Adaptive Hypermedia made simple using
HTML /XML Style Sheet Selectors

Francois Bry and Michael Kraus

Francois.Bry@informatik.uni-muenchen.de
Michael.Kraus@informatik.uni-muenchen.de
Institute of Computer Science, University of Munich
Oettingenstrasse 67, 80538 Munich, Germany
http://www.pms.informatik.uni-muenchen.de/

Abstract. This paper addresses enhancing HTML and XML with adap-
tation functionalities. The approach consists in using the path selectors
of the HTML and XML style sheet languages CSS and XSLT for express-
ing content and navigation adaptation. Thus, the necessary extensions of
the selector languages are minimal (a few additional constructs suffice),
the processors of these languages can be kept almost unchanged, and no
new algorithms are needed. In addition, XML is used for expressing the
user model data like browsing history, browsing environment (such as
device, location, time, etc.), and application data (such as user perfor-
mances on exercises). The goal of the research presented here is not to
propose novel forms or applications of adaptation, but instead to extend
widespread web standards with adaptation functionalities. Essential fea-
tures of the proposed approach are its simplicity and both the upwards
and downwards compatibility of the extension.

1 Introduction

Recently, much attention has been paid to adaptive computing in business and
industry: “contextual computing”, i.e. context dependent intranet services is
considered a fast growing market with tremendous promises [18]. However, al-
though intranets nowadays mostly rely on web techniques, the discrepancy be-
tween current web standards and the state of the art in adaptive hypermedia
is noticeable: Basically, adaptation in current HTML and XML is limited to a
device dependent choice of style sheets.

In this paper, a rather simple extension is described for enhancing HTML
and XML with adaptation. The approach consists in using the path selectors of
the HTML and XML style sheet languages CSS [4] and XSLT [11] for expressing
content and navigation adaptation [7]. The necessary extension of a selector
language like Selectors [14] (that of CSS) or like XPath [12] (that of XSLT) are
minimal, a few additional constructs suffice. The processors of these languages
can be kept almost unchanged, no new algorithms are needed. Furthermore,
XML is used for expressing the user model data like browsing history, browsing

environment (such as device, location, time, etc.), and application data (such as
user performances on exercises).

In existing systems, extending HTML and XML with simple adaptive hyper-
media functionalities is done using a combination of cookies, that is, client-side
user identification, server-side scripting languages like PHP [17], and URIs. This
has several drawbacks. With this approach, information about the user has to
be stored and processed on the server. Due to the nature of the web’s HT'TP
protocol, this information is limited as compared to the information (possibly)
available on the client side. For example, it is not possible to track navigation us-
ing the back and forward buttons, navigation in different windows, or navigation
on more than one server. This prevents non-trivial adaptive hypermedia systems
being implemented using this technique. In contrast, the approach proposed in
this paper does not suffer from the above-mentioned drawbacks, as it works on
the client side.

The paper is organized as follows. This introduction is followed by section 2,
which introduces a data structure called browsing contexrt. Browsing contexts
can be used for expressing user models. Section 3 describes an extension to
style sheet selectors that allows HTML and XML web pages to adapt to the
information represented in a browsing context. Next, section 4 briefly addresses
a few possible extensions to this approach. Finally, section 5 discusses advantages
and limitations of the approach proposed in this paper.

2 Browsing Context: A Data Structure for expressing
User Models

HTML and XML have no means to express a user model, that is, information
about the user like browsing history, user preferences, performances on excer-
cises, answers to questionnaires, etc. This paper first proposes a data struc-
ture called browsing context, which allows such information to be stored by the
browser, that is, on the client side, to be accessed through style sheets, and to
be updated through web applications using scripting languages like Javascript
[13]. These features make the data structure “browsing context” convenient for
an adaptive presentation of web pages.

A browsing context consists of three kinds of information that can be distin-
guished according to its acquisition: browsing history data, browsing environment
data and application data.

Browsing history data contains information about the browsing actions the
user has performed in the past, that is, visiting web pages, traversing hyperlinks,
opening and closing windows, etc. This information is automatically generated
by the browser and is updated each time the user performs a browsing action.
Although current web browsers do not offer adaptive hypermedia functionalities,
they already store some of the information that is typically part of user models in
adaptive hypermedia systems, for example browsing history or user preferences.
However, the storage of this information is browser-specific, and therefore it is

not possible with current web standards to access this information through style
sheets or scripting languages.

Browsing environment data contains information about the device (hard-
ware), browser (software), location, time, language, etc. Like browsing history
data, this information is automatically generated and updated by the browser,
if necessary. In contrast to browsing history data, browsing environment data
is not affected by browsing actions. Some of the information does not change
during a browsing session, for example device and browser information. Other
information, for example location and time, may change during a browsing ses-
sion. Note that there are several different notions of location, like geographical
location and virtual location, which is discussed in section 4.

Application data contains information specific to the web application being
browsed by the user. In the case of an electronic tutor system, for example, this
can be the user performances on excercises, like the numbers of correct and wrong
answers. In an e-commerce application, application data can comprise informa-
tion about number and type of items in a shopping cart. Another possibility are
the user’s answers to questionnaires. This information cannot be automatically
generated by a browser, because it lies beyond the markup languages HTML
and XML. Therefore it has to be provided by the application itself. Section 4
briefly describes how scripting languages like Javascript can be used to update
application data.

Using style sheets and scripting languages in conjunction with a browsing
context offers the possibility to quite easily implement an adaptive hypermedia
system. This is described in detail in section 3. For accessing the browsing con-
text with style sheets and scripting languages in a way that is natural to these
approaches, it is necessary to store the browsing context in XML format. The
following is an example of a browsing context represented as an XML document:

<browsingcontext xmlns="http://www.browsingcontext.com">
<!-- browsing history data -->
<webpage uri="www.cdshop.com/index.html">
<webpage uri="www.cdshop.com/search.html">
<webpage uri="www.cdshop.com/rockpop-25.html">
<webpage uri="www.cdshop.com/search.html"/>
<webpage uri="www.cdshop.com/cart.html"
target="_new"/>
</webpage>
</webpage>
</webpage>

<!-- browsing environment data -->
<device>Desktop</device>
<browser>IE</browser>

<os>Windows</os>
<country>Germany</country>
<virtuallocation>Home</virtuallocation>
<time>23:23</time>
<language>German</language>

<!-- application data -->

<shoppingcart>
<item artist="Kate Bush" title="Lionheart" price="9.99"/>
<item artist="Steve Hackett" title="Live Archive" price="29.95"/>
<item artist="Nik Kershaw" title="to be Frank" price="14.99"/>
</shoppingcart>
</browsingcontext>

In this example, the user has started his browsing session visiting an on-
line CD shop (www.cdshop.com/index.html). From there, he has navigated to
a search page (www.cdshop.com/search.html). The search has resulted in a
certain page about rock and pop music (www.cdshop.com/rockpop-25.html).
Then the user has navigated again to the search page and has opened a web page
with his shopping cart in a new browser window (www.cdshop.com/cart.html).
The browsing environment data contains information about the user’s type of
device (desktop), location (Germany/home), current time (23:23), etc. Finally,
the CD shop web application stored data about the user’s shopping cart (three
items) in the application data part of the browsing context.

In common adaptive hypermedia systems, the structure of this information,
the information itself, and the way of information acquisition together form a
user model. This paper does not propose a specific user model, but a frame-
work relying upon HTML and XML that allows a simple implementation of user
models. The main advantage of this framework is to make adaptive hypermedia
techniques available in the web context at low cost, that is, with minimal changes
of the existing standards. As HTML and XML are the standards for the World
Wide Web, a slight modification of these standards providing adaptation func-
tionalities gives chance to a widespread, nonproprietary way of implementing
adaptive hypermedia systems as web applications.

Web browsers store an internal representation of the document currently
being displayed, for example as a DOM [2] tree. This document is referred to
in the following as “nude document” because it does not contain any browsing
context information. In a similar way as this “nude document” is stored by the
browser, a browsing context document like the one presented above can also
be stored by the browser. The information contained in the browsing context
document is somewhat similar to the information contained in the head element
of an HTML document: The content of the head element is not rendered directly
by the browser (as opposed to the content of the body element), but it is meta
information about the document like description, keywords, character encoding,
etc. Similarly, the content of the browsing context document, that is, browsing
history data, browsing environment data and application data, can also be seen
as meta information. This meta information can be used by the browser to adapt
the rendering of the “nude document”, as it is described in section 3.

Both the “nude document” and the browsing context document can be con-
sidered as the two parts of one (virtual) context enriched document stored within

the browser. In the case where the “nude document” is an HTML document, a
context enriched document might look like this:

<!-- context enriched document -->
<root>
<!-- original browsing context document -->
<browsingcontext xmlns="http://www.browsingcontext.com">
<!-- browsing history data -->
<!-- browsing environment data -->
<!-- application data -->
</browsingcontext>
<!-- original "nude document" -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!-- meta information -->
</head>
<body>
<!-- content to be rendered -->
</body>
</html>
</root>

The context enriched document takes over the role of the original “nude
document” within the browser, that is, style sheets are applied to the context
enriched document instead of the “nude document”, scripting languages have
access to the DOM tree of the context enriched document instead of the DOM
tree of the “nude document”, etc. In fact, the context enriched document is
a virtual document combining a browsing context (using which adaptation is
expressed) with a standard HTML or XML document. Note that the approach
described below does not require the materialization of this virtual document.

3 Implementing Adaptation using Style Sheet Selectors

This section describes a simple extension to style sheet selectors making it simple
to implement adaptive hypermedia functionalities with HTML and XML. The
path expression of a style sheet selector is not to be matched against the original
“nude document” tree, but against the new context enriched document tree, as
it has been introduced in the last section.

Typical web style sheet languages like CSS and XSLT have constructs of two
kinds: style rules and selectors. Style rules define certain presentation parameters
for elements in the document tree (like fonts, colors and margins), and transfor-
mations of the document tree (like insertion and sorting of elements). Selectors
are path expressions that determine which style rule is applied to which element
in the document tree. The following CSS rule specifies that all strong elements
inside a h2 element shall be rendered with red color:

h2 strong { color: red }

If the path expression of a style sheet selector is not matched against the orig-
inal “nude document” tree, but against the new context enriched document tree,
as it is proposed in this paper, then path expressions can be built that depend on
the content and structure of both, the “nude document” and the browsing con-
text document. The following (extended) CSS rule specifies that if the user has
previously visited the web page with URI http://www.cdshop.com/index.html,
all em elements inside a hl element shall be rendered with a sans-serif font, oth-
erwise the style rule does not apply:

bc:webpage [uri="http://www.cdshop.com/index.html"] html:hl html:em
{ font-family: sans-serif }

This style rule is processed as follows. The path expression matching al-
gorithm (that of CSS in this case) has to recognize that the first component
of the expression (bc:webpagel...]) refers to the browsing context (which is
part of the context enriched document). This can be achieved by using XML
namespaces [6], as it is shown here. The matching algorithm for the expres-
sion component itself remains unchanged, that is, the example matches if there
is an element with name webpage that has an attribute with name uri and
value http://www.cdshop.com/index.html. The next two components of the
expression (html:h1 and html:em) refer to the “nude document” (which is also
part of the context enriched document), which again can be deduced from the
namespace. These components can be matched like conventional CSS selector
expressions. The whole matching algorithm works as if it is applied to the con-
text enriched document instead of the “nude document”, as it is in conventional
style sheet processors. Note that it is not necessary to actually materialize the
context, enriched document for the processing as it is shown here.

The approach shown here uses XML namespaces (bc in the example above)
to distinguish between those components of a selector referring to the “nude
document” and those components referring to the browsing context. It would also
be possible, for example, to introduce new tokens to the CSS selector language
that allow for such a distinction. The advantage of using namespaces, however,
is that namespaces are already part of the CSS selector language and therefore
the selector language itself can be left unchanged, only the processing of selector
expressions is slightly modified.

Note that if the path expression of a selector contains no parts referring to a
browsing context, the semantics of a style rule remains unchanged. That is, it is
not affected by the introduction of the concept of browsing contexts as described
in this paper. For example:

hl em { font-family: serif }

Similarly to the first example in this section, this CSS rule specifies that all em
elements inside a h1 element shall be rendered with a serif font. Assuming that
the default namespace is depicting the “nude document” (and not the browsing
context), the semantics of this style rule is the same whether it is defined in a

system that is capable of handling browsing contexts, or in a conventional, non-
browsing context system. This means that the approach described here ensures
upwards compatibility of existing CSS style sheets with browsing context aware
systems.

The proposed extension makes also possible to mix style rules with both,
browsing context and conventional selectors in a single style sheet, for example:

hl em { color: red }
bc:webpage [uri="http://www.cdshop.com/search.html"] html:hl html:em
{ color: blue }

In this example, all em elements inside a hl element shall be rendered with
red color (first rule). But, if the user has previously visited the web page with
URI http://www.cdshop.com/search.html, all em elements inside a h1 element
shall be rendered with blue color (second rule). The conflict resolution necessary
in this case is already built-in in CSS: According to CSS semantics, the second
rule has a higher priority than the first rule, because it is more specific, thus
resulting in blue text in the second case.

Note that browsing context style sheets are also downwards compatible with
non-browsing context capable processors. Style rule components referring to the
browsing context part of the context enriched document will never match using
the conventional CSS selector matching algorithm, because the “nude document”
(which is the only document in the case of conventional CSS processors) does
not contain elements of the browsing context namespace.

All examples that have been given so far are (extended) CSS rules. In fact,
all style sheet languages that build on path selectors can be extended in a sim-
ilar way as proposed above. In case of XSLT, for example, the selector lan-
guage is XPath 1.0 [12]. XPath 1.0 or XPath 2.0 [3] is extended in a simi-
lar way as it has been described for CSS selectors. In the following example,
info elements from the XML source are transformed into an HT'ML h2 heading
(first template rule). If the user has previously visited the web page with URI
http://www.cdshop.com/cart.html, a hyperlink to that web page is added af-
ter the heading. In this example, the assumed intention is to prevent novice
users, that is, those that have not visited the CD shop’s homepage so far in this
case, from information overloading by presenting too much links to them:

<xsl:template match="//info">
<html:h2><xsl:value-of select="title"/></html:h2>
</xsl:template>
<xsl:template
match="//bc:webpage [uri="http://www.cdshop.com/cart.html"]/info">
<html:h2><xsl:value-of select="title"/></html:h2>
Click here to go
directly to your shopping cart.
</xsl:template>

Note that the browsing context-enhanced XPath expression from the match
attribute is strictly speaking not a path expression any more: The XPath pro-
cessor has to recognize that the first part of the expression (bc:webpagel...])

refers to the browsing context part of the context enriched document (with its
own root element), whereas the second part of the expression (info) refers to the
“nude document” part (with its own root element). The matching algorithm for
each of the two parts remains unchanged, however. Assuming the XML represen-
tation of the context enriched document from the previous section, the XPath
expression could be rewritten like this:

//bc:uebpage [uri="http://www.cdshop.com/cart.html"]/following: :info

This expression would also work with conventional XPath processors, but it is
clumsy compared to the previous one. Therefore, the expression from the above
example could be considered as a short form of this conventionally valid XPath
expression. Both, a fully XPath conform implementation of browsing contexts,
and a more intuitive approach, although requiring a slight modification of XPath
processing, are possible. Are more detailed discussion of this topic is out of the
scope of this paper, however.

4 Possible Extensions

Updating Application Data using Scripting Languages. Using style sheet selectors
to express content and navigation adaption, as it is described in this paper, is not
sufficient for modeling certain complex aspects of adpative hypermedia systems.
Still missing is the possibility for such systems to store data in the browsing
context, which then could be used by style sheets as a source of adaptation. As
previously mentioned, scripting languages like Javascript can be used to achieve
this. In a similar way as Javascript code contained in web pages can change the
(“nude”) document tree, Javascript code contained in web pages can change the
content of a browsing context’s application data. However, an in-depth discussion
of this topic is outside the scope of this paper.

Modeling Locations. As stated in section 2, there are several different notions of
location. First, location can be information about the country or region where the
user is, like Germany or France. This information is typically available in desktop
computer systems and does not change during a browsing session. Second, loca-
tion can be information about the geographical position of the user, expressed
for example as longitude and latitude. This information is typically available in
mobile devices like cellular phones or PDAs with special positioning equipment,
for example a GPS (Global Positioning System) device. Geographical location
information can change during a browsing session as the user moves around.
Third, location can be information about virtual locations like home, car, office,
meeting, etc. However, virtual locations are not represented in today’s computer
devices and with current web standards. Information about virtual locations can
change during a browsing session. All of these notions, for example geographi-
cal position and virtual location, can be represented simultaneously as browsing
environment data in a browsing context.

5 Discussion and Concluding Remarks

The approach proposed in this paper has several advantages and limitations.
First, the approach is quite simple. It introduces a wide range of adaptation
features into existing HTML and XML standards at the cost of very limited
extensions to these standards. The extensions to these standards are as follows:

First, information like browsing history data and browsing environment data,
most of which is already stored by conventional browsers, is to be stored as a
standardized browsing context in an internal XML representation like DOM.

Second, the style sheet processor(s), for example those of CSS or XSLT,
match the selector part of a style rule not against the original “nude docu-
ment”, but against the (virtual) context enriched document (consisting of the
“nude document” enriched with a browsing context). The style sheet proces-
sor must recognize those selector components referring to the “nude document”
and those referring to the browsing context. This is conveniently achieved using
namespaces, for example, as described above.

Apart from these, no further changes are needed, especially, no new algo-
rithms have to be conceived and implemented. Note that only the processing
of style sheet rules is extended, the style sheet languages remain otherwise un-
changed (because of the use of namespaces, see section 3). This ensures upward
compatibility with already existing style sheets. Also, style sheets that make use
of browsing context selectors are downwards compatible with non-browsing con-
text enabled browsers. With such browsers the data can be accessed, only the
adaptation features are missing. (Note that these compatibilities are essential
when extensions to existing web standards are proposed.) Thus, the approach
proposed in this paper is a conservative extension of the already existing and
well-established web standards.

The approach described in this paper is not specific to CSS or XSLT. It relies
only on path selectors, which play a central role in web standards. The same
approach can easily be applied to other or future style sheet languages or to other
web standards like XML query languages, as long as they build on path selectors.
Note also that this approach is stable against the changes from XPath 1.0 to
XPath 2.0, which have introduced a considerably more complex type system, a
set of relational operators, and certain kinds of variables into the language. This
flexibility, however, makes the approach limited to the scope of the underlying
standards, in this case CSS or XSLT. Features common to conventional adaptive
hypermedia systems, for example the disabling of hyperlinks to prevent novice
users from information overloading, cannot be implemented using CSS. Such
extensions, however, could easily be introduced into CSS and future style sheet
languages may already offer more powerful features that allow to implement
complex adaptive hypermedia systems. This, however, remains to be done and
is outside the scope of this paper.

Because the style sheet based approach proposed in this paper works on the
client side, it does not face security problems as server-side approaches do, for
example the combination of cookies, PHP and URIs, that has been described in
the introduction. The whole processing is done within the browser and therefore

no possibly private data has to be transferred to and from the server, what would
become a security issue. On the other hand, the client-side approach forces all
data that possibly might be needed to be transferred to the client before it can
be processed. This might cause bandwidth problems as compared to a server-side
approach, where only data that is transferred that is really needed on the client.

Finally, this approach has not yet been fully implemented. The implementa-
tion of a system similar to traditional adaptive hypermedia systems like [15, 5, 1]
is in process. The prototype described in [9] and the implementation of XPath
in [16] provide with a framework for this implementation. Field tests with users
and various user models remain to be done.

This work has been submitted to the W3C CSS and XSL working groups.

References

1. F. Albrecht, N. Koch, et al. Smexweb: an Adaptive Web-based Hypermedia Teach-
ing System. International Journal of Continuing Engineering Education and Life-
Long Learning, 2000.

2. V. Apparao, S. Byrne, et al. Document Object Model (DOM) Level 1 Specification
Version 1.0. W3C Recommendation, 1998. http://www.w3.org/TR/REC-DOM-
Level-1.

3. A. Berglund, S. Boag, et al. XML Path Language (XPath) 2.0. W3C Working
Draft, 2001. http://www.w3.org/TR/xpath20.

4. B. Bos, H. W. Lie, et al. Cascading Style Sheets, level 2. W3C Recommendation,
1998. http://www.w3.org/TR/REC-CSS2.

5. P. D. Bra and L. Calvi. AHA: A Generic Adaptive Hypermedia System. In 2nd
Workshop on Adaptive Hypertext and Hypermedia, HYPERTEXT’9S.

6. T. Bray, D. Hollander, et al. Namespaces in XML. World Wide Web Consortium,
1999. http://www.w3.org/TR/REC-xml-names.

7. P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Modeling
and User-Adapted Interaction, 6(2-3):87-129, 1996.

8. F. Bry and M. Kraus. Adaptive Hypermedia made simple using HTML/XML
Style Sheet Selectors. In 2nd Int. Conf. on Adaptive Hypermedia and Adaptive
Web Based Systems (AH2002).

9. F. Bry and M. Kraus. Advanced Modeling and Browsing of Technical
Documents. In 17th ACM Symposium on Applied Computing (SAC 2002).
http://www.pms.informatik.uni-muenchen.de/publikationen/#PMS-FB-2001-11.

10. F. Bry and M. Kraus. Style sheets for context adaptation. W3C Workshop on
Delivery Context, 2002.

11. J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recommendation, 1999.
http://www.w3.org/ TR /xslt.

12. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation, 1999. http://www.w3.org/TR/xpath.

13. Standard ~ ECMA-262. ECMAScript Language Specification, 1999.
ftp://ftp.ecma.ch/ecma-st /Ecma-262.pdf.

14. D. Glazman, T. elik, et al. Selectors. W3C Candidate Recommendation, 2001.
http://www.w3.org/TR/css3-selectors.

15. W. Nejdl and M. Wolpers. KBS Hyperbook - a data-driven information system on
the web. Technical report, University of Hannover, KBS Institute, 1998.

16. D. Olteanu, H. Meuss, et al. Symmetry in XPath. http://www.pms.informatik.uni-
muenchen.de/publikationen/#PMS-FB-2001-16, 2001.

17. PHP - Hypertext Preprocessor. http://www.php.net/.

18. J. Wrolstad. IDC Identifies New Opportunity in Collaborative Computing.
www. CRMDaily.com, 2001. http://www.newsfactor.com/perl/story/9789.html.

