INSTITUT FUR INFORMATIK

Ludwig

Lehr- und Forschungseinheit fiir Maximilians —
Programmier- und Modellierungssprachen Universitit —
Oettingenstrafie 67, D-80538 Miinchen Miinchen

A contribution to the Semantics of Xcerpt,
a Web Query and Transformation Language
(Extended Abstract)

Francgois Bry, Sebastian Schaffert, Andreas Schroeder

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht /Research Report PMS-FB-2004-3, January 2004



A contribution to the Semantics of Xcerpt, a Web
Query and Transformation Language
(Extended Abstract)

Francois Bry, Sebastian Schaffert and Andreas Schroeder

Institute for Computer Science, University of Munich
http://www.pms.informatik.uni-muenchen.de/

1 Introduction

Xcerpt [1] is a declarative and pattern-based query and transformation language
for the Web with deductive capabilities. In contrast to Web query languages
like XQuery and XSLT [2,3], Xcerpt relies on concepts and techniques from
logic programming and automated theorem proving such as declarative “query
patterns” and “rule chaining”. Xcerpt can also be used for querying Web meta-
data, like OWL or RDF data [1,5], and reasoning on such metadata. In contrast
to specific languages for OWL and RDF, however, Xcerpt is a general purpose
query, transformation, and reasoning language, i.e. it can be used for reasoning
not only with Web metadata but also with plain Web data.

Salient aspects of Xcerpt are its nonstandard “query patterns” for retrieving
incompletely specified data and its unusual “grouping constructs” some and all
that significantly depart from the standard approaches in logic programming or
automated theorem proving. Xcerpt relies on a new, assymmetric unification,
called simulation unification for evaluating query patterns that incompletely
specify data. Furthermore, Xcerpt does not rely on meta reasoning for express-
ing and processing “grouping” constructs corresponding to Prolog’s metalevel
predicates setof and bagof.

This abstract gives a brief overview over challenges of applying logic pro-
gramming techniques to Web querying. In particular it suggests two different
approaches for treating the meta-level grouping constructs all and some in a
proof calculus formalising the operational semantics of Xcerpt.

2 Requirements of a Web Query Language

2.1 Differences to Traditional Logic Programming

The observation that motivated the development of Xcerpt is that Web data
formats like XML describe tree or graph structures just like terms in logic
programming. However, the usage of these terms differs in several important
aspects from the terms used in traditional logic programming, which are dis-
cussed below.

Information Representation. In logic programming, a database usually consists
of a set of facts, each of which comprises an alternative entry in the database.



In the Web, the concept of a database is usually much broader. Besides consid-
ering a collection of terms (or documents) as a database, it is very common to
represent a complete database within a single term, where the individual entries
are subterms of the database.

Structure. Whereas logic programming (and relational databases, for that mat-
ter) assumes very homogenous sets of data, databases on the Web are in general
more flexible and data items of a similar kind often have a slightly different
structure. For example, an address book might contain one address entry which
has two email addresses and no phone, and another which has no email address
but a phone as well as a mobile number.

Schema. Terms in logic programming follow a rather rigid schema, in which
both the term label and the arity are fixed (i.e. f{a} and f{a,b} are instances
of different schemas and a query for f{X} would match only the first).

Semistructured databases as found on the Web are much more flexible in
this respect, mostly due to the heterogeneous and constantly evolving nature
of the Web. In particular,

— documents are not required to have a schema at all

— if a schema exists, they do not need to fully comply to it

— schema languages like XML Schema or RelaxNG [6,7] allow more flexible
structures, where subterms might be optional, alternatives, or repeated an
arbitrary number of times

For example, f{a} and f{a,b} might both be instances of the same schema
and should thus both match with the query f{X}.

2.2 Partial Patterns and Grouping Constructs

To summarise, a Web query language like Xcerpt needs to fulfill the following
requirements:

— it needs to be able to work with partial information about the queried
document, as schema information might be missing or incomplete

— it needs to be able to query several alternatives within the same document,
which might even differ in their structure.

— it needs to be able to construct new documents in the same manner, i.e.
where several alternatives are grouped in the same document

Xcerpt addresses the first two requirements by extending the notion of terms
to partial patterns. Such partial patterns allow the programmer to specify only
the minimum information that is necessary for querying (e.g. in an address
book, it is sufficient to specify the name to retrieve an entry). Partial patterns
also allow to query several alternatives in a single term, as these can be identified
with the different alternative ways of matching a partial pattern with the term
(e.g. a partial query for f{X} against a database f{a,b} matches either with
X = a or with X =b).



The last requirement is addressed by the grouping constructs all and some
which are similar in meaning to the Prolog predicates setof or bagof in that
they collect all possible alternative solutions. Since grouping constructs are very
frequently used in Web querying, Xcerpt includes them into the language itself
rather than as external predicates. As a consequence, the proof calculi should
support such grouping constructs directly, whereas Prolog works around this
problem with meta reasoning. An example of an Xcerpt rule containing both
grouping constructs and partial query patterns is given in Figure 1.

CONSTRUCT

books {
all book {
var TITLE, price-a { var PRICEA }, price-b { var PRICEB } }
}
FROM
and {
in { resource { "http://bn.com" },
bib {{
book {{ var TITLE ~~ title{{}}, price { var PRICEA } }}
13,

in { resource { "http://amazon.com" },

reviews {{
entry {{ var TITLE ~~ title{{}}, price { var PRICEB } }}

I}
WHERE
or
var PRICEA < 40,
var PRICEB < 40

END

Fig.1. An Xcerpt rule that queries two book databases and returns a list of
book titles with price comparisons. Partial query patterns are indicated by
double braces. A more detailed explanation of Xcerpt’s syntax can be found in

[1].

3 Simulation Unification

Simulation unification [8] is a non-standard, assymetric unification method that
respects partial term specifications. Simulation unification is based on a relation
called simulation which is a partial ordering on the set of terms. Intuitively, a
term t; is simulated in a term o if the structure of ¢; can be found in o (see
Figure 2).

Simulation unification of a partial term ¢; and a term t5 computes a set
of alternative substitutions for the variables in t; and 2 such that the ground
instance of ¢; simulates into the ground instance of t5. For instance, simula-
tion unification of the partial term f{X} and the term f{a,b} yields the two
alternative substitutions o3 = {X = a} and o9 = {X = b}.

4 Approaches to Proof Calculi for Xcerpt

The suggested calculi are inspired by the SLD resolution used in logic program-
ming. However, traditional approaches like the SLD resolution do not account



Fig. 2. A simulation between two graph representations of terms. Note that the
subterm c is contained in the term on the right but not in the term on the left.

well for constructs like partial patterns or grouping constructs. Both kinds of
constructs have implications on possible proof calculi.

High Branching Rate. In traditional logic programming, there are two elements
of nondeterminism that lead to branching in the proof tree: selection of the
predicate to unfold in the evaluation of a rule body, and the selection of the
program rule used for further chaining. Xcerpt’s usage of partial patterns adds
a third element: When using partial patterns, there is in general no single
way to match two terms. Instead, all possible alternative matchings have to
be considered, which leads to a significantly higher branching rate.

Grouping Constructs all and some. Unlike Prolog’s setof and bagof predicates,
the grouping constructs all and some are an integral part of the language. It
is hence desirable to support such higher order constructs in the proof calculus
itself rather than treating them as external predicates.

This abstract gives a brief overview over possible approaches to proof calculi
that are taking into account the above-mentioned issues. The remainder of this
section introduces two approaches called “one at once” and “all at once”, which
differ in that “one at once” follows only a single proof path at a time (like SLD
resolution), whereas “all at once” allows to follow a different proof path at each
step, regardless of whether the previous path was finished or not.

In both approaches, the proof tree is represented as a formula of constraints,
the constraint store. Such constraints are either folded queries (which may be
unfolded by matching with the heads of rules) or simulation constraints (which
specify that two terms have to be unified).

4.1 One at once

The “one at once” calculus is similar to the SLD resolution calculus with op-
erational treatment of higher order predicates used in logic programming. Like
SLD resolution, the calculus considers only a single path at a time. If a group-
ing construct occurs, the calculus interrupts the evaluation of the current path,
visits each of the paths of the queries in scope of this grouping construct in
turn and collects the respective solutions, and afterwards continues with the
evaluation of the current path.



“One at once” has the advantage that it only needs to consider a single con-
junctive path at a time. On the other hand, occurrences of grouping constructs
externally “interrupt” the evaluation by recursive applications of the calculus
to certain queries until all solutions are found.

4.2 All at once

The “all at once” calculus considers all paths in the proof tree at once. Thus,
the considered constraint store contains conjunctions as well as disjunctions.
Where “one at once” unfolds a query with only one of the alternatives at a
time (and then relies on backtracking for finding different alternatives), “all
at once” unfolds all possible alternatives simultaneously and adds them to the
proof tree. If a grouping construct occurs, it adds a dependency constraint to a
certain subtree of the proof tree. The evaluation may then continue at any node
in the proof tree. If this subtree is completely solved, the grouping construct
can be solved as well.

This approach has the advantage that higher order constructs are included
more naturally into the calculus. Instead of relying on external control for solv-
ing higher order constructs, the dependency constraint can be treated by the
rules of the calculus.

In addition, the possibility to continue at any node in the proof tree gives
rise to interesting considerations about selection strategies. With a depth-first
search, the calculus would resemble “one at once” or SLD resolution. Different
search strategies might however be auspicious. A cost based A* search that
tries to first select such nodes that contribute most to the result could provide
performance benefits in practical applications, in particular in the context of
the Web where 10 costs for remote resources are often considerably higher than
for local or even in-memory resources.

5 Related Work and Conclusion

This abstract gives a short overview over issues and problems of applying tech-
niques used in logic programming to the Web query language Xcerpt. Two
different approaches for treating Xcerpt’s built-in higher level constructs all
and some have been presented.

The language Xcerpt is work in progress. An comprehensive introduction
into the language Xcerpt with many examples can be found in [1]. The simula-
tion unification algorithm has first been presented at [¢]. A declarative semantics
in form of a model theory in the style of classical logic is currently being worked
on and first results have been published in [9]. A prototype of Xcerpt exists and
has been demonstrated at [10)].

Xcerpt is not the only rule-based query language for Web data. Most note-
ably, the language UnQL [1 1] first introduced the concept of rule-based querying
to the XML world, but it does not provide important features like rule chaining
and is not based on logic programming.

The necessity of higher order predicates like setof and bagof in Prolog have
been discussed in numerous articles (see e.g. [12]). Also, a formal semantics



has been considered e.g. in [13]. However, such considerations in general do not
include support for higher order constructs into the calculus itself but instead
treat them as external predicates.

References

ootk N

10.

11.

12.

13.

Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query and Trans-
formation Language for XML. In: Proc. Int. Workshop on Rule Markup Languages for
Business Rules on the Semantic Web (RuleML’ 02). (2002) (invited article).

W3C: XQuery: A Query Language for XML. (2001)

W3C: Extensible Stylesheet Language (XSL). (2000)

W3C: Web Ontology Language (OWL). (2003)

W3C: Resource Description Framework (RDF). (1999)

W3C: XML Schema Part 0: Primer; Part 1: Structures, Part 2: Datatypes. (2001)
Clark, J., Murata, M.: RELAX NG Specification, http://relaxng.org/spec-20011203.
html. (2001) ISO/IEC 19757-2:2003.

Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language for
XML and Semistructured Data: Simulation Unification. In: Proc. Int. Conf. on Logic
Programming. LNCS 2401, Springer-Verlag (2002)

Bry, F., Schaffert, S.: An entailment relation for reasoning on the web. In: Proc. Int.
Workshop on Rules and Rule Markup Languages for the Semantic Web (RuleML’03).
LNCS 2876, Sanibel Island, Florida, USA, Springer-Verlag (2003)

Berger, S., Bry, F., Schaffert, S., Wieser, C.: Xcerpt and visXcerpt: From Pattern-Based
to Visual Querying of XML and Semistructured Data. In: Proc. Intl. Conference on Very
Large Databases (VLDBO03) — Demonstrations Track, Berlin, Germany (2003)
Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra for
Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000)

Warren, D.H.D.: Higher-order extensions to prolog: Are they needed? In Hayes-Roth, M.,
Pao, eds.: Machine Intelligence. Volume 10. Ellis Horwood (1982)

Borger, E., Rosenzweig, D.: The mathematics of set predicates in prolog. In: Kurt Godel
Colloquium. (1993) 1-13



