
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

LMU
Maximilians
Universität
München

Ludwig

Towards a Declarative Query and

Transformation Language for XML and

Semistructured Data: Simulation Unification

François Bry and Sebastian Schaffert

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2002-2, February 2002

Towards a Declarative Query and Transformation

Language for XML and Semistructured Data:

Simulation Unification

François Bry and Sebastian Schaffert

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de

Abstract. The growing importance of XML as a data interchange standard
demands languages for data querying and transformation. Since the mid 90es,
several such languages have been proposed that are inspired from functional
languages (such as XSLT [1]) and/or database query languages (such as XQuery
[2]). This paper addresses applying logic programming concepts and techniques
to designing a declarative, rule-based query and transformation language for
XML and semistructured data.
The paper first introduces issues specific to XML and semistructured data such
as the necessity of flexible “query terms” and of “construct terms”. Then, it
is argued that logic programming concepts are particularly appropriate for a
declarative query and transformation language for XML and semistructured
data. Finally, a new form of unification, called “simulation unification”, is pro-
posed for answering “query terms”, and it is illustrated on examples.

1 Introduction

This article addresses applying logic programming to XML and semistructured
data querying and transformation. This issue is of growing importance in both,
practice and research. XML now is the data interchange standard of choice in
application areas such as e-commerce, molecular biology, and astronomy. Fur-
thermore, with the XML application XHTML, XML is becoming the preferred
standard for textual web contents. Also recent languages for static and/or ani-
mated graphics such as SVG (Scalable Vector Graphics), X3D (an XML-based
redefinition of the Virtual Reality Modelling Language VRML), and SMIL (Syn-
chronised Multimedia Integration Language) are XML applications. “Native
XML” database management systems are already marketed.

As a consequence, the design and implementation of selector and query lan-
guages for XML such as CSS selectors and XPath are premier concerns of the
World Wide Web Consortium (W3C). Selector languages such as CSS selectors
and XPath have been developed initially for style-sheet and/or transformation
languages such as CSS and XSLT. Selector languages are “path-oriented”, i.e. a
node (i.e. a subterm) in a tree (i.e. a term) is specified in terms of a root-to-node
path in the manner of the file selection formalisms of operating systems. Con-
structs from regular expressions languages such as ∗, +, |, ? and “wildcards”
give rise to expressing node repetitions, options, and nodes with unspecified
labels. These constructs are essential in selecting and/or querying XML and
semistructured data, for a basic principle of XML and semistructured data is
that data items, called “documents”, do not have to conform to a predefined

schema (expressed in XML in the DTD or XML Schema formalisms). This prin-
ciple aims at facilitating the interchange of data in unnormed contexts like the
World Wide Web. XML-like tree structured data items that do not necessarily
conform to a schema are called “semistructured” in database research [3].

Query languages [4] inspired from SQL and OQL [5] have been developed
for XML and semistructured data. Queries in these languages for XML and
semistructured data in general consist of two parts: a query proper and a
construct part. The query part expresses a selection of nodes (i.e. subterms)
from a data item (i.e. term). Node selection is in general expressed in a path-
oriented formalism à la XPath extended with “and” and “or” connectives. The
construct parts serve to re-assemble into new terms (some of) the nodes (i.e.
terms) selected in the query part. The construct part is also called restructuring
or transformation part. For example, the following query from [6] (there with
books-with-prices instead of book-price-comparison) expresses in XML
Query [2], also called XQuery, the request to list for each book found as entry
element at amazon.com and as book element at bn.com the book’s title and the
prices at both sources:

<book-price-comparison>

{ for $a in document("www.amazon.com/reviews.xml")//entry,

$b in document("www.bn.com/bib.xml")//book

where $b/title = $a/title

return

<book-with-prices>

{ $b/title }

<price-amazon>{ $a/price/text() } </price-amazon>

<price-bn>{ $b/price/text() } </price-bn>

</book-with-prices>

}

</book-price-comparison>

The query part is contained between the first { and return. The construct part
is specified in the book-with-prices element. Note the node selection (ex-
pressed with the XPath expressions $a/price/text() and $b/price/text())
contained in the construct part.

The work reported about in this paper is based upon the conviction that
logic programming provides with concepts giving rise to query and transfor-
mation languages more declarative than those based on a path-oriented node
selection. A query term inspired from a Prolog goal atom would give rise to
a “context-conscious” selection of several nodes (i.e. subterms) within a same
term (the “context”) at a time, a term inspired from a Prolog head atom would
be a convenient construct expression, rules relating (conjunctions or disjunc-
tions of) query terms to construct terms would define views (in the database
sense) and give rise to a deduction-like (backward or forward) chaining of term
constructions – a feature often needed in XML and semistructured data pro-
cessing.

In such a language inspired from logic programming, the previous query
example can be expressed as follows (symbols beginning with upper case latters
denote variables):

2

construct

<book-price-comparison>

all <book-with-prices>

<title> T</title>

<price-amazon> Pa</price-amazon>

<price-bn> Pb</price-bn>

</book-with-prices>

</book-price-comparison>

where

in amazon.com:

<entry>

<title>T<title>

<price>Pa</price>

</entry>

and

in bn.com:

<book>

<title>T</title>

<price>Pb</price>

</book>

In a more conventional syntax, this query can be expressed as follows (an el-
ement name is shortened to the first letters of its constituting words and the
locations amazon.com and bn.com are omitted):

bpc{ all bwp[t[T],pa[Pa],pb[Pb]] } ← e[t[T],p[Pa]] and b[t[T],p[Pb]]

An advantage of such a rule is to clearly separate node selection, expressed
only in the query terms i.e. in the rule body, from construction, expressed
in the construct term i.e. in the rule head. This is beneficial for both, the
programmer and query evaluation. Another advantage of the approach is to
avoid the rather procedural navigation through data item imposed by a path-
oriented node selection. In the rule given above, the contents of both elements
t (i.e. title) and pa (i.e. price-amazon) are selected in a single query term
e[t[T], p[Pa]]. In contrast, the XQuery expression needs two paths for the
same selection, $a/title and $a/price/. The query term e[t[T], p[Pa]]

stresses the common context and the relative position of the selected nodes (i.e.
subterms) T and Pa. In contrast, the paths $a/title and $a/price/ specify two
independent navigations through a term. Arguably, a term-oriented (or context-
conscious or positional) node selection is more declarative than a path-oriented
(or navigational) node selection.

This paper reports about first achievements in designing a term-oriented,
“context-conscious”, or “positional” query and transformation language for
XML and semistructured data. In order to conform to the semistructured data
paradigm, a novel form of unification is needed. This paper is mostly devoted
to motivating and specifying a nonstandard unification, called “simulation uni-
fication” convenient for a positional querying and transformation of XML and
semistructured data.

This article is organised as follows. Section 1 is this introduction. Section 2
describes those aspects of the query and transformation language under devel-
opment that are relevant to this paper. Simulation unification is addressed in
Section 3. Section 4 is devoted to related work and a conclusion.

3

2 Elements of a Query and Transformation Language

This section introduces into those aspects of an experimental query and trans-
formation language for XML and semistructured data, called Xcerpt, that are
relevant to this paper. Aspects of XML, such as attributes and namespaces,
that are irrelevant to this paper, are not explicitly addressed in the following.
Two disjoint sets of symbols, the set L of labels (or tags) and the set V of
variables are considered. Labels (variables, resp.) are denoted by words starting
with a lower (upper, resp.) case letter. The following meta-variables (with or
without indices and/or superscripts) are used:

– l denotes a label,
– X denotes a variable,
– t denotes a term (as defined below).

2.1 Database Terms

Database terms are an abstraction of XML documents. Following a com-
mon practice in XML query language and semistructured data research [3], a
database is a set (or multiset) of database terms and the children of a document
node may be either ordered (as in SGML and in standard XML), or unordered
(as in the semistructured data model). In the following, a term whose root is la-
belled l and has ordered children t1, . . . , tn is denoted l[t1, . . . , tn]; a term whose
root is labelled l and has unordered children t1, . . . , tn is denoted l{t1, . . . , tn}.

Definition 1 (Database Terms). Database terms are inductively defined as
follows:

1. A label is a (atomic) database term.
2. If l is a label and t1, . . . , tn are n ≥ 1 database terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are database terms.

Database terms are similar to classical logic ground terms except that, (1)
the arity of a function symbol, called here “label”, is not fixed (as in Prolog),
and (2) the arguments of a function symbol may be unordered.

Whatever storage is used, a database term t0 = l{t1, . . . , tn} with unordered
subterms t1, . . . , tn will always be stored in a manner inducing an order on
t1, . . . , tn. The notion of unordered subterms t1, . . . , tn means that (1) the stor-
age ordering of t1, . . . , tn is left at the discretion of the storage system (giving
rise e.g. to clustering as many ti as possible on a secondary memory page), and
(2) no given ordering is to be returned when t0 is accessed.

In the following, Tdb denotes the set of all database terms.

2.2 Query Terms

A query term is a “pattern” that specifies a selection of database terms very
much like Prolog goal atoms and SQL selections. However, answers to query
terms (cf. below Definition 13) differ from answers to Prolog goal atoms and
SQL selections as follows:

4

– Database terms with additional subterms to those explicitly mentioned in
a query term might be answers to this query term.

– Database terms with a different subterm ordering from that of the query
term might be answers to this query term.

– A query term might specify subterms at an arbitrary depth.

In query terms, the single square and curly brackets, [] and { }, denote
“exact subterm patterns”, i.e. single (square or curly) brackets are used in a
query term to be answered by database terms with no more subterms than
those given in the query term. Double square and curly brackets, [[]] and {{ }},
on the other hand, denote “partial subterm patterns” as described above.

[] and [[]] are used if the subterm order in the answers is to be that of
the query term, { } and {{ }} are used otherwise. Thus, possible answers to
the query term t1 = a[b, c{{d, e}}, f] are the database terms a[b, c{d, e, g}, f]
and a[b, c{d, e, g}, f{g, h}] and a[b, c{d, e{g, h}, g}, f{g, h}] and a[b, c[d, e], f]. In
contrast, a[b, c{d, e}, f, g] and a{b, c{d, e}, f} are no answers to t1. The only
answers to f{ } are f-labelled database terms with no children.

The construct descendant, short desc, introduces a subterm at an unspec-
ified depth. Thus, possible answers to the query term t2 = a[desc f [c, d], b]
are a[f [c, d], b] and a[g[f [c, d]], b] and a[g[f [c, d], h], b] and a[g[g[f [c, d]]], b] and
a[g[g[f [c, d], h], i], b].

In a query term, a variable X can be restricted to some query terms using
the construct ;, read “as”. Thus, the query term t3 = a[X1 ; b[[c, d]], X2, e]
constrains the variable X1 to such database terms that are possible answers
to the query term b[[c, d]]. Note that the variable X2 is unconstrained in t3.
Possible answers to t3 are e.g. a[b[c, d], f, e] which binds X1 to b[c, d] and X2 to
f , a[b[c, d], f [g, h], e] which binds X1 to b[c, d] and X2 to f [g, h], a[b[c, d, e], f, e]
which binds X1 to b[c, d, e] and X2 to f , and a[b[c, e, d], f, e] which binds X1 to
b[c, e, d] and X2 to f .

Definition 2 (Query Terms). Query terms are inductively defined as follows:

1. If l is a label, then l and l{} are (atomic) query terms.

2. A variable X is a query term.

3. If X is a variable and t a query term, then X ; t is a query term.

4. If X is a variable and t is a query term, then X ; desc t is a query term.

5. If l is a label and t1, . . . , tn are n ≥ 1 query terms, then l[t1, . . . , tn],
l{t1, . . . , tn}, l[[t1, . . . , tn]], and l{{t1, . . . , tn}} are query terms.

Multiple variable constraints are not precluded. A possible answer to e.g.
a{{X ; b{{c}}, X ; b{{d}} }} is a{b{c, d}}. The query term a[[X ;

b{{c}}, X ; f{{d}}]], however, has no answers, as the labels b and f are
distinct.

Subterms (of query terms) are defined as usual (e.g. a and X and Y ;

desc b{X} and h{a,X ; k{c}} and X ; k{c} and t itself are subterms of
t = f{a, g{Y ; desc b{X}, h{a,X ; k{c}}}). In the following, query terms
are assumed to be variable well-formed, a notion defined as follows.

5

Definition 3 (Variable Well-Formed Query Terms). A term variable X
depends on a term variable Y in a query term t if X ; t1 is a subterm of t
and Y is a subterm of t1. A query term t is variable well-formed if t contains
no term variables X0, . . . , Xn (n ≥ 1) such that 1. X0 = Xn and 2. for all
i = 1, . . . , n, Xi depends on Xi−1 in t.

E.g. f{X ; g{X}} and f{X ; g{Y }, Y ; h{X}} are not variable well-
formed. Variable well-formedness precludes queries specifying infinite answers.
Usually terms that are not variable well-formed are called cyclic. However,
Xcerpt also allows for arbitrary graph structures (which are not discussed in
this paper, cf. [7]) which might by cyclic in another sense.

In the following, query terms are implicitly assumed to be variable well-
formed and the set Tq is defined as the set of all (variable well-formed) query
terms.

2.3 Construct Terms

Construct terms serve to re-assemble variables, the “values” of which are spec-
ified in query terms, so as to form new database terms. Thus, construct terms
may contain both constructs [] and { } (like database terms) as well as variables.
However, the construct ; is not allowed in construct terms, as variables should
be constrained where they are defined, (i.e. in query terms), not in construct
terms where they are used to specify new terms.

Definition 4 (Construct Terms). Construct terms are inductively defined
as follows:

1. A label l is a (atomic) construct term.
2. A variable X is a construct term.
3. If l is a label and t1, . . . , tn are n ≥ 1 construct terms, then l[t1, . . . , tn] and

l{t1, . . . , tn} are construct terms.

The set of construct terms will be denoted with Tc in the rest of this paper.
Note that Tdb ⊆ Tc ⊆ Tq .

2.4 Construct-Query Rules

Construct-query rules, short rules, relate queries, consisting of a conjunction of
query terms, and construct terms. It is assumed (cf. below Point 3 of Definition
5) that each variable occurring in the construct term of a construct-query rule
also occurs in at least one of the query terms of the rule, i.e. variables in
construct-query rules are assumed to be “range-restricted” or “allowed”. A
relaxation of this condition like in Prolog does not seem to be desirable.

Definition 5 (Construct-Query Rule). A construct-query rule is an expres-
sion of the form tc ← tq1 ∧ . . . ∧ tqn such that:

1. n ≥ 1 and for all i = 1, . . . n, tqi is a query term,
2. tc is a construct term, and

6

3. every variable occurring in tc also occurs in at least one of the tq
i .

The left hand-side, i.e. the construct term, of a (construct-query) rule will
be referred to as the rule “head”. The right hand-side of a (construct-query)
rule will be referred to as the rule “body”. Note that, in contrast to the body
of a Prolog clause, the body of a (construct-query) rule cannot be empty, for
empty rule bodies do not seem to be needed for the applications considered.

An Xcerpt program consists of a finite set of (construct-query) rules with a
(conjunction of) query term(s). The scope of an occurrence of a variable in an
Xcerpt program is, like in Prolog, restricted to the rule it occurs in.

2.5 Further Features

The preceding sections describe only part of the features of the experimental
language Xcerpt. Additional features, although not relevant to the present pa-
per, are outlined in the following, so as to give a more accurate impression of
the Xcerpt project.

Database, query, and construct terms may, in addition to subterms, also
have attributes à la XML, i.e. “flat” subterms subject to certain querying rules.

In database and construct terms, nestings of [] and { } are possible, like
in a[b, {c, d, e}, f], with the obvious meaning that b (f , resp.) should precede
(follow, resp.) the subterms with roots labelled c, d, and e. Similarly, nestings of
[], { }, [[]] and {{ }}, like in a[[b, {c, d, e}, f]] and a[b, {{c, d, e}}, f] are possible
in query terms. In query terms, the descendant construct desc does not have to
be preceded with a X ; expression, like in f{a, desc g{X}, c}.

In query terms, multiplicities can be specified like in the query term a[a, 2-5
b{c, d}, e]. This query term admits as answers only those database terms having
between 2 and 5 subterms that are answers to the query (sub)term b{c, d}, e.g.
a[a, b[c, d], b[c[f], d[f]], e]. Also, label restrictions and specifications (e.g. in the
form of regular expressions) and label variables are possible in query terms.
Descendant specifications might be restricted with both, multiplicities and/or
label restrictions or specifications. Subterm positions such as first, last, and
numbered positions are also expressible, like in text processing languages.

In construct terms, the construct all (some, resp.) serves to col-
lect in a database term all possible bindings (a nondeterministically
chosen binding, resp.) of a variable. E.g. if each possible binding of
the variable X is a publications of Anna, then the construct term
publications [author [Anna], {all X}] specifies a term containing all publications
of Anna. In contrast, publications [author [Anna], some X] specifies a term con-
taining one randomly selected publication of Anna. Such a random selection
is often needed in databases. It corresponds to Prolog cut (!) and once con-
structs. The some construct can be further specified with a multiplicity n or a
multiplicity interval n-m.

Disjunctions of query atoms as well as arithmetic and string operations
on labels may occur in bodies of construct-query rules. Also negations (to be
processed as failure) of query atoms may occur in bodies of construct-query
rules.

7

The syntax used in the present paper slightly departs from the Xcerpt
original syntax. For example, a[X ; b{c, d}, e] is expressed in Xcerpt original
syntax as:
element a [X as element b element c; element d ; element e]

Following [8], Xcerpt programs are representable in XML, i.e. Xcerpt has an
additional XML-based syntax to be used e.g. for data interchange.

Some issues deserve more investigations. The rich (and redundant) system
of references of XML (with id/idref attributes and links) needs a representa-
tion in Xcerpt. A polymorphic type system giving rise to specifying abstract
datatypes à la XML Schema [9,10] is desirable. The semantics of Xcerpt, espe-
cially the semantics of Xcerpt nonmonotonic negation, deserves further investi-
gation. Compositionality and referential transparency are sought for.

3 Simulation Unification

The rule-based language Xcerpt, the main elements of which have been in-
troduced above in Section 2, can be processed by both forward and backward
chaining. Techniques similar to those used in implementations of Prolog (e.g. the
use of the run-time stack for implementing a depth-first search) or of Datalog
(e.g. a database storage of goal atoms) can be used for Xcerpt as well. How-
ever, Xcerpt cannot rely on standard unification because of the requirements
on query terms listed in Section 2.2: A query term of the form l[[t1, . . . , tn]] or
l{{t1, . . . , tn}} should “unify” with l-labelled terms with more subterms than
those matching t1, . . . , and tn; also unordered subterms (like in l{{t1, . . . , tn}}),
the descendant construct desc and the as construct ; have to be dealt with.
This section is devoted to introducing a nonstandard unification called “simu-
lation unification” fulfilling these requirements.

For space reasons, simulation unification is defined in this paper under the
assumptions that {{ }} and { } are the only kinds of braces, and that braces are
only allowed immediately on the right of a label (like in f{{a, g{b, c}, d}}) and
not directly within other braces (like in f{{a, {b, c}, d}}). In Section 3.5, we
give a short overview on how to extend it to arbitrary term nestings involving
{ }, [], {{ }} and [[]]. A formalisation integrating these constructs into the core
algorithm is currently being worked on.

3.1 Simulation

Intuitively, a simulation of a graph G1 in a graph G2 is a mapping of the nodes
of G1 in the nodes of G2 preserving the edges. In other words, there exists a
simulation of G1 in G2, if the node/edge structure of G1 can be found as a
subgraph of G2. Efficient algorithms for computing simulation (bisimulation,
resp.) are given e.g. in [11]. In [3,12], simulation is used for verifying the confor-
mity of semistructured data to a schema. The language UnQL [13] introduces
(bi)simulation for query answering, but the usage is restricted to pattern match-
ing.

8

Definition 6 (Graph Simulation). Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs and let ∼ be an equivalence relation on V1∪V2. A relation S ⊆ V1×V2

is a simulation with respect to ∼ of G1 in G2 if:

1. If v1 S v2, then v1 ∼ v2.

2. If v1 S v2 and (v1, v
′
1) ∈ E1, then there exists v′2 ∈ V2 such that v′1 S v′2 and

(v2, v
′
2) ∈ E2.

A simulation S of a graph G1 = (V1, E1) in a graph G2 = (V2, E2) is total,
if for each v1 ∈ V1 there exists at least one v2 ∈ V2 such that v1 S v2.

A simulation S of a tree T1 with root r1 in a tree T2 with root r2 is a rooted
simulation of T1 in T2 if r1 S r2.

Note that the definition of a simulation S of G1 in G2 does not preclude that
two distinct vertices v1 and v′1 of G1 are simulated by the same vertice v2 of
G2, i.e. (v1, v2) ∈ S and (v′1, v2) ∈ S. Figure 1 gives examples of simulations
(represented by the dashed edges) with respect to vertice label equality.

E

B

A

G

F

ED

A

D

B BC

A

G

F

D

B

A

B

D E

B

Fig. 1. Rooted Simulations (with respect to label equality)

The following result immediately follows from Definition 6.

Lemma 1. Every rooted simulation is total.

It is obvious that S = ∅ is always a simulation from a graph into another
graph, albeit not an interesting one. For our purposes, the interesting simula-
tions are the total simulation between trees which include the rooted simula-
tions. Total simulations that are functions, also called minimal total simulations,
are usually referred to as graph homomorphisms. Simulation with respect to la-
bel equality is a first notion towards a formalisation of answers to query terms:
If a database term tdb is to be an answer to a query term tq (both terms being
considered as trees), then there must exist a rooted simulation with respect to
label equality of (the term/tree with no ; and desc constructs subjacent to)
tq in tdb.

3.2 Term Lattice

Definition 7 (Ground Query Term). A query term is ground if it contains
no variables, no ; and no desc.

9

In the following, the set of all ground query terms, extended by the two
special terms ⊥ (the “empty” term) and > (the “full” term) will be denoted by
Tground . Note that Tground 6= Tdb , since in contrast to database terms ground
query terms may contain both constructs { } and {{ }}. In order to cope with
these constructs, it is necessary to extend the notion of a simulation for ground
query terms.

Definition 8 (Ground Query Term Simulation). Let t1 ∈ Tground and
t2 ∈ Tground . Let Si ⊆ Tground denote the set of subtrees of ti (i ∈ {1, 2}). A
relation S ⊆ S1 × S2 is a simulation of t1 in t2 if:

1. t1 S t2
2. If l1 S l2 then l1 = l2.
3. If l1{{t

1
1, . . . , t

1
n}} S l2{{t

2
1, . . . , t

2
m}}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j
4. If l1{{t

1
1, . . . , t

1
n}} S l2{t

2
1, . . . , t

2
m}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j)

5. If l1{t
1
1, . . . , t

1
n} S l2{{t

2
1, . . . , t

2
m}}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j), and for all j ∈ {1, . . . ,m}

there exists i{1, . . . , n} such that t1i S t2j
6. If l1{t

1
1, . . . , t

1
n} S l2{t

2
1, . . . , t

2
m}), then l1 = l2 and for all i ∈ {1, . . . , n}

there exists j ∈ {1, . . . ,m} such that t1i S t2j , and for all j ∈ {1, . . . ,m}

there exists i{1, . . . , n} such that t1i S t2j

Definition 9 (Simulation Preorder). � is the preorder on Tground \ {⊥,>}
defined by t1 � t2 if there exists a ground query term simulation of t1 in t2.

The preorder � is not an order, for although t1 = f{a} � t2 = f{a, a} and
t2 = f{a, a} � t1 = f{a} (both a of t2 can be simulated by the same a of t1),
t1 = f{a} 6= t2 = f{a, a}.

However, � induces as follows a (partial) order on Tground . First, consider
the equivalence relation ≡ on Tground defined by the bisimulation t1 ≡ t2 if both,
t1 � t2 and t2 � t1 hold. Since � is reflexive and transitive, ≡ is also reflexive
and transitive. ≡ is by definition symmetric.

It is natural to chose as representative of an equivalence class of Tground / ≡
the class member with the minimal number of repeated subterms, e.g. f{a}
is chosen as representative of class {f{a}, f{a, a}, f{a, a, a}, f{a, a, a, a}, . . .} ∈
Tground / ≡.

In the following, referring to this representative will always be meant as a
reference to the whole equivalence class and the (partial) order induced by �
on Tground / ≡ will be noted �, too. In other words, answers to query terms will
be defined up to ≡ as representatives of elements of Tground / ≡. Intuitively,
t1 � t2 means that it is possible to remove from t2 subterms at arbitrary depth,
until the remaining term is either t1 or some �-smaller term from the same
≡-class as t1.

Definition 10 (Ground Query Term Lattice). � is extended to ⊥ and >
as follows: For all t ∈ Tground , ⊥ � t and t � >. (Tground / ≡,�) is the ground
query term lattice.

10

3.3 Answers

An answer in a database D ⊆ Tdb to a query term tq is characterised by a set of
values for the variables in tq such that the ground query term tq

g resulting from
substituting these values for the variables in tq is simulated by an element t of
D (i.e. tqg � t).

Consider for example the query tq = f{{X ; g{{b}}, X ; g{{c}} }}
against the database D = {f{g{a, b, c}, g{a, b, c}, h}, f{g{b}, g{c}}}. The ;

constructs in tq yield the constraint g{{b}} � X ∧ g{{c}} � X. The first
database term in D yields the constraint X � g{a, b, c}. The second database
term in D yields the constraint X � g{b}∧X � g{c}. The constraint g{{b}} �
X ∧ g{{c}} � X is incompatible with X � g{b} ∧ X � g{c}. Thus, the only
possible value for X is g{a, b, c} and the only possible answer to tq in D is
tqa = f{g{a, b, c}, g{a, b, c}, h}.

Note that, in contrast to Prolog and SQL, the binding X = g{a, b, c} does
not suffice to characterise the answer tq

a, for tq does not have any “handle” for
the subterm h of tqa. If not only the bindings for X but the complete answers
to tq are sought for, then the query term Y ; f{{X ; g{{b}}, X ; g{{c}}}}
is to be used instead of tq.

Definition 11 (Substitutions and Instances). Let tq be a query term and
let X1, . . . , Xn be the variables occurring (left or right of ; or elsewhere) in tq.

A substitution is a function which assigns a construct term to each variable
of a finite set of variables. A substitution σ is a grounding substitution for a
query term tq if σ assigns a ground query term to each variable in tq.

If σ is a substitution (grounding substitution, resp.) for tq assigning ti to Xi

(1 ≤ i ≤ n), then the instances (ground instances, resp.) of tq with respect to σ
are those construct terms (ground query terms, resp.) that can be constructed
from tq as follows:

1. Replace each subterm X ; t by X.
2. Replace each occurrence of Xi by ti (1 ≤ i ≤ n).

Requiring in Definition 2 desc to occur to the right of ; makes it possible to
characterise ground instances of query terms by substitutions. This is helpful
for formalising answers but not necessary for language implementions.

Not all ground instances of a query term are acceptable answers, for some
instances might violate the conditions expressed by the ; and desc constructs.

Definition 12 (Allowed Instances). The constraint induced by a query term
tq and a substitution σ is the conjunction of all inequations tσ � Xσ such that
X ; t with t 6= desc t1 is a subterm of tq, and of all expressions Xσ � tσ (read
“Xσ subterm of tσ”) such that X ; desc t is a subterm of tq, if tq has such
subterms. If tq has no such subterms, the constraint induced tq and σ is the
formula true.

Let σ be a grounding substitution of a query term tq. The instance tσ of tq

is allowed if:

– tσ 6= ⊥ and tσ 6= >.

11

– Each inequality t1 � t2 in the constraint induced by tq and σ is satisfied in
(T / ≡,�).

– If t1 � t2 occurs in the constraint induced by tq and σ, then there exists a
subterm t′1 of t1 such that t2 � t′1

Definition 13 (Answers). Let tq be a query term, D a database (i.e. D ⊆
Tdb). An answer to tq in D is a database term tdb ∈ D such that there exists an
allowed instance tqa of tq satisfying tqa � tdb.

For some applications it might be preferable to restrict the answers to those
database terms that are minimal in the sense that, at each level, they have no
repetitions of identical subterms like in f{a, a}. This way, however, an answer
would no longer necessarily be an element of the database considered. In all
applications the authors are aware of, this is not desirable.

3.4 Simulation Unification

Simulation unification is a non-deterministic method for solving inequations of
the form tq � tc, where tq is a query term, tc is a construct term (possibly
a database term), and tq and tc are variable disjoint, in the database term
lattice (Tdb/ ≡,�), i.e. to determine substitutions σ such that tqσ and tcσ
have instances tqστ and tcστ such that tqστ and tcστ are database terms and
tqστ � tcστ holds.

Such inequations may result from a forward chaining evaluation of a query-
construct rule against database terms. In such a case, the right-hand side tc of
the inequation contains no variables, i.e. it is a database term. An inequation
tq � tc may also result from a backward chaining evaluation of the query term
tq against a query-construct rule whose head is tc. In such a case, variables
may occur in the construct term tc but tq and tc are variable disjoint. That tq

and tc do not share variables follows from the variable scoping rule for Xcerpt
programs postulated in Section 2.4 above (this is the so-called “standardisation
apart” of deduction methods).

Simulation unification consists in repeated applications of Term Decompo-
sition phases followed by a Consistency Verification phase to a formula C (for
constraint store) consisting in disjunctions of conjunctions of inequations of the
form tq � tc (with tq query term and tc construct term) and/or equations of the
form tc1 = tc2 (with tc1 and tc2 construct terms). At the beginning C consists in
a single inequation tq � tc. Both phases Term Decomposition and Consistency
Verification consist in stepwise changes of the constraint store C. These changes
are expressed in the following formalism inspired from [14]:

A “simplification” L⇔ R replaces L by R.

Trivially satisfied inequations or equations are replaced by the atomic formula
true. Inconsistent conjunctions of inequations or equations are replaced by the
atomic formula false.

Definition 14 (Term Decomposition Rules). Let l (with or without in-
dices) denote a label. Let t1 and t2 (with or without indices) denote query terms.

12

– Root Elimination:

(1) l � l{t21, . . . , t
2
m} ⇔ true if m ≥ 1

l � l{} ⇔ true
l{} � l{t21, . . . , t

2
m} ⇔ false if m ≥ 1

l{} � l⇔ true
l{} � l{} ⇔ true

(2) l{{t11, . . . , t
1
n}} � l⇔ false if n ≥ 1

l{{t11, . . . , t
1
n}} � l{} ⇔ false if n ≥ 1

l{t11, . . . , t
1
n} � l⇔ false if n ≥ 1

l{t11, . . . , t
1
n} � l{} ⇔ false if n ≥ 1

(3) Let Π be the set of total functions {t11, . . . , t
1
n} → {t

2
1, . . . , t

2
m}:

l{{t11, . . . , t
1
n}} � l{t21, . . . , t

2
m} ⇔

∨
π∈Π

∧
1≤i≤n t1i � π(t1i)

if n,m ≥ 1

Let Π be the set of total, surjective functions {t11, . . . , t
1
n} → {t

2
1, . . . , t

2
m}:

l{t11, . . . , t
1
n} � l{t21, . . . , t

2
m} ⇔

∨
π∈Π

∧
1≤i≤n t1i � π(t1i)

if n,m ≥ 1

(4) l1{{t
1
1, . . . , t

1
n}} � l2{t

2
1, . . . , t

2
m} ⇔ false if l1 6= l2 (n,m ≥ 0)

l1{t
1
1, . . . , t

1
n} � l2{t

2
1, . . . , t

2
m} ⇔ false if l1 6= l2 (n,m ≥ 0)

– ; Elimination:

X ; t1 � t2 ⇔ t1 � t2 ∧ t1 � X ∧ X � t2

– Descendant Elimination:

desc t1 � l2{t
2
1, . . . , t

2
m} ⇔ t1 � l2{t

2
1, . . . , t

2
m} ∨

∨
1≤i≤m desc t1 � t2i

if m ≥ 0

Applying the ; and descendant elimination rules to a constraint store C in
disjunctive normal form may yield a constraint store not in disjunctive normal
form. Thus, the method has to restore from time to time the disjunctive normal
form of C. In doing so, the formulas true and false are treated as usual: true is
removed from conjunctions, conjunctions containing false are removed.

In the following, mgcu(t1, . . . , tn) (with t1, . . . , tn construct terms) returns a
most general commutative-unifier of t1, . . . , tn (in the sense of [15]) expressed as
either false, if t1 and t2 are not commutative-unifiable, or as true if t1 and t2 are
commutative-unifiable and do not contain variables, or else as a conjunction of
equations of the form X = t. Note that most general commutative-unifiers are
only computed for construct terms (i.e. terms without ; and desc construct).
Recall that commutative unification is decidable.

In the definition below, simulation unification is initialised with X0 ; tq �
tc, where X0 is a variable occurring neither in tq nor in tc, instead of simply tq �

13

tc. The additional variable X0 serves to a complete specification of the answers
returned. This is useful in proving the correctness of simulation unification but
can usually be dispensed of in practice.

Definition 15 (Simulation Unification).

1. Initialisation: C := X0 ; tq � tc

(with tq query term, tc construct term and tq, tc and X0 variable disjoint).
2. Term Decomposition:

Until C can no longer be modified, repeat performing one of:

– Apply a (applicable) Term Decomposition rule to C

– Put C in disjunctive normal form

3. Variable Binding:
Replace each X � t in C with X = t.

4. Consistency Verification:
For each disjunct D of C and for each variable X occurring in D do:

Replace in D the equations X = t1, . . . , X = tn by mgcu(t1, . . . , tn).

For efficiency reasons it is preferable to intertwine the Term Decomposi-
tion and Consistency Verification phases instead of performing them one after
another. The sequential processing in Definition 15 simplifies the proofs.

Proposition 1 (Correctness and Completeness). Let tq be a query term,
tc a construct term, and X0 a variable such that tq, tc and X0 are variable
disjoint. There exists a substitution τ such that tqτ and tcτ are database terms
and tqτ = tcτ if and only if a simulation unification initialised with X0 ; tq �
tc returns a substitution σ such that

– For each variable X in tq, Xσ is a subterm of tqσ.
– tqτ is an instance of tqσ.

– tcτ is an instance of tcσ.

The proof of Proposition 1 is given in Appendix.

3.5 Extension to the Term Nesting Constructs [], [[]], and {{ }}

Recall (cf. above Section 3.1) that rooted simulations couple the “nodes” of con-
struct terms level-wise. Especially, if S is a rooted simulation between two con-
struct terms l{t11, . . . , t

1
n} and l{t21, . . . , t

2
m} (considered as trees) and if (t1i , t) ∈ S

(1 ≤ i ≤ n), then t is one of the t2j (1 ≤ j ≤ m).
In order to extend the previous definitions and results to arbitrary nest-

ings, the simulation (cf. Definition 6) between two construct terms t1 and t2 to
consider are those inducing between each level of t1 and t2 relations fulfilling
the condition of Figure 2. The notion of monotonicity referred to in Figure 2 is
defined as follows.

Definition 16 (Monotonic Relation). Let t1 = l{t11, . . . , t
1
n} and t2 =

l{t21, . . . , t
2
m} be construct terms. A relation S ⊆ {t11, . . . , t

1
n} × {t

2
1, . . . , t

2
m} is

monotonic if for all (t1i , t) ∈ S (1 ≤ i ≤ n) t ∈ {t2i , t
2
i+1, . . . , t

2
m}.

14

t1 � t2 simulation / Π Unification

l{{t11, . . . , t
1

n
}} � l{t11, . . . , t

1

m
} commutative unification

l{{t11, . . . , t
1

n
}} � l[t11, . . . , t

1

m
] commutative unification

l[[t11, . . . , t
1

n
]] � l[t11, . . . , t

1

m
] monotonic simple unification

l{t11, . . . , t
1

n
} � l{t11, . . . , t

1

m
} surjective commutative unification

l{t11, . . . , t
1

n
} � l[t11, . . . , t

1

m
] surjective simple unification

l[t11, . . . , t
1

n
] � l[t11, . . . , t

1

m
] surjective and monotonic simple unification

Fig. 2.

For processing the term nestings { }, [], and [[]] during simulation unifi-
cation it suffices to modify the cases (2) and (3) of rule Root Elimination (cf.
Definition 14) as follows and to add to this rule the following cases (5) and (6):

(2) l{t11, . . . , t
1
n} � l⇔ false if n ≥ 1

l{t11, . . . , t
1
n} � l{} ⇔ false if n ≥ 1

. . . (as before)
l[t11, . . . , t

1
n] � l{} ⇔ false if n > 1

l[[t11, . . . , t
1
n]] � l{} ⇔ false if n > 1

l{{t11, . . . , t
1
n}} � l{} ⇔ false if n > 1

(3) Let t1, t2 and the set of (total) functions Π : {t11, . . . , t
1
n} → {t

2
1, . . . , t

2
m}

be as defined in Figure 2:
t1 � t2 ⇔

∨
π∈Π

∧
1≤i≤n t1i � π(t1i) if n ≥ 1 and m ≥ 1

(5) l[t11, . . . , t
1
n] � l{t11, . . . , t

1
m} ⇔ false

(6) l[[t11, . . . , t
1
n]] � l{t11, . . . , t

1
m} ⇔ false

Finally, the Consistency Verification phase of simulation unification must
rely on a unification performing at each level of the terms compared as specified
in Figure 2. In this table, “simple unification” denotes the standard unification
as defined e.g. in [16].

3.6 Examples

f{{X ; b, Y ; b{{c, d}} }} and f{a, b{c, d, e}, b{e}} “simulation unify” yield-
ing the following constraints: (X = b{c, d, e}∧Y = b{c, d, e})∨(X = b{e}∧Y =
b{c, d, e}).

Also, the terms X ; desc (Y ; f{{a}}) and g{f{Z, b, c}, h{f{a, b}}}
“simulation unify” yielding ((Y = f{Y, b, c} ∧ a � Z) ∨ Y = f{a, b}) ∧ X =
g{f{Z, b, c}, h{f{a, b}}}.

Note that these simulation unifications constrain variables “on both sides”,
i.e. simulation unification is no matching but a full-fledged unification.

15

4 Related Work and Conclusion

The articles [17,18,19] have already pointed out the drawbacks of relying on
a navigational node selection à la XPath [20] and XQuery [2] for query and
transformation languages for XML and semistructured data.

The language UnQL [13] has introduced simulation as a means for query an-
swering. UnQL, like Xcerpt, uses the notions of patterns and templates. UnQL
and Xcerpt differ from each other as follows. First, a query in UnQL consists of a
single “select-where” expression which can be processed with pattern matching.
In contrast, a query in Xcerpt might “chain” several “construct-query rules”
requiring a “unification” which is capable of binding variables from both of the
terms to be “unified”. Second, variables in UnQL can only occur as leaves of
query patterns. Complex queries might require the use of several patterns in
UnQL, where a single pattern suffices in Xcerpt.

In [17] a language for querying and transforming semistructured data is
described. Like XPath and XQuery this language has variables for nodes, i.e.
in the Xcerpt terminology labels.

[18] describes fxt, a language for querying and transforming semistructured
data. fxt has variables for terms (or trees) and forests. fxt offers regular expres-
sions similar to those of XPath for node selection. In contrast, the approach pro-
posed in the present paper uses like Prolog variables for subterms. Arguably,
languages with term variables makes data description less navigational than
languages with node variables.

The language semantics in [17] is based upon a so-called component calculus
and an algebra, very much in the style of XQuery’s algebra which is inspired
from functional languages. The language semantics given in [18] for fxt is in
terms of tree automata. Arguably, Definition 13 is closer to a Tarski’s style
model theory and might therefore be seen as a more declarative semantics.

Several articles propose inference methods either rule-based or based upon
consistency verification for XML data. [19] proposes a rule language very similar
to Prolog called nowadays RuleML [21]. Several approaches that are too numer-
ous for being explicitly mentioned here adapt techniques from feature logics to
XML data. These approaches are usually named referring to “ontology” and/or
“Semantic Web”. Common to RuleML and the ontology or Semantic Web ap-
proaches is that the language they propose do not support a direct access to
XML data. Instead, their languages require a translation into a specific syntax.
In some cases, like the binary predicate language RDF, this syntax might seem
too stringent. For the authors of this paper, a direct access to XML data is an
essential feature of an inference language for Web-based databases and semantic
reasoning with Web data.

Simulation is no new notion. It is commonly used in process algebra and
graph theory. It has been applied to semistructured data e.g. in [12,22,3] for
schema validation. Graph simulation in general has been studied extensively cf.
[11,23] (simulation is called “path inclusion” in [23]).

Several unification methods have been proposed that, like simulation unifi-
cation, process flexible terms or structures, notably feature unification [24,25]
and associative-commutative-unification, short AC-unification, [26]. Simulation

16

unification differs from feature unification in several aspects: First, it accepts
terms with several identically “rooted” terms corresponding to a feature with
more than one value. In contrast, feature logic languages and feature unifica-
tion usually preclude this: A term (in Xcerpt syntax) such as a{f{b}, f{c}}
is not possible in a feature logic (although a{f{b, c}} is possible). Second, or-
dered subterms, corresponding to ordered features, are not possible in feature
logic languages and are not processed by feature unification. Third, simulation
unification has a descendant construct which has no counterpart in (standard)
feature logics (note, however, that a similar construct is considered in the work
[27]). Finally, simulation unification of two Xcerpt terms is decidable while the
satisfiability of general feature constraints with quantifiers is not decidable [25].

Simulation unification might remind of theory unification [28]. The signif-
icant difference between both is that simulation unification is based upon an
order relation, while theory unification refers to a congruence relation.

There are interesting similarities between simulation unification and ap-
proaches to constraint solving over finite domains [29]. Simulation unification
relies on a possibly disjunctive constraint store. This is rarely the case for con-
straint solvers. However, constraint programming approaches such as aggrega-
tion constraints [30] and constructive disjunction [31] seem interesting tech-
niques for the future development of the language Xcerpt.

In this paper, a novel approach to querying and transforming XML and
semistructured data based has been outlined. This approach is based on logic
programming and a novel form of unification, simulation unification. A few
aspects of a language under development, Xcerpt, have been presented. Many
issues deserve further investigations. In particular, the complexity of simulation
unification and its efficient implementation deserve further research.

Acknowledgements. The authors are thankful to Slim Abdennadher and Nor-
bert Eisinger for useful suggestions.

References

1. W3C http://www.w3.org/Style/XSL/: Extensible Stylesheet Language (XSL). (2000)
2. W3C http://www.w3.org/TR/xquery/: XQuery: A Query Language for XML. (2001)
3. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relations to Semistruc-

tured Data and XML . Morgan Kaufmann Publishers, San Francisco, CA (2000)
4. Fernandez, M., Siméon, J., Wadler, P.: XML Query Languages: Experiences and Exam-

plars. Communication to the XML Query W3C Working Group (1999)
5. Alashqur, A.M., Su, S.Y.W., Lam., H.: OQL: A Query Language for Manipulating Object-

Oriented Databases. In: Proc. 15th Int. Conf. on Very Large Data Bases (VLDB). (1989)
6. Chamberlin, D., Fankhauser, P., Marchiori, M., Robie, J.: XML Query Use Cases. W3C

Working Draft 20 (2001)
7. Bry, F., Schaffert, S.: Pattern Queries for XML and Semistructured Data. Tech-

nical Report PMS-FB-2002-5, Inst. for Computer Sciences, University of Munich,
http://www.pms.informatik.uni-muenchen.de/publikationen/#PMS-FB-2002-5 (2002)

8. Maier, D.: Database Desiderata for an XML Query Language. In: Proceedings of QL’98
- The Query Languages Workshop. (1998) http://www.w3.org/TandS/QL/QL98/.

9. W3C http://www.w3.org/TR/xmlschema-1/: ML Schema Part 1: Structures. (2001)
10. W3C http://www.w3.org/TR/xmlschema-2/: ML Schema Part 2: Datatypes. (2001)
11. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing Simulations on Finite and

Infinite Graphs (1996)

17

12. Fernandez, M., Suciu, D.: Optimizing Regular Path Expressions Using Graph Schemas.
In: Proceedings of the Int. Conf. on Data Engineering. (1988) 14–23

13. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000) 76–110

14. Frühwirth, T.: Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37 (1998) 95–138

15. Baader, F.: Unification in Commutative Theories. In: Unification. Academic Press (1989)
417–435

16. Lloyd, J.W. In: Foundations of Logic Programming. Springer-Verlag (1993)
17. Grahne, G., Lakshmanan, L.V.S.: On the Difference between Navigating Semi-structured

Data and Querying It. In: Workshop on Database Programming Languages. (1999)
18. Berlea, A., Seidl, H.: fxt – A Transformation Language for XML Documents. Journal of

CIT, Special Issue on Domain-Specific Languages (2001)
19. Boley, H.: Relationships Between Logic Programming and XML. In: Proc. 14th Workshop

Logische Programmierung, Würzburg (2000)
20. W3 Consortium http://www.w3.org/TR/xpath: XML Path Language (XPath). (1999)
21. DFKI: RuleML – Rule Markup Language. http://www.dfki.uni-kl.de/ruleml/ (2002)
22. Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D.: Adding Structure to Unstruc-

tured Data. In: Proceedings of ICDT’97. Volume 1186., Springer (1997) 336–350
23. Kilpeläinen, P.: Tree Matching Problems with Applications to Structured Text Databases.

PhD thesis, Dept. of Computer Sciences, University of Helsinki (1992)
24. Äıt-Kaci, H., Podelski, A., Goldstein, S.C.: Order-Sorted Theory Unification. Technical

Report 32, digital – Paris Research Laboratory (1993)
25. Smolka, G.: Feature Constraint Logics for Unification Grammars. Journal of Logic Pro-

gramming 12 (1992) 51–87
26. Fages, F.: Associative-Commutative Unification. In: Proc. 7th Int. Conf. on Automated

Deduction (Napa, CA). Volume 170., Berlin, Springer (1984) 194–208
27. Backofen, R.: Regular Path Expressions in Feature Logic. Journal of Symbolic Compu-

tation 17 (1994) 412–455
28. Baader, F., Snyder, W.: Unification Theory. In Robinson, A., Voronkov, A., eds.: Hand-

book of Automated Reasoning. Elsevier Science Publishers (1999)
29. Montanari, U., Rossi, F.: Finite domain constraint solving and constraint logic program-

ming. In Benhamou, F., Colmerauer, A., eds.: Constraint Logic Programming: Selected
Research. MIT press (1993) 201–221

30. Ross, K.A., Srivastava, D., Stuckey, P.J., Sudarshan, S.: Foundations of aggregation
constraints. Theoretical Computer Science B 190 (1994)

31. Würtz, J., Müller, T.: Constructive disjunction revisited. In: KI - Künstliche Intelligenz.
(1996) 377–386

18

Appendix: Proof of Proposition 1

The proposition is established by reduction to the case where tc is a database
term (i.e. does not contain variables). With this reduction, the proposition can
be reformulated as follows:

Lemma 2. Let tq be a query term, tc be a database term. There exists a sub-
stitution σ such that (X ; tq)σ = tc if and only if a simulation unification
initialized with X ; tq � tc returns the substitution σ.

This restriction can be lifted by defining a substitution µ such that tdb = tcµ
and (X ; tq)σ = (X ; tq)σµ. Since (X ; tq)σ = tdb = tcµ, and tq and tc are
variable disjoint, follows tqσµ = tcσµ and thus we can define τ as σµ.

We now continue with the proof of Lemma 2.

1 Sufficient Condition

It is to show that if the simulation unification returns a substitution σ, then
(X ; tq)σ = tc.

We prove the hyptothesis through contradiction. Assume w.l.o.g. that the
simulation unification would return a substitution σ that contains a single bind-
ing for a variable Y = s in (X ; tq) such that (X ; tq)[s/Y] 6= tc.

Such a binding could only be the result of a ;-elimination rule. Since the
simulation unification is preserving the parent-child relationship in the root
elimination, Y could only be bound to a subterm s of tc at the same depth (of
root eliminations), and thus the replacement of Y with s will yield just tc, and
thus the assumption does not hold, i.e. simulation unification is correct.

2 Necessary Condition

2.1 Completeness

It is to show that if there exists a σ such that (X ; tq)σ = tc, then the
simulation unification returns that σ.

The first rule application will be ;-elimination, which will add especially
the inequation X � tc. Since X is a variable that does not occur in t, there
will be no second upper bound for X. In the variable binding algorithm, we
will thus get the substitution X = tc, which will trivially fulfill the condition
X ; tσ = tc.

It thus remains to show that the result tc is an allowed instance in the sense
of definition 11. We have to show that if simulation unification returns σ, then
tσ � tc. This is supported through the correctness shown below.

2.2 Termination

Lemma 3 (Termination). For any query term tq and construct term tc such
that tq and tc are variable disjoint, the simulation unification of tq � tc will
terminate for any sequence of rule applications.

19

Proof. For proving the termination of simulation unification, we make the fol-
lowing assumptions:

– the constraint store C is initialized with the single inequation tq � tc

– after each step, the DNF of the constraint store C is re-created
– the transitivity rule is applied in a sensible manner, i.e. only if new infor-

mation is added that has not yet been produced

We prove the proposition by induction. Each application of a rule will replace
a disjunct with at least one (but finitely many) new disjuncts that all have a
strictly lower rank than the old disjunct.

This is a sufficient requirement for the termination of the simulation unifi-
cation: We can generate a tree for each possible sequence of rule applications
where the root node is the formula containing the original inequation and the
immediate successors are the disjuncts that result from applying one of the rules
to a node. Each node has only finitely many (immediate) successors and each
successor always has a strictly lower rank than the parent. Thus there cannot
exist an infinite path and, according to König’s Lemma, the tree is thus finite.

We define the rank of a formula of ∧-connected inequations based on the
depth of the participating terms (note that the depth is always ≥ 1).

– depth(l) = 1
– depth(X) = 1
– depth(X ; t) = 2 · depth(t) + 2
– depth(l{t1, . . . , tn}) = depth(l{{t1, . . . , tn}}) = 1 + n ·maxn

i=1(depth(ti))
– depth(desc t) = 1 + depth(t)
– rank(t1 � t2) = depth(t1) · depth(t2)
– rank(S1 ∧ S2) = rank(S1) + rank(S2)
– rank(X = t) = 0
– rank(true) = rank(false) = 0

Intuitively, the depth of a term equals the number of nodes of the completion
of this term such that every node on the same level has the same degree and
length to a leaf.

Root Elimination: Cases (1), (2) and (4) reduce to true or false and thus
trivially satisfy the condition (*). In case (3), we have to show that

rank(f{t11, . . . , t
1
n} � f{t21, . . . , t

2
m}) > rank(

n∧

i=1

t1i � π(t1i))

On the left side, we get

rank(l{t11, . . . , t
1
n} � l{t21, . . . , t

2
m}) =

= depth(l{t11, . . . , t
1
n}) · depth(l{t21, . . . , t

2
m})

= (1 + n ·maxn
i=1(depth(t1i))) · (1 + m ·maxm

i=1(depth(t2i)))

= (1 + n ·maxn
i=1(depth(t1i)) + m ·maxm

i=1(depth(t2i))

+ n ·m ·maxn
i=1(depth(t1i)) ·maxm

i=1(depth(t2i)))

20

For the right side, we get an upper estimation by

rank(

n∧

i=1

t1i � π(t1i)) = Σn
i=1depth(t1i) · depth(π(t1i))

≤ Σn
i=1depth(t1i) ·maxm

i=1(depth(t2i))

≤ n ·maxn
i=1(depth(t1i)) ·maxm

i=1(depth(t2i))

≤ m · n ·maxn
i=1(depth(t1i)) ·maxm

i=1(depth(t2i))

< m · n ·maxn
i=1(depth(t1i)) ·maxm

i=1(depth(t2i)) + 1

Since this is part of the left side, case (3) also satisfy the condition (*).
The proof is ananlogous for the case with double curly brackets in the left term.

; Elimination: Again, we have to show that

rank(X ; t1 � t2) > rank(t1 � X ∧X � t2 ∧ t1 � t2)

The left side is evaluated as follows:

rank(X ; t1 � t2) = (2 · depth(t1) + 2) · depth(t2)

= 2 · depth(t1) · depth(t2) + 2 · depth(t2)

Again, we calculate an upper estimation for the right side:

rank(t1 � X ∧X � t2 ∧ t1 � t2) =

= depth(t1) · depth(X) + depth(X) · depth(t2) + depth(t1) · depth(t2)

= depth(t1) + depth(t2) + depth(t1) · depth(t2)

≤ depth(t1) · depth(t2) + depth(t2) + depth(t1) · depth(t2)

= 2 · depth(t1) · depth(t2) + depth(t2)

< 2 · depth(t1) · depth(t2) + 2 · depth(t2) (with depth(t2) ≥ 1)

Descendant Elimination: We have to show that

rank(desc t1 � l{t21, . . . , t
2
m}) > rank(t1 � l{t21, . . . , t

2
m})(1)

rank(desc t1 � l{t21, . . . , t
2
m}) > rank(desc t1 � t2i) for all 1 ≤ i ≤ m(2)

For the left side, we have in both cases:

rank(desc t1 � l{t21, . . . , t
2
m}) = (1 + depth(t1)) · (1 + m ·maxm

i=1(depth(t2i)))

The right side in case 1 is evaluated to

rank(t1 � l{t21, . . . , t
2
m}) = depth(t1) · (1 + m ·maxm

i=1(depth(t2i)))

which is trivially smaller than the left side. In case 2, we get (1 ≤ i ≤ m):

rank(desc t1 � t2i) = (1 + depth(t1)) · depth(t2i)

≤ (1 + depth(t1)) ·maxm
i=1(depth(t2i))

which again is trivially smaller than the left side.
We have thus shown that the application of the decomposition rules will

terminate for any two terms tq and tc.
ut

21

	Towards a Declarative Query and Transformation Language for XML and Semistructured Data: Simulation Unification
	 François Bry and Sebastian Schaffert

