
Content-Aware DataGuides for Indexing Large Collections of XML Documents

Felix Weigel1 Holger Meuss2 François Bry1 Klaus U. Schulz3

1Institute for Computer Science

University of Munich (LMU), Germany

{weigel,bry}@informatik.uni-muenchen.de

2European Southern Observatory

Headquarter Garching, Germany

hmeuss@eso.org

3Centre for Inform. & Language Processing

University of Munich (LMU), Germany

schulz@cis.uni-muenchen.de

Abstract

XML is well-suited for modelling structured data with
textual content. However, most indexing approaches per-
form structure and content matching independently, com-
bining the retrieved path and keyword occurrences in a third
step. This paper shows that retrieval in XML documents can
be accelerated significantly by processing text and struc-
ture simultaneously during all retrieval phases. To this end,
theContent-Aware DataGuide (CADG)enhances the well-
known DataGuide with (1) simultaneous keyword and path
matching and (2) a precomputed content/structure join. Ex-
tensive experiments prove the CADG to be 50-90% faster
than the DataGuide for various sorts of query and doc-
ument, including difficult cases such as poorly structured
queries and recursive document paths. A new query classi-
fication scheme identifies precise query characteristics with
a predominant influence on the performance of the individ-
ual indices. The experiments show that the CADG is appli-
cable to many real-world applications, in particular large
collections of heterogeneously structured XML documents.

1. Introduction

TheeXtensible Markup Language (XML)[3] has estab-
lished itself as the representation format of choice for semi-
structured data [1]. Many modern applications produce and
process large amounts of XML data, which must be queried
with both structural and textual selection criteria. A typi-
cal example are digital libraries and archives, where either
human users or management and mining tools search for pa-
pers with, say, a title mentioning“XML” and a section about
“SGML” in the related work part. Obviously, both the query
keywords (“XML” , “SGML”) and the given structural hints
(title, related work) are needed to retrieve relevant papers:
searching for“XML” and“SGML” alone would yield many
unwanted papers dealing mainly with SGML, whereas a
query for all publications with a title and a related work sec-

tion selects virtually all papers in the library. Other appli-
cations include retrieval in structured web pages and manu-
als; collections of tagged textual content, such as linguistic
or juridical documents; compilations of annotated scientific
data, e.g. monitoring output in computer science or astron-
omy; e-business applications managing product catalogues;
or web service descriptions. Novel Semantic Web applica-
tions will make the need for combined content and structure
retrieval of XML metadata even more urgent.

All these applications have in common that they (1)
query XML (i.e. semi-structured) data which (2) contains
large portions of text and (3) requires persistent index struc-
tures for efficient processing. In addition, many of the
aforementioned cases deal with rather static data, where up-
dates are local and unfrequent. Despite the wealth of index-
ing techniques known from both Information Retrieval (IR)
and database (DB) research, there are few approaches de-
signed for this characteristic class of data. While IR index-
ing approaches tend to neglect the structure of documents,
many approaches developed by the DB community disre-
gard the textual content of XML data. TheDataGuide[6, 9]
as the ground-breaking approach to indexing XML is a pure
structure index in its original form, and is used with a sepa-
rate inverted keyword index in [9]. As a consequence, it suf-
fers from an increased retrieval overhead even for selective
queries, similar to inverted lists in multi-attribute search.
More recent adaptations of the DataGuide give up the strict
separation of content and structure, but still process both
sequentially. TheContent-Aware DataGuide (CADG), in-
troduced in this paper as an extension of the DataGuide,
uses both structural and textual selection criteria simultane-
ously during all retrieval phases. Compared to the original
DataGuide, this reduces the evaluation time by more than
50% in most cases, and up to 90% under favourable, yet
highly realistic conditions.

This paper is organized as follows. The next section de-
scribes the DataGuide as the basis of the CADG, along with
a simple query formalism to be used throughout the text.
The following two sections introduce the Content-Aware
DataGuide on different levels of abstraction: first section3

Figure 1. Data structures of the original DataGuide

explains two abstract concepts ofcontent awareness, one of
which (thestructure-centricapproach) is shown to be su-
perior. Section4 elaborates on two concrete realizations of
structure-centric content awareness, theIdentity CADGand
the Signature CADG. The following section is dedicated
to the exhaustive experiments performed to compare both
CADGs with the original DataGuide. The paper concludes
with remarks on related work and future research.

2. Indexing XML with the original DataGuide

A well-known and influential approach to indexing semi-
structured data is theDataGuide[6, 9]. A DataGuide is es-
sentially a compact representation of the document tree, in
which all distinct label paths appear exactly once, as shown
in figure 1. The tree on the left(a) depicts a small doc-
ument collection. The corresponding DataGuide is shown
in the middle(b). A comparison of both trees reveals that
multiple instances of the same document label path, like
/book/chapter/section in (a), collapse to form a single in-
dex label path in(b). Therefore the resultingindex tree,
which serves as a path index, is usually much smaller than
the document tree (although theoretically its size is linear in
that of the document tree). Hence it is supposed to be held
in main memory even for large document collections.

Without references to individual document nodes, how-
ever, the index tree only allows to find out about the exis-
tence of a given label path, but not its position in the col-
lection. To this end, every index node isannotatedwith
the IDs of those document nodes it represents (i.e. those
reached by the same label path as the index node). For in-
stance, the index node#4 in figure1 (b) with the label path
/book/chapter/section points to the document nodes&4
and&7, as they are accessible via this very path in the doc-
ument tree(a). The annotations of all index nodes are stored
on disk in anannotation table (c). Formally, the table repre-
sents a mappingdga : i 7→ Di where i is an index node and

Di the set of document nodes reached byi’s label path. To-
gether the index tree and the annotation table encode nearly
all structural information which is present in the document
collection. Only parent/child relations between document
nodes cannot be reconstructed from the DataGuide, due to
the merging of multiple document paths in a single index
path. For instance, from figure1 (b) and(c) one cannot tell
whether in(a) &8 is a child of&4 or &7, which are both
referenced by the parent of&8’s index node,#5.

A third data structure indexes the textual document con-
tent. The DataGuide described above, as a pure path index,
ignores textual content altogether.Keywordsoccurring in
the document collection are indexed in a separatecontent
table, which is stored on disk like the annotation table. The
content table is an inverted list mapping a keyword to the set
of document nodes where it occurs, as shown in figure1 (d).
More formally, it implements a mappingdgc : k 7→ Dk

wherek is a keyword andDk the set of document nodes
which contain an occurrence ofk. Note that although fig-
ure1 shows both the content table and the annotation table
in non-first normal form (NF2), this is not mandatory.

Our data model for tree queries, which covers the core
XPath constructs, distinguishes betweenstructuralandtex-
tual query nodes. While structural query nodes are matched
by document nodes with a suitable label path, textual query
nodes correspond to certain keywords occurring in such
a document node. As shown in figure2 for the query
tree/book[.//∗[" XML"] and ./preface/para[" index"]],
each query path consists of structural nodes, linked by la-
belled edges, and possibly a single textual leaf node con-
taining a non-empty set of query keywords, which are log-
ically con- or disjoined. Edges to structural query nodes
may be eitherrigid (solid line), which means that the two
linked query nodes only match a parent/child pair of docu-
ment nodes, orsoft (dashed line), corresponding to XPath’s
descendant axis. Similarly, a textual query node is either
reached by a rigid edge, indicating that its keywords must

occur in the text contained in any document node match-
ing the parent query node, or a soft edge, in which case the
keywords may also be nested deeper in the subtree of the
document node. For a formal language definition, see [10].

Figure 2. Query tree

Query processing with the DataGuide is divided into the
following four retrieval phases.

1. Path matching:the query paths are matched separately
against the index tree.

2. Occurrence fetching:annotations of the index nodes
found in phase1 are fetched from the annotation table;
query keywords are looked up in the content table.

3. Content/structure join:for each query path, the sets of
annotations and keyword occurrences are intersected.

4. Path join: the results of all query paths are joined to
form hits matching the entire query tree.

While phases1 and3 are accomplished in main memory,
phase2 involves two disk accesses. Phase4 may, but need
not, require further I/O operations.

As an example, consider the pseudo-XPath query
/book// ∗ [" XML"]. It selects all document nodes below a
tree root labelledbook which contain an occurrence of the
keyword “XML” (note that the shorthand[" XML"] is not
part of the XPath language). In phase1, the query path
/book//∗ is searched in the index tree shown in figure1 (b).
All nodes in the index tree except the root#0 qualify as
structural hits. This illustrates that unselective query paths
featuring the// and∗ constructs may cause multiple index
nodes to be retrieved during path matching. In phase2, the
annotations (i.e. IDs of matching document nodes) of all
index nodes from the previous retrieval phase are fetched
from the annotation table. In our example, looking up the
index node IDs#1 to #6 in the table yields the six annotation
sets{&1}, {&2}, {&3}, {&4; &7}, {&5; &8}, and{&6}, re-
spectively. Besides, a look-up of the query keyword“XML”
in the content table identifies{&8} as the singleton set of

document nodes where this keyword occurs. In phase3,
the content/structure join, each annotation set retrieved dur-
ing the previous phase is intersected with the occurrence set
for “XML” to find out which of the document nodes with
a matching label path contain an occurrence of the query
keyword. Here almost all candidate index nodes are dis-
carded, their respective annotation set and the singleton oc-
currence set being disjoint. Only#5 references a document
node which meets both the structural and textual selection
criteria of the given query path. The document node in the
intersection{&5; &8} ∩ {&8} = {&8} is returned as the
only hit. Since the example is a path query, we are finished.
If there were more paths in the query tree,&8’s ancestors
would need to be retrieved, too, in order to join the hits of
all query paths (retrieval phase4).

In the above example a lot of false positives (all index
nodes but#0 and#5) are retrieved during path matching and
kept in the fetching phase, to be finally ruled out in retrieval
phase3. Not only does this make the path matching step un-
necessarily complex; it also causes needless disk accesses
in phase2. The reason why the false positives are not dis-
carded during the first two retrieval phases is that structural
and textual selection criteria are handled separately. While
both are satisfied when considered in isolation, the join of
content and structure in phase3 reveals the mismatch. Note
that a reverse matching order – first keyword fetching, fol-
lowed by navigation and annotation fetching – is no good,
unless keyword fetching fails altogether (in which case nav-
igation is useless, and the query can be rejected as unsatis-
fiable right away). Moreover, it results in similar deficien-
cies for queries with selective paths, but unselective key-
words. In other words, the DataGuide faces an inherent de-
fect, keeping structural and textual selection criteria apart
during the first two retrieval phases. Therefore we propose
a Content-Aware DataGuidewhich combines structure and
content matching from the very beginning of the retrieval
process. This accelerates the evaluation process especially
when querying selective keywords and unselective paths.1

3. Two approaches towards a Content-Aware
DataGuide (CADG)

As stated in the previous section, the objective of the
Content-Aware DataGuide (CADG) is to integrate content
matching with both path matching and annotation fetching
(retrieval phases1 and2, respectively), thus saving an ex-
plicit content/structure join (phase3). In short, one can say
that the CADG enhances the original DataGuide with a ma-
terialized content/structure join and a keyword-aware path

1 The integrated content information of a CADG can also be used
to facilitate schema browsing with the index tree, as proposed for the
DataGuide in [6]. Creatingkeyword-specific views of the document schema
in this way is not explored here for reasons of brevity.

matching procedure. More specifically, we propose two dif-
ferent techniques (an exact and a heuristic one) to prune
index paths which are irrelevant to a given query keyword.
Thiscontent-aware navigationnot only reduces the number
of paths to be visited during phase1, but also excludes false
positives from the expensive annotation fetching in phase2.
Besides, the two table look-ups in phase2 (annotation and
keyword occurrence fetching) are integrated within a sin-
glecontent-aware annotation fetchingstep, which again re-
duces the number of disk accesses by up to 50%. The idea is
to precompute the content/structure join (phase3) at index-
ing time such that document nodes can be retrieved simulta-
neously by their label path and the keywords they contain.
This also avoids the intersection of possibly large sets of
document node IDs at query time.

We examine two symmetric approaches to meeting the
above objectives. Thecontent-centric approach(see sec-
tion 3.1), being simple but inefficient, only serves as start-
ing point for the more sophisticatedstructure-centric ap-
proach, which is pursued in the sequel. Section3.2presents
it from an abstract point of view. Two concrete realizations,
as mentioned above, are covered in section4.

3.1. Naive content-centric approach

One way to restrict path matching torelevant index
nodes, i.e. those referencing one or more document nodes
in which a given query keyword occurs, is to create multi-
ple keyword-specific index subtrees. Figure3 depicts four
such index subtrees, each of which indexes only those paths
in the document tree from figure1 (a) where a specific key-
word occurs. Document nodes without textual content are
associated with the empty word,ε. For instance, the“XML”
index subtree in the third column ignores all but a single
document path,/book/chapter/section/para, which is the
only one leading to an occurrence of the keyword“XML” in
figure1 (a). Analogously, the annotation fetching step be-
comes content-aware when partitioning the annotation table
into keyword-specific subtables, which is equivalent to pre-
computing the content/structure join from retrieval phase3:
a right outer join2 dgc n dga of the DataGuide’s content
and annotation tables in first normal form (1NF) produces
a content/annotation table, shown inNF2 in figure 3 (b),
which replaces the original tables. Formally, it represents a
mappingcadgcc : (k, i) 7→ Dk,i wherek is a keyword,i
is an index node ID, andDk,i is the set of document nodes
wherek occurs and which are referenced byi.

In terms of classic database systems, each index subtree
is built over a keyword-specificview of the data. Conse-
quently, the appropriate index subtree can only be chosen at
query time, after the desired keywords have been specified.
When processing the sample query from section2, e.g., the

2 with dgc’s document node column eliminated

Figure 3. Content-centric CADG approach

“XML” subtree is selected and used during path matching.
This narrows down the search space to the path reaching in-
dex node#5, excluding false positives right from the start.
Occurrence and annotation fetching is accomplished by a
single look-up in the content/annotation table, where the en-
try for #5 and“XML” is selected and returned as query re-
sult. Note that no explicit content/structure join is required
at query time.

Obviously the content/annotation table may easily take
up more space on disk than the original DataGuide’s con-
tent and annotation tables together. In figure3 (b) there
are e.g. multiple columns referring to the index nodes#2 or
#5, whereas column headers in figure1 are unique. This
redundancy, which is due to the Cartesian product underly-
ing the join of the content and annotation tables, increases
with the number ofpath-unselectivekeywords, i.e. those
occuring under a variety of different label paths. Although
unselective keywords, being of restricted use as selection
criteria, are sometimes disregarded in indexing, it is true
that the faster query processing provided by content aware-
ness comes at the price of increased storage consumption
(see section5.2 for experimental results). Yet this trade-
off is common to most indexing techniques. A much more
important drawback of the content-centric approach is that
not only the content/annotation table but also the index sub-
trees reside in secondary storage. Since the complete set of
index subtrees (which has the same cardinality as the set of
indexed keywords) cannot be held in main memory, select-
ing the right index subtree for a query keyword thus entails
an additional disk access for loading the appropriate index
subtree. When processing queries with more than one key-
word, multiple index subtrees need to be fetched from disk,
which is clearly prohibitive at query time.

3.2. Structure-centric approach

The naive approach presented in the previous subsection
is content-centricin the sense that the indexed keywords
determine the structure of both the index tree and the con-
tent/annotation table. A second, more viable approach to
content awareness preserves the original DataGuide’s in-
dex tree in its integrity, grouping the indexed keyword oc-
currences by their label paths. Thisstructure-centricap-
proach allows path matching to be performed without load-
ing the index tree from disk. It resides in main memory
like the index tree of the DataGuide. However, each node
of the CADG carries a small amount of additional content
information necessary to prune irrelevant index paths dur-
ing phase1. Dedicated data structures to be presented in
the next section encode (1) whether an index nodei ref-
erences any document node where a given keywordk oc-
curs, and (2) whether any ofi’s descendants (includingi
itself) does. In the remainder of this paper, we refer to the
former relation between an index nodei and a keywordk
ascontainment(i containsk), and to the latter asgovern-
ment(i governsk). For instance, in figure1 (a) and (b),
the index node#4 does not contain any keyword, although
it governs both“index” and “XML” . Note that by defini-
tion, containment implies government, but not vice versa.
During retrieval phase1, the government relation is exam-
ined for any index node reached during path matching, in
what we call thegovernment test. A containment testtakes
place in retrieval phase2 to avoid needless disk accesses.
Both of theserelevance testsare integrated with the orig-
inal DataGuide’s retrieval procedure (see section2) to en-
able content-aware navigation and annotation fetching, as
follows. During path matching, whenever an index node
i is being matched against a structural query nodeqs, the
proceduregoverns(i , qs) is performed. It succeeds if and
only if for each textual query nodeqt belowqs containing a
keyword conjunction

∧p
u=0 ku, condition (2) above is true

for i and all keywordsku (or at least one keyword in case
of a disjunction

∨p
u=0 ku). In this case path matching con-

tinues with the descendants ofi; otherwisei is discarded
along with its entire subtree. During retrieval phase2, be-
fore fetching the annotations of any index nodei matching
the parent node of a textual query nodeqt, the procedure
contains(i , qt) is called to verify condition (1) for all of
qt’s keywords (in case of a keyword conjunction, or at least
one if they are disjoined). Upon success,i’s annotations are
fetched from disk; otherwise the nodei is ignored.

The realization of thegoverns() andcontains() proce-
dures depends on how content information is represented in
the index node given as first parameter (see section4). In
any case, however, the query node handed over as second
parameter must bear content information, too, namely about
the query keywords attached to its outgoing query paths. To

avoid repeated exhaustive keyword searches in the query
tree, every query node accomodates keyword information
in a compact representation suitable for fast content match-
ing during retrieval phases1 and2, similar to an index node.
This is accomplished in a preliminaryquery preprocessing
step, taking place in an new retrieval phase 0 (see below).

Figure 4. Structure-centric CADG approach

The referenced document nodes to be fetched in phase2
are stored on disk in a combined content/annotation table,
as shown in figure4. It is almost identical to the content-
centric one in figure3 (b), except that the corresponding
mappingcadgsc : (i, k) 7→ Dk,i takes its two arguments
in reverse order, thus reflecting the structure-centric char-
acter of the approach. In fact, theNF2 table in figure4
can be considered as consisting of seven index-node spe-
cific content tables (labelled#0 to #6), each built over a
label-path specific view of the document collection. Note
that this conceptual difference between the content-centric
and structure-centric content/annotation tables vanishes on
the physical level, both tables being identical in1NF. In-
dex node ID and keyword together make up the primary
key to support combined content/structure or pure struc-
ture queries (during phase2) as well as pure content queries
(during phase 0). Accordingly, both tables are equal in size.

4. Two realizations of the structure-centric ap-
proach: Identity and Signature CADG

The concept of a structure-centric CADG, as discussed
in the previous section, does not specify data structures and
algorithms for integrating content information with the in-
dex and query trees. In this section we propose two alter-
native content representations, along with a suitable query
preprocessing as well as containment and government tests
(formal proofs of correctness are omitted). The first ap-
proach, which exploits index node IDs (see section4.1), is
guaranteed to exclude all irrelevant index nodes from path
matching and annotation fetching. A second, signature-
based realization of the structure-centric CADG (see sec-
tion 4.2) represents keywords in an approximate manner,
possibly mistaking some irrelevant index nodes as relevant
during query processing. A final verification, performed si-
multaneously with the annotation fetching step, eventually
rules out these false positives. Hence both variants of the
CADG produce exact results, regardless of whether their
content awareness is based on heuristic techniques or not.

4.1. Identity CADG

The Identity CADGrelies on index node IDs to enable
content-aware path matching and annotation fetching, as in-
troduced in section3. The idea is to prepare a list ofrele-
vant index nodesfor each path in the query tree, compris-
ing the IDs of all index nodes which contain the query key-
words of this path. (Refer to section3.2 for a definition
of the containment and government relations between index
nodes and keywords.) Assembled in a query preprocess-
ing step (retrieval phase 0) to be described next, these lists
are attached to the query tree (see figure5). In the index
tree, by contrast, content information is only represented
implicitly by means of index nodes IDs. Unlike the Sig-
nature CADG presented below, the Identity CADG has no
dedicated data structures for storing keyword information in
the index tree. During retrieval phase1, only ancestors of
relevant index nodes are considered, while other nodes are
pruned off. Similarly, only annotations of relevant index
nodes are fetched during phase2. Ancestorship among in-
dex nodes is tested by navigating upwards in the index tree
(which requires a single backlink per node) or else compu-
tationally, by means of numbering schemes like e.g. interval
encoding [8, 17]. Alternatively, ancestor IDs could be de-
termined during phase 0 and stored in the query tree.

Query preprocessing. During retrieval phase 0, each
nodeq of a given query tree is assigned a setIq of sets of rel-
evant index node IDs, as illustrated in figure5. This second-
order set is used for the relevance tests as described below.
Let us consider first textual, then structural query nodes.
Any textual query nodeqt with a single keywordk0 is asso-
ciated with the setIk0 of IDs of index nodes containingk0,
i.e. Iqt := {Ik0}. Ik0 is the set of all index nodes associated
with k0 in the content/annotation table. If the query node
represents a conjunction

∧p
u=0 ku of multiple keywords,

their respective setsIku are intersected,Iqt := {
⋂p
u=0 Iku},

because the conjoined keywords must all occur in the same
document node, and hence be referenced by the same index
node for the query to match. Analogously, a query node
representing a disjunction

∨p
u=0 ku of keywords is associ-

ated with the unionIqt := {
⋃p
u=0 Iku} of sets of relevant

index node IDs. IfIqt = {,/ } the query is immediately re-
jected as unsatisfiable (without entering retrieval phase1),
because no index node references any document node where
all keywords of the current query path occur.

Each structural query nodeqs inherits sets of relevant in-
dex nodes (contained in a second-order setIqv) from each
of its childrenqv (0 ≤ v ≤ m), i.e. Iqs :=

⋃m
v=0 Iqv . Thus

the textual context of a whole query subtree is taken into
account while matching any single query path. It is impor-
tant to keep the member sets of all children’s setsIqv sepa-
rate rather than intersect them like in the case of a keyword

conjunction discussed above (hence the second-order con-
struct for textual query nodes in the previous paragraph):
after all the childrenqv are not required to be all matched
by the same document node, which simultaneously contains
occurrences of all their query keywords. Consequently, the
government test for an index nodeimatchingqs is supposed
to succeed as soon as there exists for each child query node
qv one descendant ofi containing the keywords belowqv,
without demanding that it be the same for allqv. Therefore
the sets contained in theIqv sets are not merged. In caseqs
has no children,Iqs := ,/ is used as a “don’t care” sym-
bol, ensuring that the government test for such query nodes
always succeeds (see below). Note that all childrenqv are
treated alike, regardless of whether they are structural or
textual query nodes. As a consequence, this preprocessing
procedure also copes with mixed-content query trees.

Figure 5. Identity CADG: adapted query tree

Figure 5 illustrates the preprocessed tree query
/book[.//∗[" XML"] and ./preface/para[" index"]]. To
each query nodeq the member sets ofIq have been attached
(one per row). For instance, the root of the query tree,$0,
is associated with the setI$0 = {{#5}; {#2; #5; #6}}. All
sets of index node IDs have been computed using the con-
tent/annotation table shown in figure4.

Relevance tests. As described in section3.2, the gov-
ernment testgoverns(i , qs) is performed whenever an in-
dex nodei is matched against a structural query nodeqs
during retrieval phase1. In each setIqv ∈ Iqs , a descen-
dant ofi is searched (e.g. using binary search, ifIqv is or-
dered), withi counting as its own descendant, too. The test
governs(i , qs) succeeds if and only if there is at least one
(reflexive) descendant ofi in each setIqv . Note that as a
special case, the condition is satisfied forIqs = ,/ .

The containment testcontains(i , qt) is performed when
processing a textual query nodeqt during retrieval phase2.
It takes place for every index nodei matchingqt’s parent
qs, provided its government test succeeded. This ensures

thati or any of its descendants references a document node
relevant toqt’s keywords. To determine whether annota-
tion fetching fori is justified, the index node is searched in
the only member setIk of the singleton setIqt , which con-
tains the index nodes relevant forqt’s keywords. Again,
binary search may be applied ifIk is ordered. The test
contains(i , qt) succeeds if and only ifi ∈ Ik. Obviously
contains() is similar to governs() except that it is based
on an identity relation between the index node being ex-
amined and the members of the sets inIq, rather than an
ancestor/descendant relation. Hence the containment test is
stricter than the government test, as claimed in section3.2.

As an example of content-aware retrieval with the Iden-
tity CADG, consider the query tree in figure5, whose left
branch has already been discussed in section2. Since the
Identity CADG’s index tree is identical to the DataGuide’s,
we also refer to figure1 (b) in the following. The corre-
sponding content/annotation table is given in figure4. Be-
ginning with the labelbook, path matching identifies the
index node#0 as a structural match for the query node
$0. The relevance testgoverns(#0, $0) succeeds because in
both sets associated with$0, {#5} and{#2; #5; #6}, there
is a descendant of#0 (namely#5). The two paths leaving
$0 are processed one after the other.$0’s left child $1 is
reached by a soft edge without label constraint. Hence all
index nodes but#0 are structural matches for$1, as ob-
served in section2. First, the root’s left child#1 undergoes
a government test for$1. Since none of its descendants is
in $1’s list, governs(#1, $1) fails right away, excluding the
whole left branch of the index tree from further processing.
#2 never enters path matching, let alone annotation fetch-
ing. As the first node in the right index path,#3 passes the
government test for$1 (being an ancestor of#5), but fails
in the containment test for$2 since#3 6∈ {#5}. Its child
#4 satisfies the government test for the same reason as#3.
Analogously, it fails incontains(#4, $2). By contrast,#5
passes both tests, being itself a member of both$1’s and
$2’s ID list, {#5}. Consequently,#5’s occurrences of the
keyword “XML” are fetched from the content/annotation
table, retrieving&8 as$1’s only hit. The last matching in-
dex node is ruled out immediately by the government test
governs(#6, $1), which reveals that#6 is not an ancestor
of the only relevant index node,#5. Processing the second
query path is similar, and omitted here for brevity.

The sample query above shows how content-awareness
can save both main-memory and disk operations. Compared
to the DataGuide (see section2), two subtrees (rooted at#1
and #6, respectively) are pruned during retrieval phase1,
and only one disk access is performed instead of seven dur-
ing phase2. Another I/O operation is needed in phase 0 for
looking up relevant index nodes. Note that this saves the
whole evaluation for queries with non-existent keywords.
The final results are identical for both index structures.

4.2. Signature CADG

The Signature CADGdiffers from the Identity CADG
in several respects. Most importantly, keyword information
for content-aware path matching and annotation fetching is
represented only approximately. The resulting heuristic rel-
evance tests are not guaranteed to rule out all index nodes
which are irrelevant w.r.t. a given query keyword, some of
them being recognized as false hits only when looked up in
the content/annotation table. (Nevertheless the retrieval is
exact, as explained below.) Unlike the Identity CADG, the
Signature CADG relies on additional data structures (signa-
tures) in the index tree, created at indexing time, to repre-
sent the keyword occurrences referenced by an index node.
The query tree is prepared in a similar manner at query time.
As a third difference, a precomputed cumulative content
representation for entire index subtrees substitutes for the
ancestor/descendant check in the government test.

Signatures. A common IR technique for the concise
representation and fast processing of content information
aresignatures, i.e. bit strings of a fixed length. Every key-
word to be indexed or queried is assigned a (preferrably
unique and sparse) signature. Note that this does not re-
quire all keywords to be known in advance, nor to be ex-
plicitly assigned a signature before indexing. Instead a suit-
able signature may be created from the keyword’s character
sequence, e.g. using hash functions (which may produce a
negligible quantity of ambiguous signatures).

Sets of keywords, e.g. in a document or query node, can
be represented collectively by a single signature, resulting
from the bitwise disjunction (t) of the individual keyword
signatures. As shown in figure6, this may cause ambigu-
ities due to overlapping bit patterns. In fact, the heuristic
nature of the Signature CADG’s content awareness results
from this concise, but lossy content representation. Other
operations on signaturess0, s1 include the bitwise conjunc-
tion (s0 u s1), bitwise inversion (¬s0), and bitwise implica-
tion which we define ass0 @ s1 := (¬s0) t s1.

Figure 6. Ambiguous keyword signatures

Index tree. The Signature CADG’s index tree closely
resembles the one of the original DataGuide (see figure1).
The only difference is that each index nodei has two sig-
natures attached to it. Acontainment signatureis created

from the bitwise disjunction of the signatures of all key-
words occurring ini’s referenced document nodes. (If there
are no such keywords,i’s containment signature is set to
00000000 .) For content-aware navigation, agovernment

signatureencodes the keywords referenced byi or any of
its descendants in the index tree. Inner index nodes inherit
their children’s government signatures and combine it with
their own containment signature, again by bitwise disjunc-
tion. For leaf nodes, both signatures are identical. Figure7
depicts the index tree of a Signature CADG built over the
document collection from figure1 (a).

Figure 7. Signature CADG: index tree

Query preprocessing. Similar to the index tree, the
query tree is prepared for content-aware navigation and oc-
currence fetching with the Signature CADG. Every textual
query nodeqt has a single signaturesqt created from the
keyword signaturessku of all keywordsku (0 ≤ u ≤ p) at-
tached to this node (which are either stored in asignature ta-
bleor created on the fly). If there is only one such keyword,
sayk0, thensqt := sk0 . In the case of a keyword conjunc-
tion

∧p
u=0 ku, sqt is set to be the bitwise disjunction of the

keyword signatures,sqt :=
⊔p
u=0 sku . The reason for this

somewhat counterintuitive definition will become apparent
when examining the containment test. Informally, disjoin-
ing the signatures allows each keyword to “leave its foot-
print” in the query node’s signature, as required for a key-
word conjunction. Analogously,sqt :=

dp
u=0 sku for a key-

word disjunction
∨p
u=0 ku in qt. A structural query node’s

signaturesqs indicates which keywords are contained in
the textual query nodes belowqs. To this end, the signa-
turessqv of its childrenqv (0 ≤ v ≤ m) are disjoined,
sqs :=

⊔m
v=0 sqv . As observed for the Identity CADG,

this upward propagation of keyword information includes
the textual context of a whole query subtree when matching

any single query path. The signature of a childless structural
query node is set to

�� ��00000000 which guarantees that any
index node’s government test will succeed, as one would
expect for a query node without textual constraints.

Figure8 illustrates the tree query from figure5, this time
preprocessed for the Signature CADG. The keyword signa-
tures are the same as in figure7. They are either fetched
from a signature table, where they have been stored at in-
dexing time, or created on the fly. Although the former so-
lution requires some extra disk space and an additional I/O
operation at query time, it proved superior to dynamic sig-
nature creation in our experiments (see section5).

Figure 8. Signature CADG: adapted query tree

Relevance tests. The government testgoverns(i , qs)
for an index nodei and a structural query nodeqs simply
consists of the bitwise implication ofqs’s signature andi’s
government signature,sqs @ sg. This means that those bits
set insqs because of the query keywords belowqs must also
be set insg, which is definitely the case when each such
query keyword occurs in some document node referenced
by i or its descendants. However, the converse is not al-
ways true:sqs @ sg may also hold wheni does not govern
all the keywords inqs’s subtree. Recall from figure6 that
the disjunction of different sets of keyword signatures can
produce identical results. Likewise, other keywords than
the ones responsible forsqs can makesg look as if i were
relevant w.r.t.qs, although it is not. In this case, path match-
ing continues in the subtree rooted ati, ignoring the fact that
occurrence fetching for any of its nodes is doomed to fail.

Analogously to the government test just described, the
containment testcontains(i , qt) for an index nodei and a
textual query nodeqt is just the bitwise implication ofqt’s
signature andi’s containment signature,sqt @ sc. It suc-
ceeds whenqt’s keywords occur in document nodes refer-
enced byi itself (regardless of its descendants), where they
cause the same bits to be set insc as insqt . But as with

the government test,i might also pass the containment test
without actually containing all keywords insqt , in which
case occurrence fetching for this index node (including a
database access) is performed in vain.

For instance, reconsider the query from figure8,
/book[.//∗[" XML"] and ./preface/para[" index"]], and
the index tree in figure7 whose corresponding con-
tent/annotation table looks like the one in figure4. The
query tree’s root labelbook leads to index node#0,
whose government signature is11011110 . Since the
test governs(#0, $0) =

�� ��01011100 @ 11011110 suc-
ceeds, path matching continues with the query node$1.
The //∗ step is matched by all index nodes except the
index root, as observed in section4.1. #0’s left child
#1 is immediately discarded in the government test for
$1, governs(#1, $1) =

�� ��01011100 @ 11011010 , since
the antepenultimate bit is set in$1’s signature, but not
in #1’s. Therefore the left branch of the index tree
is pruned, and path matching continues with#3. It
passesgoverns(#3, $1) =

�� ��01011100 @ 01011100 , but
not contains(#3, $2) =

�� ��01011100 @ 00000000 . The
same is true for#3’s only child #4. Yet the remain-
ing index nodes behave differently: while#5 passes
both governs(#5, $1) (same asgoverns(#3, $1)) and
contains(#5, $2) =

�� ��01011100 @ 01011100 , contribut-
ing the document node&8 to the result,#6 fails already in
the first test,
�� ��01011100 @ 01001000 (the fourth and

sixth bits are missing in its government signature). Accord-
ingly, #6 is excluded from further navigation (which cannot
take place anyway,#6 being a leaf node) and annotation
fetching, thus saving a look-up in the content/annotation ta-
ble. The second query path is processed similarly.

In this example, the number of disk accesses compared
to the DataGuide is reduced from seven to two (includ-
ing query preprocessing), like with the Identity CADG
above. Moreover, signatures are more efficient data struc-
tures than node ID sets (in terms of both storage and pro-
cessing time), and make the relevance checks and prepro-
cessing easier to implement. Note, however, that if an-
other keyword with a suitable signature occurred in the doc-
ument node referenced by#6, e.g. the keyword“query”
with the signature00011100 , then#6 would be mistaken
to be relevant for$5’s query keyword“XML” . The rea-
son is that both#6’s government and containment signa-
tures would then be the bitwise disjunction of the two sig-
natures representing“index” and“query” , 01001000 t
00011100 = 01011100 , which equals the key-

word signature for“XML” . Hence bothgoverns(#6, $1)
and contains(#6, $2) would succeed. Only after a con-
tent/annotation table look-up would#6 turn out to be a false
hit. This illustrates how the Signature CADG trades off
pruning precision against navigation efficiency.

5. Experimental evaluation

This section gives an overview of the extensive experi-
ments that were carried out in order to evaluate the Content-
Aware DataGuide. Besides content-awareness, various op-
timizations have been tested with both realizations of the
CADG as well as with the original DataGuide. A detailed
report on the evaluation can be found in [17].

5.1. Experimental set-up

The tests have been performed on three document collec-
tions with different characteristics:Cities is a small collec-
tion (16,000 nodes, 1.3 MB) describing German cities. It is
a homogeneous collection, comprising 19,000 distinct key-
words in 253 different label paths (with a maximal length
of 7) which are not recursive (i.e., no label appears twice on
a path). The second collection,XMark, is a medium-sized
(417,000 nodes, 30 MB) synthetically generated collection
[18] with 515 different label paths and 84,000 different key-
words. This collection is slightly more heterogeneous than
theCitiescollection and contains some recursive paths. The
third collection (NP, 510 MB), containing syntactically an-
alyzed German noun phrases [13], was the most challeng-
ing collection, not only due to its size:NP is a strongly
recursive and heterogeneous collection (2,349 different la-
bel paths of maximal depth 40). In total, 130,000 different
keywords appear in 458,000 different nodes.

We tested four basic index structures, namely the orig-
inal DataGuide, the Identity CADG, the Signature CADG
(with 64-bit signatures and 3 bit set in each keyword sig-
nature), and a variation of the latter, each equipped with all
possible combinations of four optimizations. Thus a total
of 64 different index configurations were compared to each
other. For lack of space, we only report on the first three
index structures without optimizations here. Both hand-
crafted and synthetic path query sets were evaluated against
the different document collections, resulting in four test
suites: unlikeCitiesMwith 166 manually created queries on
the Cities collection,CitiesA (191 queries),XMarkA (163
queries), andNpA (160 queries) consist of automatically
generated queries on theCities, XMark, andNPcollections,
respectively. For a systematic analysis of the experimental
results, the queries of all test suites were classified accord-
ing to sevenquery characteristics, which are summarized
in table1. Each characteristic of a given query is encoded
by one of seven bits in aquery signaturedetermining which
class the query belongs to. A bit value of 1 indicates a more
restrictive nature of the query w.r.t. the given characteris-
tic, whereas 0 means the query is less selective and there-
fore harder to evaluate. Hand-crafted queries were classi-
fied manually, whereas synthetic queries were assigned sig-
natures automatically during the generation process. Two

groups of query characteristic turned out to be most inter-
esting for our purposes. First, the bits 2, 3, and 4 con-
cern the navigational effort during evaluation: queries with
--000-- signatures (read “- ” as a “don’t care” symbol),
being structurally unselective, cause many index paths to be
visited. Second, the bits 1 and 0 characterize keyword se-
lectivity, a common IR notion which we have generalized to
structured documents: A keyword is callednode-selectiveif
there are few document nodes containing that keyword, and
path-selectiveif there are few index nodes referencing such
document nodes (for details on the collection-specific selec-
tivity thresholds, see [17]). For instance, the query classes
-----10 contain queries whose keywords occur often in
the documents, though only under a small number of differ-
ent label paths. Not all 128 query classes were used in every
test suite, e.g. because specific combinations of path- and
node-selective keywords hardly ever occurred in the data.
This is particularly the case forXMarkAwhere only 60% of
all query classes were populated, whereas the query classes
in the other test suites are nearly complete.

6 1------ query result mismatch
5 -1----- branching few path joins
4 --1---- soft structure few soft-edged struct. nodes
3 ---1--- label selectivity highly selective labels
2 ----1-- soft text few soft-edged textual nodes
1 -----1- path selectivity highly path-select. keywords
0 ------1 node selectivity highly node-select. keywords

Table 1. Query classification scheme

The index structures were integrated into the XML re-
trieval systemX2 [11] that computes aComplete Answer
Aggregate(CAA) [10] for a query. The advantage of using
this data structure in our case is that a CAA is a minimal rep-
resentation for the set of all answers to a query. Query eval-
uation time as a performance measure in all experiments
includes CAA construction. Since large parts of the query
evaluation algorithms and even index algorithms are shared
by all basic index structures, the comparison results are not
polluted with implementational artefacts.

All tests have been carried out sequentially on the same
computer (AMD Athlon XP 1.33 GHz, 512 MB, running
SuSE Linux 7.3 with kernel 2.4.16). The PostgreSQL re-
lational database system (with a disabled database cache),
version 7.1.3, was used as relational backend for storing
the index structures. To compensate for file system cache
effects, each query was processed once without taking the
results into account. The following iterations of the same
query (between three and ten, depending on the test suite)
were then averaged.

5.2. Results

Figure9 shows the performance results for four selected
sets of path query classes ([17] provides similar results for
tree queries). Each plot covers the queries in all classes with
certain characteristics, as indicated by the plot title. For in-
stance, the upper right plot assembles all query classes with
mismatch queries (11----- , see table1), i.e. 32 classes al-
together. By contrast, the lower left plot narrows down to
those queries with few path joins, many soft-edged struc-
tural and textual nodes, and unselective labels (-1000-- , 8
query classes). As labelled on the abscissa, every test suite
comprises three boxes, each of which represents the perfor-
mance of a single index, i.e. Identity CADG (IC,), Signa-
ture CADG (SC,), or DataGuide (DG,). The relative
performance compared to the DataGuide, which determines
the height of each box, was computed as follows. First, the
time needed to evaluate any given query with a specific in-
dex was averaged over all iterations of that query. Next,
the average time was normalized w.r.t. the DataGuide’s av-
erage value for that query (which produces 100% for the
DataGuide, being compared to itself). Then the relative
times of all queries in a single query class were averaged.
Finally, the average over the relative evaluation times of all
selected classes was plotted. The step-wise averaging en-
sures that query classes of different cardinality are equally
weighted. Normalization w.r.t. to the DataGuide takes place
before averaging to make fast and slow queries mutually
comparable (otherwise long-evaluating queries would pre-
dominate the result).

Figure 9. Retrieval time CADG vs. DataGuide

As figure9 shows, the Signature CADG outperforms the
original DataGuide by more than 50% on average for all
query classes in theCitiesM, XMarkA, andNpA test suites,
and much more for selected classes. InCitiesA, the per-
formance gain lies between 30 and 40%, probably due to a
higher CAA construction overhead (see section7).

A comparison of the four plots above reveals that certain

additional characteristics of path queries (upper left plot)
further increase the relative performance gain of the Signa-
ture CADG by a factor 2 to 20 (except forCitiesA). Mis-
match queries (upper right plot) are usually favourable to
the CADG, which detects misplaced or non-existent query
keywords early during retrieval. The relative performance
gain still grows for queries with fairly unspecific structure
(lower left plot), causing more index nodes to be visited
and more annotations to be fetched from disk. Here the
benefits of content awareness reduce the Signature CADG’s
evaluation time to well below 30% of the DataGuide’s
in three out of four test suites. Finally, when consider-
ing only those poorly structured queries with path-selective
keywords (lower right plot), the Signature CADG’s perfor-
mance on theNPcollection once again rises dramatically to
a gain of 97.5% compared to the original DataGuide. This
proves that the Signature CADG is particularly effective for
large amounts of data. Moreover, its preference for queries
with little structure but selective keywords makes it most
suitable for realistic applications, for three reasons: users
(1) tend to use selective keywords to reduce the number of
hits, (2) often ignore the document schema, unwilling to
explore it before querying, and (3) are likely to focus on
content rather than structure, being accustomed to the flat
keyword search facilities of today’s WWW search engines.
The same is true for synthetic queries, which often neglect
structure to support different document schemata.

Figure 10. Index size CADG vs. DataGuide

Figure9 also illustrates that heuristic content-awareness
is much more effective than the Identity CADG’s exact re-
alization, despite a possible overhead caused by unpruned
mismatches. The price to pay is an increased storage over-
head due to the signature table. As depicted in figure10, the
Signature CADG grows to 150% of the size of theCities
collection, which is three times as big as the DataGuide.
However, the storage overhead is reduced considerably for
XMark andNP, again recommending the CADG for large-
scale applications. Also note that the storage measurements
include so-calledfunction words(i.e. extremely unselective
keywords without a proper meaning) and inflected forms,
which may be excluded from indexing using common IR
techniques like stop word lists and stemming. This further
reduces the storage overhead. The resulting index, although
inexact, is well suited for result ranking like in [14].

6. Related work

In this section we discuss approaches directly related to
the CADG, focussing on XML index structures which in-
corporate the textual content of the documents. Work on
index structures for XML in general is surveyed in [16].

An early approach targeted at integrating text retrieval
(and relevance ranking) with an index structure for semi-
structured data is theBUS index[15]. In contrast to our
approach, a keyword is mapped to both the containing doc-
ument nodes and index nodes. The latter are used to fil-
ter out document nodes which do not satisfy the path con-
ditions related to the keyword. This corresponds to the
DataGuide’s content/structure join, although carried out at
index node rather than document node level. Note that the
CADG uses structural and content information simultane-
ously in an earlier retrieval phase (content-aware annotation
fetching), thus saving the fetching of false positives as well
as an explicit content/structure join.

The Signature File Hierarchy[4] is based on keyword
signatures like the Signature CADG. However, these signa-
tures are not propagated to index nodes. Instead document
node signatures need to be fetched from disk during path
matching. For realistic data collections, this entails a sig-
nificant overhead owing to I/O operations.

The IndexFabric [5] enriches the DataGuide’s index
nodes with Tries representing textual content. This is equiv-
alent to the materialized join of the CADG. In contrast to
our work, the IndexFabric is equipped with a sophisticated
layered storage architecture. Ignoring the notion of content-
aware navigation, however, it is closer to the DataGuide.

A very simple approach to content indexing for XML
documents is presented in [12]: designed as an extension
for inverted-file based index structures mapping keywords
to document nodes, theContext Indexdoes not use a tree
structure to summarize the document schema. Every key-
word occurrence bears approximative information about the
respective document node’s structural context (e.g. its label
path) in the form of a structure signature. It serves to discard
structural mismatches early in the retrieval process.

Similar in spirit to the aforementioned approach is the
work described in [2]. Here keyword occurrences are an-
notated with information about the structural context in the
form of Materialized Schema Paths, a datastructure opti-
mized for compact representation of schema and document
paths. Flexible access is not only provided to individual
keywords, but also to larger portions of content and to node
labels, based on collection statistics. From another point
of view, the approach resembles the content-centric CADG
(see section3.1), although using index paths (Materialized
Schema Paths) instead of DataGuides to represent keyword-
specific fragments of the document collection.

7. Conclusion

Results. In this paper, we have introduced the Content-
Aware DataGuide (CADG) as an efficient index structure
for XML documents. The CADG enhances the original
DataGuide with content-aware navigation and annotation
fetching. As a means of integrating content and structure
matching during all retrieval phases, these optimizations
save a join of the retrieved document node sets at query time
as well as many needless I/O operations. Two concrete re-
alizations of the CADG have been presented, the Identity
CADG featuring exact and the Signature CADG heuristic
content-awareness. Based on a novel query classification
scheme, experiments prove that (1) the Signature CADG is
faster than the Identity CADG, and (2) the Signature CADG
outperforms the original DataGuide by more than 50% in
nearly all test suites, when averaging all path query classes.
For classes containing queries with little structure and selec-
tive keywords, which have been shown to be most important
in real-world applications, the Signature CADG’s retrieval
time is only 3-40% of the DataGuide’s. The highest perfor-
mance gain, and lowest storage overhead (5% of the origi-
nal data), is achieved for a large, heterogeneous document
collection of several hundred MB.

Future Work . CAAs as representations of query results
usually contain not only the IDs of the retrieved document
nodes, but also of some of their ancestors. Currently these
ancestor IDs are looked up in the database for each hit, caus-
ing many I/O operations especially for unselective queries.
We plan to address this performance bottleneck using num-
bering schemes similar to the one described in [7].

Other possible investigations may concern incremental
index updates as well as a generalization to graph databases.
In particular, signature propagation in the Signature CADG
needs to be reviewed when indexing graph-shaped docu-
ments. In special cases we expect the CADG for a graph
database to be even smaller than the corresponding origi-
nal DataGuide. (General complexity results for graph doc-
uments and queries can be found in [10].) Future research
may also include new techniques for adaptively increas-
ing the level of content-awareness based on query statis-
tics. An on-going project tries to amalgamate DataGuide
and CADG techniques with the rather limited indexing sup-
port for XML which are provided by commercial relational
database systems, like e.g. IBM’s XML Extender.

As far as the performance evaluation is concerned, we
plan to refine the proposed query classification scheme and
to generate queries based on actual documents rather than
DTDs. Furthermore it would be interesting to assess the
benefits of both content-aware navigation and the material-
ized content/structure join separately.

Acknowledgements. The authors thank Tim Furche for
providing the query generator used in the experiments.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu.Data on the Web:
from Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[2] M. Barg and R. K. Wong. A Fast and Versatile Path Index
for Querying Semi-Structured Data. InProc. 8th Int. Conf.
on Database Systems for Advanced Applications, 2003.

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation, 2000.

[4] Y. Chen and K. Aberer. Combining Pat-Trees and Signa-
ture Files for Query Evaluation in Document Databases. In
Proc. 10th Int. Conf. on Database and Expert Systems Ap-
plications, 1999.

[5] B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon. A Fast Index for Semistructured Data. In
Proc. 27th Int. Conf. on Very Large Data Bases, 2001.

[6] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In Proc. 23rd Int. Conf. on Very Large Data Bases, 1997.

[7] Y. K. Lee, S.-J. Yoo, K. Yoon, and P. B. Berra. Index struc-
tures for structured documents.Proc. 1st ACM Int. Conf. on
Digital Libraries, 1996.

[8] Q. Li and B. Moon. Indexing and Querying XML Data for
Regular Path Expressions. InProc. 27th Int. Conf. on Very
Large Data Bases, 2001.

[9] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data.SIGMOD Record, 26(3):54–66, 1997.

[10] H. Meuss, K. Schulz, and F. Bry. Towards Aggregated An-
swers for Semistructured Data. InProc. 8th Int. Conf. on
Database Theory, 2001.

[11] H. Meuss, K. Schulz, and F. Bry. Visual Querying and Ex-
ploration of Large Answers in XML Databases with X2: A
Demonstration. InProc. 19th Int. Conf. on Database Engi-
neering, 2003.

[12] H. Meuss and C. Strohmaier. Improving Index Structures
for Structured Document Retrieval. InProc. 21st Ann. Col-
loquium on IR Research, 1999.

[13] J. Oesterle and P. Maier-Meyer. The GNoP (German Noun
Phrase) Treebank. InProc. 1st Int. Conf. on Language Re-
sources and Evaluation, 1998.

[14] T. Schlieder and H. Meuss. Querying and Ranking XML
Documents.JASIS Spec. Top. XML/IR 53(6):489-503, 2002.

[15] D. Shin, H. Jang, and H. Jin. BUS: An Effective Indexing
and Retrieval Scheme in Structured Documents. InProc.
3rd ACM Int. Conf. on Digital Libraries, 1998.

[16] F. Weigel. A Survey of Indexing Techniques for Semistruc-
tured Documents. Technical report, Dept. of Computer Sci-
ence, University of Munich, Germany, 2002.

[17] F. Weigel. Content-Aware DataGuides for Indexing Semi-
Structured Data. Master’s thesis, Dept. of Computer Sci-
ence, University of Munich, Germany, 2003.

[18] XML Benchmark Project. Benchmark suite for XML repos-
itories. Available athttp://monetdb.cwi.nl/xml .

	. Introduction
	. Indexing XML with the original DataGuide
	. Two approaches towards a Content-Aware DataGuide (CADG)
	. Naive content-centric approach
	. Structure-centric approach

	. Two realizations of the structure-centric approach: Identity and Signature CADG
	. Identity CADG
	. Signature CADG

	. Experimental evaluation
	. Experimental set-up
	. Results

	. Related work
	. Conclusion

