �D�m�� A �nite model of S
is built by identifying the elements of the universe D over which no terms
occurring in A are mapped� Formally� let � be the equivalence relation over
D de�ned by	 d� � d� if and only if d� � d� or for all R�t�� ���� tn� � A and
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for all i � 
� ���� n� m�ti� 
� d� and m�ti� 
� d�� Let f be the mapping of an
element of D to its equivalence class for � in D	 �� Let D� � D	 � and
m� � f �m� Since A is �nite� D	 � is �nite� By de�nition of D� and m��
a ground atom is satis�ed in �D��m�� if and only if it is satis�ed in �D�m��
Since �D�m� j� S� it follows that �D��m�� j� S�

The following result relates the �niteness of the set of minimal models to
the �nite representability of the minimal models� Let us call �nitary a set
of clauses� whose minimal Herbrand models are all �nitely representable�

Theorem �� Let S be a set of clauses� If S is �nitary� then S has �nitely

many minimal Herbrand models�

Proof� Let F be the set of �nitely representable minimal Herbrand models
of S� Assume F is in�nite� If A is a �nite set of atoms fA�� ���� Akg� let
Neg�A� denote the �singleton� set of clauses fA� � ����Ak � �g� For every
�nite subset F of F � let SF � S�

S
fNeg�A� 	 H�A� � Fg� By the axiom of

choice� for every �nite subset F of F there exists a minimal Herbrand model
H�MF � of S such that H�MF � � F nF � Since all Herbrand models of S
in F are minimal and since H�MF � 	� F � H�MF � is a model of Neg�A� for
every H�A� � F � Therefore� H�MF � is a model of SF � By the compactness
theorem� S � �

S
fSF 	 F � F and F �nite g is satis�able� Since S � a set of

clauses� it has a Herbrand model� and therefore also some minimal Herbrand
model H�M�� By de�nition of S �� H�M� 	� F� Therefore M is in�nite�

Conjectures� Although �nite representability is a stronger property than
�nite satis�ability� we conjecture that it is semi�decidable like �nite satis��
ability� We also conjecture that the �nitary property is semi�decidable�

Let S be a set of clauses whose minimal Herbrand models are all �nitely
representable� By Theorem 
� a PUHR tableau for S pruned from those
branches corresponding to nonminimal models is �nite�

In applications� the �nite representability of the minimal Herbrand mod�
els is often implicitly assumed� This is the case in particular of disjunctive
databases ��
� and of some forms of nonmonotonic reasoning ��
� ��� ��� �
�
��� ���� Thus� Theorem 
� is particularly interesting� Note that mentions of
Theorems 
� and 
� or of similar results could not be found in the literature�

��� Complement Splitting

If C � A�� ����An is an atom or a disjunction of atoms� let Neg�C� denote
the �nite set of clauses in implication form Neg�C� 	� fA� � �� ���� An �
�g�
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De�nition �� �Complement splitting rule�

E� �E�

E� E�

Neg�E��

The complement splitting rule is referred to under this name in ����� It
was inspired from the Davis�Putnam procedure �
�� and from the �com�
plement searching� technique of ����� Other authors came to the same
idea	 Complement splitting is called �reduction� in ���� and �folding�down�
in �����

Like the splitting rule� the complement splitting rule is applied in the
following de�nitions to ground disjunctions� Tableaux expanded with the
positive unit hyperresolution and the complement splitting rules are de�ned
inductively� similarly as in De�nition �� Let us call such tableaux PUHR

complement tableaux� Note that nodes of PUHR complement tableaux are
sets of ground atoms� disjunctions of ground atoms� and ground implications
of the form A� ��

De�nition �� �PUHR complement tableaux� Positive unit hyperres�

olution �PUHR� complement tableaux for a set S of clauses in implication

form are ��nite or in�nite� trees whose nodes are sets of ground atoms�

disjunctions of ground atoms� and ground implications of the form A� ��
Finite PUHR complement tableaux for S are inductively de�ned as follows�


� f�g is a positive unit hyperresolution complement tableau for S�

�� If T is a positive unit hyperresolution complement tableau for S� if L
is a leaf of T such that an application of the PUHR rule �resp� comple�
ment splitting rule� to formulas in L yields a formula E �resp� two sets

of formulas fE�� Neg�E��g and fE�g�� then the tree T � obtained from

T by adding the node L�fEg �resp� the two nodes L�fE�� Neg�E��g
and L � fE�g� as successor�s� to L is a positive unit hyperresolution

complement tableau for S�

In�nite PUHR complement tableaux for S are de�ned as follows� If �Ti�i�N
is an in�nite sequence of �nite PUHR complement tableaux for S such that
for all i � N Ti�� results from an application of the PUHR or complement

splitting rule to Ti� then T �
S
i�N Ti is a PUHR complement tableau for S�

Convention� The same convention is made for PUHR complement tableaux
as for PUHR tableaux	 If N� and N� are the nodes of a PUHR tableau T
containing respectively fE�� Neg�E��g and fE�g and resulting from an ap�
plication of the complement splitting rule to E��E�� the PUHR complement
tableau T is ordered such that N� is the left sibling of E�� This ordering
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induces an ordering on the branches of a PUHR complement tableau which
is independent from strategies under which the PUHR complement tableau
can be built�

Note the following similarity between PUHR complement tableaux and
the method proposed in ����	 For the leftmost open branch of a PUHR
complement tableau� the condition expressed by complement splitting is
equivalent to that expressed by the �groundedness test� of ���� �cf� also
Section �����

For PUHR complement tableaux� closedness and openness of branches
and tableaux are de�ned like in De�nition �	 A branch of a PUHR comple�
ment tableau is said to be closed� if it includes a node containing the atom
�� A PUHR complement tableau is said to be closed if all its branches are
closed� A branch �resp� PUHR complement tableau� which is not closed is
said to be open�

De�nition �� Let S be a set of range�restricted clauses in implication form

and A a set of ground atoms� disjunctions� and clauses in implication form�

A is said to be saturated with respect to S for the positive unit hyperresolution

and the complement splitting expansion rules when the following properties

hold�

� if �A�� ����An � E� � S� B� � A� ���� Bn � A� and �A�� ����An� and
�B�� ���� Bn� are uni�able� then E� � A for some most general uni�er
� of �A� � ��� �An� and �B�� ���� Bn��

� If �E� �E�� � A� then fE�g �Neg�E�� 
 A� or E� � A�

Note that if A is saturated with respect to S for the positive unit hy�
perresolution and the complement splitting expansion rules� then it is also
saturated for the positive unit hyperresolution and the splitting expansion
rules�

Model soundness for PUHR complement tableaux follows from Theo�
rem 
��

Lemma �� Let S be a set of clauses and A�� ���� An�n � 
� be ground atoms�


� If M is a minimal Herbrand model of S such that M 
j� A� � ��� �An�

then M is a minimal Herbrand model of S � fA� � ��� �An � �g�

�� If M is a minimal Herbrand model of S � fA� � ��� � An � �g� then
M is also a minimal Herbrand model of S�

Proof� 
� Let H�M� be a nonminimal model of S � fA� � ��� � An � �g�
There existsM� �M such that H�M�� is a model of S�fA������An � �g�
Hence� H�M� is not a minimal model of S�
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�� Assume that �
� H�M� is a minimal Herbrand model of S � fA� �
��� � An � �g� If H�M� is no minimal Herbrand model of S then there
is M� � M such that H�M�� is a model of S� Since H�M� 
j� Ai for
some i � 
� ���� n and since M� � M� H�M�� 
j� Ai� H�M�� is therefore a
Herbrand model of S�fA�� ����An � �g� This contradicts the minimality
of H�M� assumed with �
��

Lemma �	 Let E be a set of clauses in implication form� ground atoms and

disjunctions of ground atoms� E� �E� � E be a ground clause� and M be a

set of ground atoms� H�M� is a minimal model of E if and only if


� either it is a minimal model of E � fE�g �Neg�E��

�� or it is a minimal model of E � fE�g and for all M� 
M� H�M�� is
not a minimal model of E �Neg�E���

Proof� Let H�M� be a minimal model of E � If H�M� does not satisfy E��
then H�M� is a model of E �fE� � �g� By Lemma ��� H�M� is a minimal
model of E �Neg�E��� If H�M� satis�es E� it is a model of E � fE�g� If it
is not a minimal model of E � fE�g� then there exists M� � M such that
H�M�� is a model of E � fE�g� hence of E � contradicting the hypothesis
that H�M� is a minimal model of E � By Lemma ��� if H�M� is a minimal
model of E �Neg�E��� then it is also a minimal model of E � Let H�M� be
a minimal model of E � fE�g� If H�M� is not a minimal model of E � then
there exists M� � M such that H�M�� is a minimal model of E � Since
H�M� is a minimal model of E � fE�g� H�M�� does not satisfy E�� Since
E��E� in E � H�M�� satis�es E� � Therefore� H�M�� satis�es E�fE� � �g�
i�e� there exists M� 
 M� 
 M� such that H�M�� is a minimal model of
E �Neg�E���

For PUHR complement tableaux� fairness is de�ned similarly to fairness
of PUHR tableaux	 A PUHR complement tableau is said to be fair� if the
union of the nodes of each of its open branches is saturated for the positive
unit hyperresolution and complement splitting expansion rules�

Theorem �
 �Minimal model completeness of complement ta�

bleaux� Let S be a satis�able set of range�restricted clauses in implication
form� T be a fair PUHR complement tableau for S� and M a set of ground

atoms� If H�M� is a minimal model of S� then there is a branch B of T
such that Atoms��B� � M�

Proof� Follows from Corollary 
� since by de�nition every PUHR comple�
ment tableau for a set S can be constructed from a PUHR �noncomplement�
tableau by adding � to some of its nodes� and from Lemma �� which ba�
sically states that minimal models are preserved by complement splitting�
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Figure �	 A PUHR complement tableau�

The following example shows that complement splitting is not always
su�cient to prune all nonminimal models�

Example � Let S be the set of clauses of Example �� i�e�	

� � P �a� � P �b� P �a� � P �b� � P �d�
� � P �a� � P �c� P �b� � P �a� � P �d�

Figure � gives a PUHR complement tableau for S� The models generated by
this PUHR complement tableau are H�fP �a�� P �d�g�� H�fP �b�� P �c�� P �a�g��
H�fP �b�� P �a�g�� and H�fP �b�� P �c�� P �d�g�� Note that although some are
not minimal� the PUHR complement tableau returns no duplicates�

Although possibly having branches corresponding to nonminimal models�
PUHR complement tableaux never have two distinct branches de�ning the
same model� as established next�

Lemma �� Let S be a satis�able set of range�restricted clauses in impli�

cation form� T be a fair PUHR complement tableau for S� and BL and BR
be two open branches of T � If BL appears to the left of BR in T � then

Atoms��BR� 

 Atoms��BL��

Proof� Let AR be an atom in the �rst node of BR �in a root to leaf traversal�
which is not not in BL� By de�nition of the complement splitting rule�
�AR � �� � �BL� Hence AR 
� �BL�

��



cs�satisfiable �� findall�Clause� violated�instance�Clause�� Set��

not �Set � 	
�� �� cs�satisfy�all�Set�� cs�satisfiable�

cs�satisfiable�

cs�satisfy�all�	
��

cs�satisfy�all�	�B ���
 H � Tail
� �� H� �� cs�satisfy�all�Tail��

cs�satisfy�all�	�B ���
 H � Tail
� �� cs�satisfy�H�� cs�satisfy�all�Tail��

cs�satisfy�E� �� cs�component�Atom� Suffix� E�� not �Atom � false��

assume�Atom�� assume�neg�Suffix��

cs�component�Atom� Suffix� �Atom � Suffix���

cs�component�Atom� Suffix� ��Atom � Rest�� �� ��

cs�component�Atom� Suffix� Rest��

cs�component�Atom� false� Atom��

assume�neg�false� �� ��

assume�neg�E� �� assume�E ���
 false��

The procedures assume and violated�instance are de�ned like in fair SATCHMO �cf�

Figure ���

Figure �	 The CS�SATCHMO program

Corollary �� Let S be a satis�able set of range�restricted clauses in impli�

cation form� T be a fair PUHR complement tableau for S and B�� ����Bi� ���
a left�to�right enumeration of the open branches of T �


� H�Atoms��B��� is a minimal model of S�

�� If i 
� j� then Atoms��Bi� 
� Atoms��Bj�

Proof� 
� Since B� is the leftmost branch of T � by Lemma �� H�Atoms�B���
is a minimal model of S�

�� Follows directly from Lemma ���

��� Implementation of Complement Splitting

Complement splitting can be built into SATCHMO by replacing the pro�
cedure satisfy by the cs�satisfy given in Figure �� cs�component re�
turns not only the atoms of a disjunction� like component does� but also
the rest of the disjunction on the right hand side of the returned atom
�false if this right hand side is empty�� This implementation� which we
call CS�SATCHMO� departs slightly from De�nition 
� since it represents
Neg�A� � ��� � An� as A� � ��� � An � � instead of fA� � �� ���� An � �g�
Since the Ai are ground� the two representations are equivalent�

��



��� Constrained Depth�First Search for Minimal Model Gen�

eration

By Corollary �� the �rst model returned from a depth��rst�left��rst traver�
sal of a PUHR complement tableau is minimal� and by Lemma �� no models
are ��larger than subsequently returned models� In order to prune PUHR
complement tableaux from nonminimal models� it therefore su�ces to con�
strain any model under construction not to be ��larger than any previously
returned model� This is easily achieved by adding to the set of clauses a
constraint Neg�fA�� ����� Ang� � fA� � ��� � An � �g once a ��nite� model
H�fA�� ����� Ang� has been constructed� In the following� such constraints
are called �model constraints��

De�nition �
 �Depth��rst minimal model generation procedure�

Let S be a set of range restricted clauses in implication form� Applying the

depth��rst minimal model generation procedure to S consists in a depth��rst�

left��rst construction of a fair PUHR complement tableau for S such that S
is augmented with Neg�M� after each computation of a model H�M� of S�

As pointed out in Section ���� complement splitting has similarities with
the �groundedness test� of ����� This test can discard nonminimal mod�
els without relying on constraints Neg�M� for each previously constructed
minimal model H�M�� The price for this are on the one hand repeated
computations of a test more complex than those performed by the depth�
�rst minimal model generation procedure� on the other hand that repeated
generations of the same minimal model are not precluded�

Note that� by De�nitions � and 
�� if S� and S� are sets of range�
restricted clauses in implication form such that S� 
 S� and all clauses
in S� n S� are of the form A� � ����An � �� then every PUHR complement
tableau for S� can be obtained from a PUHR complement tableau for S� by
adding � to some nodes� Conversely� every PUHR complement tableau for
S� can be obtained from a PUHR complement tableau for S� by discarding
� from some nodes�

Recall that a set of clauses is �nitary if its minimal Herbrand models
H�M� are all �nitely representable� i�e� such that M is �nite�

Lemma �� Let S be a �nitary and �nite set of range�restricted clauses in

implication form� and T be a PUHR complement tableau for S�
If t is a node in T � let B�� ����Bnt be branches of T to the left of t such

that H�Atoms��B���� ����H�Atoms��Bnt�� are minimal models of S�
Let Tt be the PUHR complement tableau for S�Neg��B�������Neg��Bnt�

corresponding to T � If B is a branch of T � let Bt denote the corresponding

branch in Tt and conversely�

Bt is open in Tt if and only if B is open in T and Atoms��Bi� 


Atoms��Bt�� for all i � 
� ���� nt�

��



Proof� Assume that B is an open branch of T and Atoms��Bi� 

 Atoms��B��
for all i � 
� ���� nt� For all i � 
� ���� nt there exists an atom Ai � �B such
that Ai � �B n �Bi� Therefore� H�Atoms��B�� j� Neg��Bi�� Hence Bt is
open in Tt�

Assume that Bt is an open branch of Tt� If Atoms��Bi� 

 Atoms��B��
for all i � 
� ���� nt� then � 
� �B� Hence B is open in T �

Theorem �� �Soundness and completeness of the depth��rst mini�

mal model generation procedure� Let S be a �nite set of range�restricted

clauses in implication form� If S is �nitary� then applied on S� the depth�

�rst minimal model generation procedure terminates� returns all minimal

models of S �i�e� it is complete�� does not return any nonminimal model of
S �i�e� it is sound�� and does not return any minimal model more than once�

Proof� Let S be a �nitary and �nite set of range restricted clauses in impli�
cation form�
Soundness� By Corollary �� the �rst model returned by the procedure is a
minimal model of S� Assume that the �rst n models H�M��� ����H�Mn���
returned by the procedure are minimal models of S� Let T be the tableau
expanded so far� After returning the �rst n models� the procedure backtracks
to a node t of T � such that the branches corresponding to previously returned
models are to the left of t� The �n� 
��th model returned by the procedure
corresponds to the �rst open branch of a tableau Tt for S �Neg�M��� ����
Neg�Mn���� By Lemma ��� this model is not ��larger than any previously
returned model� By Corollary �� it is a minimal model of S �Neg�M�� �
��� �Neg�Mn���� Hence� by Lemma �� it is a minimal model of S as well�
By induction� all models returned are minimal models of S�
Completeness� For any two minimal models H�M�� and H�M�� of S�
M� 

 M� and M� 

 M�� Therefore� H�M�� j� Neg�M�� and H�M�� j�
Neg�M��� Consequently� no branches corresponding to a minimal model
H�M� of S with M 
� fM�� ����Mng of a PUHR complement tableau for
S can be closed in a tableau for S � Neg�M�� � ��� � Neg�Mn�� for some
minimal models H�M��� ���� H�Mn� of S� From Theorem ��� it follows that
the procedure returns all minimal models� From Lemma ��� it follows that
no minimal models are generated more than once�
Termination� Since S is �nitary� it has by Theorem 
� �nitely many minimal
models� Since the procedure returns all and only minimal models of S�
and since no minimal models are generated more than once� the procedure
terminates�

The following example shows how the depth��rst minimal model gener�
ation procedure generates only minimal models and does not return dupli�
cates�

Example � Figure � gives the search spaces of the depth��rst minimal
model generation procedure for the set of clauses of Examples � and �� i�e�	
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Figure �	 A run of the depth��rst minimal model generation procedure�

� � P �a� � P �b� P �a� � P �b� � P �d�
� � P �a� � P �c� P �b� � P �a� � P �d�

Note that all models returned by the procedure are minimal�

It is worth noting that fairness is necessary for the depth��rst minimal
model generation procedure� as the following counter�example shows�

Example 
 Let S � f� � P �a�� P �x� � P �f�x�� � P �b�� P �a� � P �b�g�
An unfair PUHR complement tableau for S with leftmost branch fP �a��
P �f�a��� ���� P �fn�a��� ���g not containing P �b� does not return the minimal
model H�fP �a�� P �b�g� and does not give rise to applying the constraint
P �a� � P �b� � � for pruning redundant branches�

��� MM�SATCHMO

Figure � gives the program MM�SATCHMO which implements the depth�
�rst minimal model generation procedure� It builds upon the implementa�
tion of complement splitting described in Section ���� A slight modi�cation
of satisfiable su�ces to construct the constraints induced by a �minimal�
model�

��



minimal�model �� mm�true��

mm��� �� false� �� fail�

mm�C�� �� findall�Clause� violated�instance�Clause�� Set��

not �Set � 	
�� �� mm�satisfy�all�Set� C�� C��� mm�C���

mm�C� �� asserta�C ���
 false��

mm�satisfy�all�	
� C� C��

mm�satisfy�all�	�B ���
 H � Tail
� C�� C�� �� H� ��

mm�satisfy�all�Tail� C�� C���

mm�satisfy�all�	�B ���
 H � Tail
� C�� C�� �� mm�satisfy�H� A��

and�merge�A� C�� C��� mm�satisfy�all�Tail� C�� C���

mm�satisfy�E� Atom� �� cs�component�Atom� Suffix� E�� assume�Atom��

assume�neg�Suffix��

and�merge�Atom� true� Atom� �� ��

and�merge�Atom� Conj� �Atom� Conj���

The procedures assume and violated�instance are de�ned like in SATCHMO �cf� Fig�
ure ��� The procedures assume�neg� and cs�component are de�ned like in CS�SATCHMO
�cf� Figure ���

Figure �	 The MM�SATCHMO program�

The argument of the procedure mm is the body of the constraint under
construction� This data structure is redundant� for the model under con�
struction is also represented in the Prolog database� This redundancy can
be easily removed� at the cost of a less readable program� A more serious
source of ine�ciency lies in the way how violated clauses are detected	 the
last inserted atoms are not used for an incremental detection� Although
quite simple� an incremental evaluation requires longer and more compli�
cated programs� An incremental clause evaluation turns out to be especially
bene�cial for the constrained search�

��� Breadth�First Minimal Model Generation

If some minimal model M of the set S of clauses under consideration is
in�nite� then the depth��rst minimal model generation procedure fails to
generate those �nite minimal models that were not constructed before M�
In this Section� it is shown how this can be avoided with a breadth��rst
expansion of PUHR tableaux� To this aim� revised de�nitions of PUHR
tableaux and PUHR complement tableaux are convenient�
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De�nition 	� �PUHR splitting and PUHR complement splitting

rules� Let S be a set of clauses in implication form�

� PUHR splitting rule�

B�
���

Bn

E�� � � � Em�

� PUHR complement splitting rule�

B�
���

Bn

E�� ��� Ei� ��� Em�
Neg�E�� � ��� �Em�� Neg�Ei��� � ��� �Em��

In both rules� � denotes a most general uni�er of the body of a clause

�A� � ��� �An � E� � ��� �Ei � ��� �Em� � S and of �B�� ���� Bn��

De�nition �
 gives rise to revised de�nitions of PUHR tableaux and of
PUHR complement tableaux similar to De�nition � and De�nition �
	

De�nition 	� �Revised PUHR �complement� tableaux� PUHR �com�

plement� tableaux for a set S of clauses in implication form are ��nite or

in�nite� trees whose nodes are sets of ground atoms� disjunctions of ground
atoms and ground implications of the form A � �� resp� Finite revised

PUHR complement tableaux for S are inductively de�ned as follows�


� f�g is a revised PUHR �complement� tableau for S�

�� If T is a revised PUHR �complement� tableau for S� if L is a leaf of
T such that an application of the PUHR �complement� splitting rule

to formulas in L yields m sets of formulas S�� ���� Sm� then the tree T �

obtained from T by adding the m nodes L�S�� ���� L�S� as successors
to L is a revised PUHR �complement� tableaux for S�

In�nite revised PUHR �complement� tableaux for S are de�ned as follows� If

�Ti�i�N is an in�nite sequence of �nite revised PUHR �complement� tableaux

for S such that for all i � N Ti�� results from an application of the PUHR
�complement� splitting rule to Ti� then T �

S
i�N Ti is a revised PUHR

�complement� tableau for S�

��



�

P �a� � �P �b� � �P �c� � P �d���

� � � � �
� � � � �������

��

P �a� P �b� � �P �c� � P �d��

� � � � � �
� � � � � �

� �����
�

P �b� P �c� � P �d�

� � � � �
� � � 







P �c� P �d�

a� PUHR tableau for S � f� � P �a� � �P �b� � �P �c� � P �d���g�
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P �a� P �b� P �c� P �d�

b� Revised PUHR tableau for S�

Figure �	 PUHR and revised PUHR tableaux compared�

Convention� The same convention is made for revised PUHR �comple�
ment� tableaux as for �complement� PUHR tableaux	 The immediate suc�
cessors N�� N�� � � � � Nn of a node in a revised PUHR �complement� tableau T
resulting from an application of the PUHR �complement� splitting rule are
assumed to be ordered from left to right like the formulas they are de�ned
from are ordered in the PUHR �complement� splitting rule of De�nition �
�

Closedness and openness of branches or tableaux as well as fairness are
de�ned for revised PUHR �complement� tableaux like for PUHR �comple�
ment� tableaux �cf� De�nitions � and 

��

In contrast with the tableaux considered in the previous sections� an
atom is introduced at each node of a revised PUHR �complement� tableau�
This is illustrated by Figure ��

Theorem 	� Under breadth��rst expansion of a fair revised PUHR �com�

plement� tableau for a set S of clauses�


� The �rst model returned is minimal�

�� Let fH�M��� ����H�Mn�g be the set of minimal models generated so far
during a breadth��rst expansion of a fair revised PUHR �complement�

tableau� Any subsequently generated model H�M� is minimal if and

only if for all i � f
� ���� ng� Mi 
� M�

Proof� 
� Every model returned is necessarily �nite� Since an atom is in�
troduced at each node of a revised PUHR �complement� tableau� the �rst

�




Herbrand model H�M� returned during a breadth��rst expansion of a re�
vised PUHR �complement� tableau T for S necessarily corresponds to an
open branch B of T with minimal length� Therefore� there are no Herbrand
models H�N � of S such that N �M� i�e� H�M� is minimal�
�� Let fM�� ����Mng be the set of minimal models generated so far during a
breadth��rst expansion of a fair revised PUHR �complement� tableau� Let
H�M� be the model returned next� H�M� is a minimal model if for no
�previously or subsequently� returned model H�N �� N � M � By hypothe�
sis� this holds if H�N � is a model returned by the procedure before H�M��
i�e� if N � Mi for some i � f
� ���� ng� Let H�N � be a model returned
by the procedure after H�M�� Since an atom is introduced at each node
of a revised PUHR �complement� tableau and since the procedure expands
tableaux breadth��rst� necessarily jN j � jMj� Hence� N 
� M�

Note that while in the previous sections the formalization of PUHR
tableaux in terms of two expansion rules gives rise to a simpler treatment� the
formalization in terms of revised PUHR tableaux is much more convenient
for Point 
 of Theorem ���

Since the �rst model generated during a breadth��rst expansion of a re�
vised PUHR �complement� tableau is minimal� adding the same �model con�
straints� as in the depth��rst procedure prevents the generation of nonmin�
imal as well as of duplicate minimal models without a�ecting the soundness
and completeness properties of model generation� The result is a minimal
model generation procedure capable of dealing with sets of clauses having
in�nite minimal models�

De�nition 		 �Breadth��rst minimal model generation procedure�

Let S be a set of range restricted clauses in implication form� Applying the

breadth��rst minimal model generation procedure to S consists in a breadth�

�rst construction of a fair revised PUHR tableau or of a fair revised PUHR

complement tableau for S such that S is augmented with Neg�M� after each
computation of a model H�M� of S�

Note that� in contrast to the depth��rst minimal model generation pro�
cedure� the breadth��rst minimal model generation procedure does not have
to rely on complement splitting� However� relying on complement splitting
in the breadth��rst minimal model generation procedure guarantees that no
duplicate models are produced� that the �leftmost model� is minimal and
that no models can be subsumed by another �on its right��

Since in�nite models necessarily are �generated� last� the breadth��rst
minimal model generation procedure will eventually return all the �nite
minimal models of the considered set of clauses� A branch corresponding
to a nonminimal in�nite model H�M�� is abandoned as soon as a �nite
minimal model H�M� is produced such that M is a subset of the already
computed part of M�� as the following example illustrates�
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Figure �	 A revised PUHR tableau for the set of clauses of Example ��

Example � Let S � f� � P �a�� P �x� � Q�x�� P �x� � P �f�x�� �Q�b�g�
H�fP �a�� Q�a�� P �f�a��� Q�f�a��� P �f�f�a���� Q�f�f�a���� ���g� is an in�nite
minimal model of S and H�fP �a�� Q�a�� Q�b�g� is a �nite minimal model of
S� The revised PUHR tableau for S is given by Figure � �no constraints are
displayed in the �gure�� Note that many models can be abandoned as a re�
sult of the constraint induced by the �rst minimal model fP �a�� Q�a�� Q�b�g
Applied on S� the depth��rst minimal model generation procedure is stuck
on the in�nite �minimal� model and does not return the �nite minimal
model�

��	 Comparison With Other Minimal Model Generators

In ����� a minimal model generation method for propositional logic is pro�
posed� Like the approaches described here� the approach of ���� is a tableaux
method� Unlike the the approaches described here� it performs no direct
comparisons of minimal models speci�ed by di�erent branches� Instead� it
relies on a �groundedness test� based on the following property� A Herbrand
model H�M� of a set S of ground clauses is minimal if and only if

�

� 	A �M S �M j� A

where M denotes f�B j B ground atom and B 
� Mg� As already pointed
out in Section ���� for the leftmost open branch of a PUHR complement

��



tableau� the condition expressed by complement splitting is equivalent to
the �groundedness test� �

�� Note that while complement splitting is syn�
tactically de�ned� the �groundedness test� is a model theoretic condition�
This might make it less immediate to check than complement splitting� As
opposed to the combination of complement splitting and �model constraints�
proposed here� the �groundedness test� does not preclude repeated genera�
tions of the same minimal model� Because it relies on �model constraints��
i�e� a form of memoization� the depth��rst minimal model generation has�
according to ����� an �exponential worst�case space complexity�� In con�
trast� the method described in ���� is said there to have a �polynomial space
complexity�� A comparison of the run times of MM�SATCHMO with those
reported in ���� is given below in Section ���	 Both minimal model genera�
tion procedures achieve a comparable e�ciency� It is a debatable question�
which of the two approaches is preferable in practice� As it is often the case�
the trade�o� is between time and space	 The one method saves computation
time by storing results of previous computations� the other method relies on
additional computations for avoiding any storage� For some applications� a
method with restricted storage is needed� For others� storing minimal mod�
els might be preferable� e�g� if the minimal models have to be compared
or further processed� Comparisons of minimal models are needed e�g� for
comparing semantics of logic programs and deductive databases ��
� �
��
for comparing semantics of nonmonotonic reasoning ���� ���� for comparing
answers to queries ���� ��� ��� ���� for choosing database �fact or view� up�
dates ���� ��� ��� �� ��� and for comparing alternative solutions to design and
diagnosis problems ���� �
� ��� ���

In ��
�� �minimal entailment� for propositional logic is investigated� A
formula B is �minimaly entailed� by a formula A� if no minimal models
of A falsify B� It is proposed in ��
� to establish this property using two
special tableaux methods� The �rst one� the �Algorithm TABLEAU for
A �T B� ��
� p� 

��� is a tableaux method for signed� free syntax proposi�
tional logic formulas� Nonminimal models are detected at step � of the algo�
rithm� i�e� after each expansion of a branch� by a comparison of the atoms
in this branch with the previously generated models� A further test� at step
� of the algorithm� is necessary for discarding so�called ignorable branches
containing meaningless combinations of signed literals� The second tableaux
method proposed with De�nition � ��
� p� 


� is an improvement of the
previously mentioned algorithm for those cases where A is a set of �propo�
sitional logic� clauses� and B is a single �propositional logic� clause� The
improvement basically consists in simpler expansion rules for the restricted
syntax and� more importantly� in the addition of positive unit resolution
�through Rule R	 ��
� p� 


��� Referring to the �rst method� the author
of ��
� writes	 �we regard it mainly as a theoretical tool�� Techniques such
as the �groundedness test� of ���� or complement splitting that speed up
the abandonment of branches corresponding to nonminimal or redundant

��



models are not considered in ��
�� Moreover� it is questionable whether
considering signed formulas does not introduce an overhead compared with
tableaux methods for unsigned formulas ���� ��� ��� ��� ����

Some deductive database query answering methods can be used for gen�
erating minimal models� The system DisLog ���� ��� implements several
query answering methods for disjunctive databases ��
�� Its forward chain�
ing procedure can be used as a minimal model generator similar to the
breadth��rst minimal model generation of Section ���� although without
special treatment of negative clauses� i�e� clauses all literals of which are
negative� Moreover� DisLog proceeds by �rst generating �possibly nonmini�
mal� models� then test for minimality� It therefore explores in general more
interpretations than the approaches presented here and in ��
� �
� ���� The
approach of ���� to constructing so�called �ordered minimal model trees� can
as well be applied to generate minimal Herbrand models� This approach is
however restricted to ground disjunctive deductive databases� This restric�
tion makes it possible to simplify the considered clauses at every assignment
of a truth value to an atom� It also demands that a �xed order� albeit not
necessarily known in advance� for atom expansion be de�ned to achieve the
uniqueness of the constructed tree under the given ordering�

Most semantics proposed for nonmonotonic reasoning � cf� e�g� ���� ���
� rely more or less explicitly on notions of model minimality� Thus� meth�
ods like e�g� �
�� ��� for computing models according to such semantics can�
with more or less adaptations� be applied to computing minimal Herbrand
models in the sense of this paper� However� most such methods do not
fully address the issues investigated here� Indeed� as explained e�g� in ����
Section �� p� ��
�� they have to cope with notions such as �default� or
�negation as failure� that are not relevant to the generation of minimal
Herbrand models of sets of �rst�order clauses� Many of them� like e�g� the
method described in �
��� are only applicable to normal logic programs� i�e�
they cannot cope with non�Horn clauses� The method of �
�� is in addition
restricted to ground clauses and makes use of this restriction like ���� for
simplifying the considered clauses at every assignment of a truth value to
an atom� Minimal model generators can be adapted to computing seman�
tics for nonmonotonic reasoning� as shown e�g� in ����� Note that most
investigations of nonmonotonic reasoning� such as ����� are proof�theoretic
in nature and neither rely on� nor specify algorithms for the generation of
minimal models� In this respect� the article ��
� is an exception	 Although it
is devoted to minimal entailment� it de�nes� as already mentioned� minimal
model generation algorithms for propositional logic�

In ���� ��� an approach to �model minimization� is investigated� In fact�
both articles ���� ��� are devoted to generating models with minimal uni�
verses� not to generating minimal Herbrand models in the sense considered
here� The issue of �universe� or �domain minimization�� also investigated
in �

� ��� ��� 

� �
�� is interesting� for two reasons� On the one hand� meth�

��



ods for universe minimization give rise to algorithms that are complete for
both� unsatis�ability and �nite satis�ability �

� �
�� On the other hand� the
issue has practical applications� e�g� to designing database schemas ��� ���
In ���� Section �� p� 

� a modi�cation of the tableaux method proposed
there is sketched� so as to �minimize predicate extensions�� i�e� to generate
minimal Herbrand models in the sense considered in the present paper� This
modi�cation� which does not seem to be fully worked out� is basically in the
spirit of complement splitting and of the constrained search as well as of the
�groundedness test� of �����

��
 Experiments with MM�SATCHMO

In this Section� the performance of MM�SATCHMO on four benchmark
suites� called A� B� D and F � are reported� Each suite includes �� examples�
each example consists of � to more than 


 


 clauses� each clause has up
to 

 literals� The number of minimal models of an example ranges from 

to 


 


�

The run times reported below have been obtained with MM�SATCHMO
run under ECLiPSe Prolog Version ����
 �
�� on a Hewlett Packard Unix
�HP�UX 

��
� Workstation HP Visualise C 
�
 �PA��


 processor at 
�

MHz� 
�� MB RAM�� Note that ECLiPSe Version ����
 uses �� bit words
instead of �� bit words as possible on a HP Visualise C 
�
�

ECLiPSe was started anew for each problem� thus avoiding any speed
up or overhead resulting from a previously constructed symbol table or un�
collected garbage� The reported CPU times were obtained using the time

command of ECLiPSe�
The programs and benchmark suites referred to in this section are avail�

able at	

http	��www�pms�informatik�uni�muenchen�de�software�MM�SATCHMO�

Worst�case Examples� The A Benchmark Suite� For nonnegative
integers n and m� A�n�m� denotes the set of n clauses of length m de�ned
by	

A�n�m� 	� f true ���� a�i�� � ��� � a�i�m j i � 
� � � � � n g

Applied on A�n�m�� SATCHMO computes mn models by selecting an atom
a�i�j for each i � f
� � � � � ng� Since a�i�j 
� a�h�k for �i� j� 
� �h� k��
all models returned by SATCHMO are pairwise distinct and each of them
is a minimal model of A�n�m�� Thus� for these examples� the additions
MM�SATCHMO makes to SATCHMO have no e�ects� Therefore� examples
of the A suite can be seen as worst�case examples for MM�SATCHMO�

The run times of MM�SATCHMO on the examples of the A suite are
given by Table 
�

��
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Table 
	 CPU times in seconds for computing all minimal models of
A�n�m��

Already for small n and m� computing all minimal models of A�n�m�
involves a tremendous potential search space� For computing the �� � ���
minimal models of A��� ��� truth value assignments for � � � � �
 propo�
sitional variables� i�e� ��� � 
 
�� ��� assignments� are possible� For com�
puting the 

� minimal models of A��� 

�� truth value assignments for �

propositional variables� i�e� ��� � 
 
�� ��� �
� ��� ��� �more than 

million billions� assignments are possible� Of course� the search space ac�
tually expanded by MM�SATCHMO is signi�cantly smaller	 As soon as
MM�SATCHMO assigns the value �true� to an a�i�j� it implicitly assigns
the value �false� to all a�i�k such that k � f
� � � � �mg n f j g�

More informative than the overall time needed for computing all minimal
models is the average time per minimal model� For example� if generating
all minimal models of A��� 

� takes as much as � hours �� minutes� each of
the 


 


 minimal models of this example is computed on average in less
than one and a half tenth of a second�
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Table �	 Average CPU times in 

�� seconds for computing one minimal
model of A�n�m��

The �n�m� entry t��n�m� of Table � is de�ned by t��n�m� � t��n�m	
mn � 

�

where t��n�m� denotes the �n�m� entry of Table 
�
Tables 
 and � suggest that t��n�m� � O�m�n� and t��n�m� � O�mn��

This can be con�rmed as follows� In order to avoid a repeated generation
of already returned models� MM�SATCHMO relies on adding �constraints��
i�e� clauses with false as head� during complement splitting and after a
minimal model is generated� We remind of the name of �model constraints�
� cf� Section ��� � for those constraints introduced after the generation of
minimal models � During the generation of all minimal models of A�n�m�

cA�n�m� �
mn��X
k
�

k �
�mn � 
��mn

�
� O�m�n�

��



evaluations of �model constraints� take place since no such constraints are
present when the �rst minimal model is returned� and exactly k � 
 such
constraints are present when the k�th minimal model is generated� Thus� it
is reasonable to assume that t��n�m� � O�m�n�� It follows that t��n�m� �

O�mn� since� by de�nition� t��n�m� � t��n�m	
mn � 

��

Note that� since complement splitting introduces further constraints�
more than 


 


 constraints are involved in the generation of all mod�
els of A��� 

��

The Price of Constraints� The B Benchmark Suite� The large num�
ber of constraints is a source of ine�ciency� because at each cycle of the main
procedure of MM�SATCHMO� all constraints are evaluated� In order to es�
timate the cost of this evaluation� the B benchmark suite is now considered�

For nonnegative integers n and m� B�n�m� denotes the set of clauses
A�n�m� augmented with the mn � 
 model constraints that exclude all
minimal models of A�n�m� except the last one returned by MM�SATCHMO	

B�n�m� 	� C�n�m�mn� �A�n�m�

where

C�n�m� k� 	� f false 
� Mj j j � 
� � � � � k � 
 g

and Mj denotes the conjunction of the atoms representing the j�th minimal
model of A�n�m� returned by MM�SATCHMO� Clearly� B�n�m� has exactly
one minimal model� Note that B�n�m� consists of n � mn � 
 clauses� e�g�
B��� �� consists of ���� B��� 

� of 


 

� clauses�

Following a basic optimization mentioned in ����� a model constraint is
expressed as a Prolog clause false 
� Mj instead of Mj ���� false� If
false is derivable� this optimization avoids asserting false in the Prolog
database just before retracting it while backtracking�

By de�nition of B�n�m�� generating the one minimal model of B�n�m�
with MM�SATCHMO amounts to generating all minimal model of A�n�m�
with MM�SATCHMO� While the constraints are progressively introduced
during the generation of all models of A�n�m�� they are present from the
beginning during the construction of the �rst �and only� model of B�n�m��
Comparing Table 
 with Table � below shows how this presence a�ects the
run times�
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 � � � 
 � ��
n
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Table �	 CPU times in seconds for computing the �rst �and only� minimal
model of B�n�m��

��



In order to estimate the overhead introduced by the model constraints� one
has to consider the number of times such constraints are evaluated� As
already observed� for A�n�m� this number is

cA�n�m� �
mn��X
k
�

k

For B�n�m�� it is

cB�n�m� �

�
mn��X
k
�

k

�
� mn � 
 � cA�n�m� � mn � 


for the following reasons� The set C�n�m�mn� of model constraints of
B�n�m� was generated by running MM�SATCHMO on A�n�m� and the
model constraints were stored using asserta in the order of their genera�
tion� Thus� a Prolog call to false evaluates the model constraints in the
reverse order of their generation� While computing the single model of
B�n�m�� all the mn�
 model constraints in B�n�m� are evaluated after the
�rst interpretation is generated� The bodies of all these constraints but the
last one evaluate to �false�� After the k�th �� � k � mn � 
� interpretation
is constructed� only mn�k model constraints need to be evaluated� because
the body of the �mn � k��th model constraint evaluates to �true�� thus de�
riving the atom false� When the �mn��th interpretation� i�e� the single
model of B�n�m�� is generated� all the mn� 
 model constraints in B�n�m�
are evaluated once again� the body of all of them evaluating to �false��

Table � gives� for those values of n and m for which the estimations make
sense� the overall times spent for one evaluation of the clauses in C�n�m�mn�
during the computation of the single model of B�n�m�� i�e� the times spent
for one evaluation of all model constraints generated during the computation
of all models of A�n�m��

m � � � 
 � ��
n
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Table �	 CPU times in seconds spent for one evaluation of all clauses in
C�n�m�mn� during the computation of the �rst �and only� minimal model

of B�n�m��

The �n�m� entry t��n�m� of Table � is de�ned by t��n�m� � t��n�m� �
t��n�m�� where ti�n�m� denotes the �n�m� entry of Table i� In Table � as
well as in other tables� the sign � expresses meaningless data or times below
the measure threshold of the operating system�

Table � gives the average times for evaluating one model constraint dur�
ing the computation of the �rst �and only� minimal model of B�n�m��

��
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 � ��
n
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Table �	 Average CPU times in 

�� seconds for evaluating one clause in
C�n�m�mn� during the computation of the �rst �and only� minimal model

of B�n�m� �

The �n�m� entry t��n�m� of Table � is de�ned by	

t��n�m� �
t��n�m�� t��n�m�

cB�n�m�� cA�n�m�
� 

� �

t��n�m�� t��n�m�

mn � 

� 

�

where ti�n�m� denotes the �n�m� entry of Table i�
Comparing Table 
 and Table � shows that the time needed for one

evaluation of the model constraints is much less than the time needed for
the rest of the computation�

Admittedly� the B benchmark suite might be less meaningful for mini�
mal model generators that� unlike MM�SATCHMO� do not rely on model
constraints�

Niemel�a�s Scheme� The D Benchmark Suite� In ���� an approach
to minimal model generation is described and two examples are considered�
The D benchmark suite is a generalization of these examples� For nonneg�
ative integers n� m� and k	

D�n�m� k� 	� E�n�m� k� �A�n�m�

where

E�n�m� k� 	�
k�

j
�

f a�i���j 
� a�i�j j i � 
� � � � � n� 
 g

The clauses E�n�m� k� can be seen as k �chains� of implications between
literals� These chains express � simple � dependencies between literals� thus
conveying � in a rather simple manner � the often more complex literal de�
pendencies present in most practical applications� Arguably� the D bench�
mark suite is better an approximation of �real life applications� than the A
suite�

Following an already mentioned optimization� the clauses in E�n�m� k�
are expressed using 
� instead of ����� As discussed in ����� this does not
a�ect the correctness and completeness of the method� since the considered
clauses are Horn clauses and their head atoms are not involved in recursion
cycles�

The chains considerably reduce the search space� as Tables � to 

 show�

��
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Table �	 CPU times in seconds for computing all minimal models of
D�n�m� 
��

Proposition 	
 The number d�n�m� k� of minimal models of D�n�m� k�
�
 � k � m� is given by the equations�

d�
�m� k� � m
d�n � 
�m� k� � k � ��m� k�� d�n�m� k��

Proof� SATCHMO and MM�SATCHMO clearly generate m minimal models
from a single positive clause of length m� thus d�
�m� k� � m� Consider now
the set of clauses D�n�
�m� k� � E�n�
�m� k��A�n�
�m� and the ��rst�
clause true ���� a���� � a���� � � � �  a���m of A�n � 
�m�� 
� If one
of the a���j for j � 
� � � � � k is assigned the truth value �true�� so are the
atoms a�h�j for h � �� � � � � n and j � 
� � � � � k also assigned the value �true�
because of the k �implication chains� in E�n�
�m� k�� and the remaining n
clauses of A�n�
�m� are all satis�ed� Therefore� there are exactly k minimal
models of D�n�
�m� k� such that one of the a���j for j � 
� � � � � k is true� ��
If now for some j � k� 
� � � � �m� a���j is true� there are exactly d�n�m� k�
minimal models of the remaining clauses in D�n � 
�m� k�� Since a�h�l 
�
a�p�q for �h� l� 
� �p� q�� each of these minimal models results in a minimal
model of D�n � 
�m� k� when extended with the assignment of �true� to
a���j� �� Thus� d�n � 
�m� k� � k � ��m� k�� d�n�m� k���

Table � gives the average times needed for computing one minimal model
of D�n�m� 
��
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Table �	 Average CPU times in 

�� seconds for computing one minimal
model of D�n�m� 
��

The �n�m� entry t��n�m� of Table � is de�ned by t��n�m� � t��n�m	
d�n�m��	 � 

�

where t��n�m� denotes the �n�m� entry of Table ��
Tables � to 

 give the overall and average times per minimal model for

D�n�m� bm� c� and D�n�m�m�
�� Tables � and 

 are obtained from Tables
� and 

� respectively� like Table � is computed from Table � by considering
the relevant values of d�n�m� k��
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Table �	 CPU times in seconds for computing all minimal models of
D�n�m� bm� c��
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Table �	 Average CPU times in 

�� seconds for computing one minimal
model of D�n�m� bm� c��
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Table 

	 CPU times in seconds for computing all minimal models of
D�n�m�m� 
��
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Table 

	 Average CPU times in 

�� seconds for computing one minimal
model of D�n�m�m� 
��

The run times for the D suite are signi�cantly smaller than for the A
suite� Moreover� the average times signi�cantly decrease when the number
of �implication chains� increases� showing that MM�SATCHMO well prop�
agates truth values assignments through ��chains� of� implications� Ar�
guably� this is a signi�cant factor of e�ciency� Since Niemel!a"s scheme
is a good approximation of �real life examples� the performance of MM�
SATCHMO on these examples gives support to the claim� that this rather
simple implementation is su�cient for many practical applications�

A Strengthening of Niemel�a�s Scheme� The F Benchmark Suite�

Like the B suite strengthens the A suite by adding model constraints�
Niemel!a"s scheme �or D suite� suite can be strengthened into the F suite as
follows	

�




F �n�m� k� 	� C�n�m�mn��D�n�m� k� � C�n�m�mn��E�n�m� k��A�n�m�
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Table 
�	 CPU times in seconds for computing all minimal models of
F �n�m� 
��
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Table 
�	 CPU times in seconds for computing all minimal models of
F �n�m� bm� c��
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Table 
�	 CPU times in seconds for computing all minimal models of
F �n�m�m� 
��

The comparison of Table 
�� 
� and 
� with Table �� �� and 

 respec�
tively con�rms the observation made with the B suite	 Even in presence
of a huge number of constraints good run times are achieved� This fur�
ther supports the claim that MM�SATCHMO� in spite of its simplicity� is a
convenient minimal model generator for many applications�

Optimization Potential� Like SATCHMO� MM�SATCHMO emphasizes
a principle� not implementation aspects� In implementing SATCHMO and
MM�SATCHMO� no attention has been paid to e�ciency� The reported run
times are therefore noticeable�

In ���� ��� it is shown how natural optimizations dramatically improve
the e�ciency of SATCHMO� These optimizations consist in �
� computing
violated clause instances incrementally� so as to avoid useless repeated com�
putations� ��� specializing the SATCHMO meta�interpreter with respect to
the considered set of clauses� so as to avoid the meta�interpretation overhead
� a technique called �compilation� in ���� ��� �� ��� a more e�cient imple�
mentation of complement�splitting� ��� a more e�cient search strategy for
ensuring fairness� and ��� enhancing the representation language � e�g� with
disjunctions in clause bodies� In some cases� gains in e�ciency of several
orders of magnitudes can be achieved with these techniques�

��



All these techniques are applicable to MM�SATCHMO� too� The more
e�cient implementation of complement splitting is especially promising� In
contrast� the model constraints upon which MM�SATCHMO relies for avoid�
ing a repeated generation of minimal models do not seem easily amenable
to the optimization and compilation techniques investigated in ���� ����
Nonetheless� these techniques are promising for MM�SACHTMO� since� as
observed with the A suite �cf� Tables 
 and ��� the time spent for one eval�
uation of all model constraints is much smaller than the time needed for the
rest of the computation�

First�order Logic vs� Propositional Logic� The examples considered
above are all propositional logic examples� For three reasons� examples with
�rst�order variables have not been retained� First� the techniques applied by
the approach considered here for restricting the model generation to minimal
models do not depend on variables� Second� considering propositional logic
examples makes it possible to compare the run times with that of other min�
imal model generators that do not handle variables� Finally� most problems
can be naturally expressed both� without and with �rst�order variables� and
with MM�SATCHMO the representations with variables often yield better
run times than the propositional logic representation�

The last claim is conveniently illustrated by the following example� B�n�
m� � C�n�m�mn� � A�n�m� includes �� ��� clause in C�n�m�mn� of the
form false 
� Mj where Mj is the Prolog conjunction of the atoms true
in one of the �rst �� ��� minimal models of A�n�m� returned by MM�
SATCHMO� With variables� A��� 

� is conveniently and naturally repre�
sented by the �ve facts index	�
 � � � � � index	�
 and the clause	

index	J
 ���� a��	J
 � a��	J
 � � � � � a���	J


With this representation� it is natural to replace the �� ��� clauses of
C�n�m�mn� by the following � clauses	

false 
� a��	J


false 
� a��	J

���

false 
� a��	J


Indeed� in every minimal model of A��� 

� except the last one returned by
MM�SATCHMO� a�i	j
 is true for some i � f
� � � � � �g and j � f
� � � � � �g�

For generating the single minimal model of the propositional logic repre�
sentation of B��� 

�� MM�SATCHMO takes 
� �����
 seconds �CPU time�
� cf� Table � � with clauses for false declared dynamic and the loading
times not considered� With the �rst�order representation of the same exam�
ple given above� MM�SATCHMO needs only ����� seconds �CPU time� for
the same task� Admittedly� this example is an extreme case� In general� the
speed up obtainable by changing the representation is less considerable�

��



Comparison of Performances� Up to a renaming of the propositional
variables� D��� �� 
� is identical with the example # � Sa of ����� That
article reports a run time of �less than � seconds� for generating all minimal
models of this example with an implementation in ECLiPSe Prolog run �on
a SUN Sparc �� workstation� For the same task� MM�SATCHMO needs

��� seconds �cf� Table ��� A second run time reported in ���� is �less
than 
�� seconds� for generating all minimal models of an example denoted
# � Sa � Sb � Sc � Sd which� up to a variable renaming� corresponds to
D��� �� ��� For the same task� MM�SATCHMO needs 
�
� seconds �cf� Table


�� Obviously� the method described in ���� and MM�SATCHMO achieve
comparable e�ciencies on these examples�

In ���� the implementation ��
� of a method described in ���� is mentioned
without detailed comparisons� because this �implementation was not able
to handle very large examples� like # � Sa or # � Sa � Sb � Sc � Sd� Under
�large�� not only the number of clauses� but also the number of minimal
models is meant� Obviously� the system presented in ��
� could not run the
benchmark examples considered here� some of which having up to 


 



clauses� others up to 


 


 minimal models�

A comparison with the performances of DisLog ���� ���� of ��
�� of ����� or
of �
�� would not really make sense� because these approaches have not been
primarily developed for an e�cient generation of minimal Herbrand models�
Note that the system DisLog ���� ��� cannot cope with large numbers of
minimal models� as considered in this section� and that run times of the
algorithms described in the other papers are not available�

� Conclusion

In this article� positive unit hyperresolution �PUHR� tableaux are de�ned
and their properties investigated� PUHR tableaux formalize the approach
to theorem proving of ���� ���� Then� PUHR tableaux are applied to speci�
fying two procedures for computing the minimal Herbrand models of sets of
range restricted clauses� The �rst minimal model generation procedure per�
forms a depth��rst expansion of PUHR �complement� tableaux relying on a
form of backtracking involving constraints� The second minimal model gen�
eration procedure performs a breadth��rst� constrained expansion of PUHR
�complement� tableaux� Both procedures are optimal in the sense that each
minimal model is constructed only once� and the construction of nonmini�
mal models is interrupted as soon as possible� They are sound and complete
in the following sense	 The depth��rst minimal model generation procedure
computes all minimal Herbrand models of the considered clauses provided
these models are all �nite� The breadth��rst minimal model generation pro�
cedure computes all �nite minimal Herbrand models of the set of clauses
under consideration�

��



A compact implementation in Prolog of the depth��rst minimal model
generation procedure in the form of a short Prolog program called MM�
SATCHMO is also presented� Its e�ciency on extensive benchmarks is re�
ported� The prototype is able to deal with sets of clauses with a very large
number of minimal models� Its performances are comparable to the best re�
ported in the literature ����� MM�SATCHMO has a considerable potential
for optimizations like discussed in ���� ����

As tableaux methods� the proposed approaches enjoy a good degree of
e�ciency stemming from restricted search spaces� limited applications of
expansion rules and the use of matching �without occur�check� rather than
full uni�cation� The proposed approaches expand ground tableaux� Since
it makes instantiation necessary� this might be considered as a source of
ine�ciency in a refutation procedure� However� if Herbrand models are to
be characterized as sets of ground atoms� as it is considered in this paper�
this objection does not apply to a model generation procedure�

As model generation procedures� the approaches to minimal model gen�
eration proposed in this paper compare well with those reported in the liter�
ature� many of which generate nonminimal models ���� ��� ��� ��� ��� ��� ���
��� ��� �� ��� ��� ��� ��� ��� ��� �
� ��� �� ��� ��� �
� 
� ��� ��� ��� 

�� Com�
pared with approaches based on �blind� model construction then testing for
minimality� as e�g� the methods reported in ���� ��� ��� � the approaches
proposed here avoid nonminimal model generation altogether� The con�
struction of nonminimal models is aborted as soon as possible� in general
before they are fully developed� Also� the methods proposed in this pa�
per are applicable to �rst�order clauses and not con�ned to propositional or
ground clauses as the algorithms reported in ���� ��� ���� Note� however�
that most of the techniques increasing the e�ciency for propositional or
ground clauses proposed in e�g� ���� ��� can be incorporated into the algo�
rithms described here� Moreover� the approaches proposed here require no
order to be placed on the sequence in which individual atoms are expanded�
although� if needed� such an order can be incorporated without substantial
changes to the algorithm �����

Among the limitations of the procedures described in this paper are
their applicability only to range restricted and so�called �nitary sets of �rst�
order clauses� However� range restrictedness is not much of a constraint�
because a model preserving transformation of general clauses into range
restricted ones was given� Moreover� most database and arti�cial intelligence
applications naturally yield range�restricted speci�cations� Arguably� much
of real�life tasks enjoy the �niteness properties needed for the applicability of
the depth��rst minimal model generation procedure� For those applications
with in�nite minimal models� the breadth��rst minimal model generation
procedure can be applied for an exhaustive construction of all �nite minimal
models�

��
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