
Aktuelles Schlagwort “Semi-strukturierte Daten”

François Bry, Michael Kraus, Dan Olteanu und Sebastian Schaffert
Institut für Informatik, Universität München, Oettingenstraße 67,

80538 München, http://www.pms.informatik.uni-muenchen.de

13. Juni 2001

1 Vorwort

Wie die meisten Forschungsgebiete der Informatik wurde die Datenbankfor-
schung zuerst vorwiegend vom Paradigma einer zentralen Verwaltung geprägt.
Diese Sicht wurde zunehmend in Frage gestellt. Der Ansatz der “Semi-struktu-
rierten Daten” seit Mitte der 90er Jahre ist ein weiterer Schritt in diese Rich-
tung. Ausgangspunkt war die Verwaltung von Inhalten im dezentralen WWW
und die Datenmodellierungssprache XML [8]. In den Ansatz “Semi-strukturierte
Daten” führt das Buch [1] ein.

Ein traditionelles Datenbanksystem setzt voraus, dass die gespeicherten Da-
ten gemäß einem im voraus festgelegten Datenschema strukturiert sind. Sche-
mata erleichtern die Datenspeicherung und dienen der Anfrageauswertung. Im
dezentral verwalteten WWW sind Schemata oft zu restriktiv. In vielen Berei-
chen wie in der Bioinformatik werden Daten in heterogenen Formaten zwischen
Datenbanken oder sonstigen Anwendungen ausgetauscht, denen kein einheitli-
ches Schema zu Grunde liegt, weswegen solche Daten zunächst “unstrukturiert”
danach “semi-strukturiert” genannt wurden [4]. Oft haben zudem die Daten eine
Struktur, die mit den flachen Tupeln des relationalen Datenmodells nur unzu-
treffend wiedergegeben werden kann. Auch das Objektmodell ist oft ungeeignet:
Zwar kann man damit auch “tiefe” Strukturen repräsentieren, allerdings keine
unregelmäßige Strukturen mit fehlenden oder wiederholten Komponenten. Fehlt
das Schema, so muss zudem die Bedeutung der Struktur in den Datensätzen
selbst wiedergegeben werden. Man spricht von “strukturtragenden” oder von
“selbsterklärenden” Daten.

2 Ausgangspunkt XML

Die Datenmodellierungssprache XML [8] eignet sich für die oben genannten
Fälle: mit XML können beliebig komplexe Datensätze spezifiziert werden; XML
läßt Ausnahmen zu (in XML können alternative Strukturen spezifiziert werden
und die spezifizierte Struktur darf sogar missachtet werden); XML-Datensätze,
im XML-Jargon Dokumente genannt, sind strukturtragend.

Z.B. kann eine Adresskartei wie folgt in XML spezifiziert werden:

1

3 DATENMODELLE FÜR SEMI-STRUKTURIERTE DATEN

<Adresskartei>
<Adresse>

<Name>Bartl Bastscho</Name>
<Einrichtung>Universität München</Einrichtung>
<EMail>bartl@bastscho.net</EMail>

</Adresse>
<Adresse>

<Name>Susi Schlau</Name>
<Einrichtung>Universität München</Einrichtung>
<Abteilung>Fakultät für Mathematik und Informatik</Abteilung>
<Kontakt>
<EMail>susi@bastscho.net</EMail>
<Url>http://www.bastscho.net/freunde/susi</Url>

</Kontakt>
</Adresse>

</Adresskartei>

Der zweite Datensatz hat eine reichere Struktur als der erste; in den beiden
Datensätzen befindet sich die E-Mailadresse nicht auf der selben Tiefe.

In einer Anfrage an eine solche Adresskartei sollen nicht nur die Texte, Zah-
len, oder sonstige Daten ermittelt werden, die als Inhalte der innersten Elemen-
te vorkommen, sondern auch die Elementnamen, wie “Name”, “Einrichtung”
oder “Kontakt”. Schema- und Objektdaten sollen also in Anfragen nicht wie in
traditionellen Anfragesprachen wie SQL unterschiedlich behandelt werden.

Wird in einer solchen Adresskartei nach einer E-Mailadresse für eine be-
stimmte Person gesucht, dann kann der Elementname “EMail” (oder irgend-
ein Synonym dieses Elementnamens, welche eine sogennante “Ontologie” liefern
könnte) an beliebiger Tiefe gesucht werden. Eine Anfragesprache muß also über
Sprachkonstrukte verfügen, die es ermöglichen, eine unbekannte Struktur oder
eine unbestimmte Tiefe auszudrücken.

3 Datenmodelle für semi-strukturierte Daten

Für semi-strukturierte Daten wurden einige Modelle vorgeschlagen, die nur un-
wesentlich voneinander abweichen.

Im Object Exchange Model [1], kurz OEM, werden Datensätze Objekte ge-
nannt. Wie Objekte von Objektdatenbanken kann (muß aber nicht) ein OEM-
Objekt eine sogenannte Objektidentität besitzen, so dass zwei OEM-Objekte,
die den selben Wert haben, unterschiedlich sein können. Der Wert eines ato-
maren OEM-Objekts hat einen Typ wie etwa “integer”, “string” oder “image”.
Ein zusammengesetztes OEM-Objekt besteht aus Attributen, die Werte besit-
zen, die wiederum OEM-Objekte sind. Die Attribute eines zusammengesetzten
OEM-Objekts bilden entweder eine Menge oder eine Sequenz. OEM bietet eine
weitreichende Typanpassung, um Unregelmäßigkeiten Rechnung zu tragen.

Ein OEM-Objekt kann als ein gerichteter Multigraph angesehen werden,
dessen Knoten eindeutige Objektbezeichner sind und dessen Kanten die Attri-
bute darstellen. Ein OEM-Objekt besitzt eine Wurzel, d.h. einen ausgezeichne-
ten Knoten, von dem aus alle Knoten des OEM-Objektes erreichbar sind.

2

4 VERGLEICH MIT DEN RELATIONALEN UND OBJEKTMODELLEN

Der erste Adresskarteieintrag kann also wie folgt dargestellt werden, wobei
“&n” Objektbezeichner sind:

&1

&2

Bartl Bastscho

&3

Adresse

Name

Universität
München

bartl@bastscho.net

EMail
Einrichtung

Die Kanten stellen sowohl die Beziehung eines Elements zu einem Kindele-
ment als auch etwaige Verweise wie (hypertext oder nicht-hypertext-) Links dar.
Ein OEM-Objekt entspricht nicht notwendigerweise einem Baum, d.h. OEM
läßt zyklische Objekte zu. OEM-Objekte können HTML-Links oder einfache
XML-Links darstellen, jedoch nicht die erweiterten XML-Links von XLink [8].

Das Datenmodell, das der Anfragesprache UnQL [1] zu Grunde liegt, ist
OEM ähnlich. Er ist aber “wertbasiert”, d.h. dass es keine Objektidentität
kennt. Mit diesem Datenmodell ist die Verwendung der “Bisimulation” für semi-
strukturierte Daten eingeführt worden [1], die sich für die Anfrageauswertung
als wichtig erwiesen hat. Eine Simulation eines Multigraphen G1 in einen Mul-
tigraphen G2 ist eine binäre Relation S zwischen den Knoten von G1 und G2,
die die Kanten von G1 auf Kanten von G2 abbildet. Eine Simulation S von G1

in G2 ist eine Bisimulation, falls S−1 eine Simulation von G2 in G1 ist. Für
UnQL sind zwei semi-strukturierte Objekte identisch, wenn sie bisimilar sind.

Das Datenmodell YAT [1] bietet neben ähnlichen Merkmalen wie OEM und
dem Datenmodell der Anfragesprache UnQL die “Modellinstanziierung”. Da-
mit können unter gewissen Umständen die Typen einer Datenmodellierung den
Typen einer anderen Datenmodellierung angepaßt werden. So können unter-
schiedliche Modellierungen von Anwendungen verglichen und Ergebnisse von
Anfragen strukturiert werden.

4 Vergleich mit den relationalen und Objektmodel-
len

Eine Relation oder Tabelle kann als ein semi-strukturiertes Objekt dargestellt
werden, dessen Attribute die Tupel sind. Ein Tupel kann ebenfalls als ein semi-
strukturiertes Objekt dargestellt werden, dessen Attribute die Attributswerte
des Tupels sind.

Diese Darstellung einer Relation ist ziemlich natürlich. Sie ist aber auch
etwas trügerisch. Zum einen kann eine Relation auf vielen andere Weisen als
semi-strukturiertes Objekt dargestellt werden. Zum anderen kann bei einer sol-
chen Repräsentation ein Teil der Semantik verloren gehen, weil im Gegensatz

3

6 ANFRAGESPRACHEN

zu einer relationalen Anfragesprache wie SQL die Anfragesprachen für semi-
strukturierte Daten alle Knoten gleich behandeln. So muss der Benutzer einer
Anfragesprache für semi-strukturierte Daten die Bedeutung der Verknüpfungen
beachten.

Ein Datenmodell für semi-strukturierte Daten kann als Vereinfachung eines
Objektmodells angesehen werden, weil es in der Regel weder Klassen noch Ver-
erbung anbietet. Der Verzicht auf Klassen und Vererbung ist jedoch fraglich.
Die Modellinstanziierung von YAT [1] entspricht der Vererbung.

5 Schemaextraktion

Traditionell stützen sich Anfrageauswertung und -optimierung auf Schemata.
Um Anfragen über semi-strukturierten Daten auszuwerten, bietet es sich also
an, zuerst aus den vorhandenen Daten ein Schema zu extrahieren.

Viele WWW-Informationsserver liefern HTML-Seiten, die dynamisch aus
einer Datenbank erzeugt werden. Es sind Methoden entwickelt worden, um aus
solchen Seiten ein Schema zu erkennen, das eventuell nicht identisch mit dem
Datenbankschema ist. Man spricht von “web site wrapping” und von “Sche-
maextraktion”. Das extrahierte Schema wird manchmal “data guide” genannt.
Eine Schemaextraktion ist eine Art Klassifikation von vorhandenen Datensätzen
nach ihren Strukturen. Die meisten Methoden sind halbautomatisch und inter-
aktiv und stützen sich auf Heuristiken.

In [7] wird ein auf Deduktion und Datalog beruhender Ansatz zur Sche-
maextraktion dargestellt, der zuläßt, dass der selbe Datensatz mehreren Klas-
sen zugeordnet wird und Approximationsschemata, denen nicht alle Datensätze
entsprechen, liefert. Eine Metrik wird vorgeschlagen, womit die Qualität eines
Approximationsschemas gemessen werden kann.

6 Anfragesprachen

Eine Anfragesprache ist wünschenswert zur Erstellung von dynamischen WWW-
Seiten, die Inhalte teilen statt kopieren, um Sichten (”views”) zu erzeugen und
um die Suche nach Inhalten zu erleichtern. Wünschenswerte Eigenschaften von
Anfragesprachen für semi-strukturierte Daten wurden in [6] ausgearbeitet.

Viele Anfragesprachen für semi-strukturierte Daten oder “für das WWW”
sind entwickelt worden – u.a. Lorel [1] und XQuery [8]. Einige sind von SQL und
OQL inspiriert, andere sind im Zusammenhang mit XML entstanden. Vergleiche
bieten [5, 2, 3] an.

Die meisten Anfragesprachen verwenden Variablen, um Knoten – einige so-
wohl für Elementinhalte als auch für Elementnamen – zu bezeichnen. Reguläre
Ausdrücke werden von vielen Anfragesprachen verwendet, um die Navigation
im befragten Datensatz auszudrücken.

Mit dem Sternoperator kann z.B. ein Element an beliebiger Tiefe gefun-
den werden, mit dem Optionsoperator können Unregelmäßigkeiten der Daten-
satzstruktur berücksichtigt werden. Mit einer “wildcard” kann eine Navigation
entlang von unvollständig spezifizierten Pfaden definiert werden. Z.B. können

4

LITERATUR LITERATUR

im Stil von XML-QL wie folgt E-Mailadressen an beliebiger Tiefe (ausgedrückt
durch die Wildcard $ gefolgt vom Stern-Operator) gefunden werden, wobei $na-
me und $email Variablen sind:

where <$*>
<Nachname>$name</Nachname>
<EMail>$email</EMail>

</>
in "www.yellowpages.net/adresses.xml"
construct <Antwort>

<Person>
<Name>$name</Name>
<Mail>$email</Mail>

</Person>
</Antwort>

Die meisten Anfragesprachen ermöglichen, die Antwort beliebig zu struktu-
rieren.

Einige Prototypen von Systemen zur “Verwaltung von Web sites”, d.h. zur
Verwaltung von Inhalten, sind entwickelt worden, womit die ersten Anfrage-
sprachen für semi-strukturierte Daten entwickelt und getestet worden sind.

Literatur

[1] Data on the Web - From Relations to Semistructured Data and XML. Mor-
gan Kaufmann, 2000.

[2] A. Bonifati and S. Ceri. Comparative analysis of five xml query languages.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000.

[3] A. Bonifati and D. Lee. Technical survey of xml schema and query langua-
ges. In VLDB, 2001.

[4] Peter Buneman, Susan Davidson, and Dan Suciu. Programming constructs
for unstructured data. In Proceeding of the Fifth International Workshop
on Database Programming Languages, 1995.

[5] Mary Fernandez, Jerome Simeon, and Philip Wadler. Xml
query languages: Experiences and exemplars. http://cm.bell-
labs.com/cm/cs/who/wadler/topics/xml.html.

[6] David Maier. Database desiderata for an xml query lan-
guage. In The Query Languages Workshop (QL’98).
http://www.w3.org/TandS/QL/QL98/pp/maier.html, 1998.

[7] S. Nestorov, Serge Abiteboul, and Rajeev Motwan. Extracting schema from
semistructured data. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1998.

5

LITERATUR LITERATUR

[8] World Wide Web Consortium (W3C). Die Spezifikation von XML
und XML-bezogenen Formalismen wie XSLT und XML Schema.
http://www.w3.org/.

6

	Vorwort
	Ausgangspunkt XML
	Datenmodelle für semi-strukturierte Daten
	Vergleich mit den relationalen und Objektmodellen
	Schemaextraktion
	Anfragesprachen

