
I4-D4

Initial Draft of a Possible Declarative Semantics for the
Language

Project title: Reasoning on the Web with Rules and Semantics
Project acronym: REWERSE
Project number: IST-2004-506779
Project instrument: EU FP6 Network of Excellence (NoE)
Project thematic priority: Priority 2: Information Society Technologies (IST)
Document type: D (deliverable)
Nature of document: R (report)
Dissemination level: PU (public)
Document number: IST506779/Munich/I4-D4/D/PU/a1
Responsible editors: Sebastian Schaffert
Reviewers: Claude Kirchner and Wolfgang May
Contributing participants: Munich
Contributing workpackages: I4
Contractual date of deliverable: 28 February 2005
Actual submission date: 15 April 2005

Abstract
This article introduces a preliminary declarative semantics for a subset of the language Xcerpt (so-called
grouping-stratifiable programs) in form of a classical (Tarski style) model theory, adapted to the specific
requirements of Xcerpt’s constructs (e.g. the various aspects of incompleteness in query terms, grouping
constructs in rule heads, etc.). Most importantly, the model theory usesterm simulationas a replacement
for term equality to handle incomplete term specifications, and an extended notion of substitutions in
order to properly convey the semantics of grouping constructs. Based upon this model theory, a fixpoint
semantics is also described, leading to a first notion of forward chaining evaluation of Xcerpt programs.

Keyword List
reasoning, query language, Semantic Web, model theory, semantics, declarative semantics

Project co-funded by the European Commission and the Swiss Federal Office for Education and Science within the Sixth Frame-

work Programme.

c© REWERSE 2005.

ii

Initial Draft of a Possible Declarative Semantics for the
Language

Sebastian Schaffert, François Bry, Tim Furche

Institute for Informatics, University of Munich, Germany
Email: {Sebastian.Schaffert,Francois.Bry,Tim.Furche}@ifi.lmu.de

15 April 2005

Abstract
This article introduces a preliminary declarative semantics for a subset of the language Xcerpt (so-called
grouping-stratifiable programs) in form of a classical (Tarski style) model theory, adapted to the specific
requirements of Xcerpt’s constructs (e.g. the various aspects of incompleteness in query terms, grouping
constructs in rule heads, etc.). Most importantly, the model theory usesterm simulationas a replacement
for term equality to handle incomplete term specifications, and an extended notion of substitutions in
order to properly convey the semantics of grouping constructs. Based upon this model theory, a fixpoint
semantics is also described, leading to a first notion of forward chaining evaluation of Xcerpt programs.

Keyword List
reasoning, query language, Semantic Web, model theory, semantics, declarative semantics

iv

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Xcerpt: A versatile Web Query Language .1

2.1.1 Data Terms . 2
2.1.2 Query Terms . 2
2.1.3 Construct Terms . 2
2.1.4 Construct-Query Rules .4

2.2 Range Restrictedness and Stratification .6
2.2.1 Range Restrictedness .6
2.2.2 Stratification . 7

2.3 Ground Query Terms and Ground Query Term Graphs8
2.4 Term Sequences and Successors .9
2.5 Substitutions and Substitution Sets .11

2.5.1 Substitutions .11
2.5.2 Substitution Sets .12
2.5.3 Maximal Substitution Sets .13

3 Terms as Formulas 13
3.1 Term Formulas .13
3.2 Xcerpt Programs as Formulas .14

4 Application of Substitutions to Xcerpt Terms 15
4.1 Application to Query Terms .15
4.2 Application to Construct Terms .15
4.3 Application to Query Term Formulas .18

5 Simulation and Simulation Unifiers 18
5.1 Rooted Graph Simulation .18
5.2 Ground Query Term Simulation .19
5.3 Simulation Order and Simulation Equivalence .24
5.4 Simulation Unifiers .25

6 Interpretations and Entailment 26
6.1 Interpretations .26
6.2 Satisfaction and Models .27

7 Fixpoint Semantics 29

8 Outlook and Future Work 32
8.1 Semantics of Advanced Xcerpt Constructs .32
8.2 (Non-)Monotonicity: Negation and Grouping Constructs33
8.3 Minimal Models .33

v

vi

1 Introduction

This article introduces a declarative semantics for a restricted form of Xcerpt programs (so-called
grouping-stratifiable programswithout negation). Although a short introduction to Xcerpt is given in
Section 2, this article does not cover the language in much detail; interested readers can find a more thor-
ough description of Xcerpt in e.g. [SB04] and [Sch04]. The aim of the declarative semantics introduced
here is to describe the semantics of Xcerpt programs in a precise and formal, yet intuitive and straightfor-
ward, manner without referring to a concrete implementation of the language. This description should
serve as a reference for verifying the correctness and completeness of language implementations and as
a formal specification for users seeking to get a precise understanding of the language.

The declarative semantics is given as a model theory in the style ofTarski (i.e. recursively defined
over the formula structure). It follows the semantics for first order logic rather closely but needs to take
into account the particularities of Xcerpt terms and programs (e.g. the various aspects of incompleteness
in query terms, grouping constructs in rule heads, etc.). Intuitively, the definition of interpretations and
models is straightforward: an interpretation is a set of data terms and specifies what data terms exist;
a model is then simply an interpretation that consists of the terms that are “produced” by the rules in a
program.

Section 2 briefly recapitulates the language Xcerpt and introduces several formalisms and denota-
tions used in the remainder of this article. Section 3 introduces so-calledterm formulasthat can be
composed of Xcerpt terms and logical connectives like∧ or ∨. Term formulas depart form first order
logic in that they do not distinguish between predicate and term symbols, because the Web consists
of “data”, not “statements”. Next, a notion ofsubstitution setsis described in Section 4. Substitution
sets take the role of substitutions in first order logic and logic programming and are required to properly
convey the meaning of Xcerpt’s grouping constructsall andsome. Section 5 definesground query term
simulationas a relation between terms that properly conveys the meaning of incomplete term specifica-
tions (e.g. unordered or partial). This definition is further used in Section 6, where interpretations and
the satisfaction of term formulas is defined. In Section 7, a fixpoint semantics for stratifiable Xcerpt pro-
grams is suggested, first for programs without negation, and then for arbitrary Xcerpt programs. Finally,
Section 8 contains some concluding remarks and perspectives for further refinement of the semantics.
Note that this article mostly follows the semantics described in [Sch04].

2 Preliminaries

2.1 Xcerpt: A versatile Web Query Language

An Xcerpt [SB04, Sch04] program consists of at least onegoal and some (possibly zero)rules. Rules
and goals contain query and construction patterns, calledterms. Terms represent tree-like (or graph-
like) structures. The children of a node may either beordered, i.e. the order of occurrence is relevant
(e.g. in an XML document representing a book), orunordered, i.e. the order of occurrence is irrelevant
and may be chosen by the storage system (as is common in database systems). In the term syntax, an
ordered term specificationis denoted by square brackets[], anunordered term specificationby curly
braces{ }.

Likewise, terms may usepartial term specificationsfor representing incomplete query patterns and
total term specificationsfor representing complete query patterns (or data items). A termt using a partial
term specification for its subterms matches with all such terms that (1) contain matching subterms for all
subterms oft and that (2) might contain further subterms without corresponding subterms int. Partial
term specification is denoted bydoublesquare brackets[[]] or curly braces{{ }}. In contrast, a term

1

t using a total term specification does not match with terms that contain additional subterms without
corresponding subterms int. Total term specification is expressed usingsinglesquare brackets[] or
curly braces{ }. Matching is formally defined later in this article using so-calledterm simulation.

Furthermore, terms may contain thereference constructŝid (referring occurrence of the identifier
id) andid @ t (defining occurrence of the identifierid). Using reference constructs, terms can form
cyclic (but rooted) graph structures.

2.1.1 Data Terms

Data terms represent XML documents and the data items of a semistructured database, and may thus
only contain total term specifications (i.e. single square brackets or curly braces). They are similar to
groundfunctional programming expressions and logical atoms. Adatabaseis a (multi-)set of data terms
(e.g. the Web). A non-XML syntax has been chosen for Xcerpt to improve readability, but there is a
one-to-one correspondence between an XML document and a data term. Example 1 on the facing page
gives an impression of the Xcerpt term syntax.

2.1.2 Query Terms

Query terms are (possibly incomplete) patterns matched against Web resources represented by data
terms. They are similar to the latter, but may containpartial as well astotal term specifications, are aug-
mented byvariablesfor selecting data items, possibly withvariable restrictionsusing the→ construct
(readas), which restricts the admissible bindings to those subterms that are matched by the restriction
pattern, and may contain additional query constructs likeposition matching(keywordposition), sub-
term negation(keywordwithout), optional subterm specification(keywordoptional), anddescendant
(keyworddesc).

Query terms are “matched” with data or construct terms by a non-standard unification method called
simulation unificationthat is based on a relation calledsimulation(cf. Section 5). In contrast to Robin-
son’s unification (as e.g. used in Prolog), simulation unification is capable of determining substitutions
also for incomplete and unordered query terms. Since incompleteness usually allows many different al-
ternative bindings for the variables, the result of simulation unification is not only a single substitution,
but a (finite)set of substitutions, each of which yielding ground instances of the unified terms such that
the one ground term matches with the other. Whenever a termt1 simulates into another termt2, this
shall be denoted byt1� t2.

2.1.3 Construct Terms

Construct terms serve to reassemble variables (the bindings of which are specified in query terms) so as
to construct new data terms. Again, they are similar to the latter, but augmented byvariables(acting as
place holders for data selected in a query) and thegrouping constructall (which serves to collect all
instances that result from different variable bindings). Occurrences ofall may be accompanied by an
optional sorting specification.

Example 2
Left: A query term retrieving departure and arrival stations for a train in the train document. Partial
term specifications (partial curly braces) are used since the train document might contain additional
information irrelevant to the query.Right: A construct term creating a summarised representation of
trains grouped inside atrains term. Note the use of theall construct to collect all instances of the

2

Example 1
The following two data terms represent a train timetable (fromhttp://railways.com) and a hotel
reservation offer (fromhttp://hotels.net).

At sitehttp://railways.com: At sitehttp://hotels.net:

travel {
last -changes -on { "2004-04-30" },
currency { "EUR" },
train {

departure {
station { "Munich" },
date { "2004-05-03" },
time { "15:25" }

},
arrival {

station { "Vienna" },
date { "2004-05-03" },
time { "19:50" }

},
price { "75" }

},
train {

departure {
station { "Munich" },
date { "2004-05-03" },
time { "13:20" }

},
arrival {

station { "Salzburg" },
date { "2004-05-03" },
time { "14:50" }

},
price { "25" }

},
train {

departure {
station { "Salzburg" },
date { "2004-05-03" },
time { "15:20" }

},
arrival {

station { "Vienna" },
date { "2004-05-03" },
time { "18:10" }

}
}
...

}

voyage {
currency { "EUR" },
hotels {

city { "Vienna" },
country { "Austria" },
hotel {

name { "Comfort Blautal" },
category { "3 stars" },
price -per-room { "55" },
phone { "+43 1 88 8219 213" },
no-pets {}

},
hotel {

name { "InterCity" },
category { "3 stars" },
price -per-room { "57" },
phone { "+43 1 82 8156 135" }

},
hotel {

name { "Opera" },
category { "4 stars" },
price -per-room { "106" },
phone { "+43 1 77 8123 414" }

},
...
},

...
}

3

train subterm that can be created from substitutions in the substitution set resulting from the query on
the left.

travel {{
train {{

departure {{
station { var From } }},

arrival {{
station { var To } }}

}}
}}

trains {
all train {

from { var From },
to { var To }

}
}

2.1.4 Construct-Query Rules

Construct-query rules (short: rules) relate a construct term to a query consisting of AND and/or OR
connected query terms. They have the form

CONSTRUCT Construct Term FROM Query END

Rules can be seen as “views” specifying how to obtain documents shaped in the form of the construct
term by evaluating the query against Web resources (e.g. an XML document or a database). Queries
or parts of a query may be further restricted by arithmetic constraints in a so-called condition box,
beginning with the keywordwhere.

Example 3
The following Xcerpt rule is used to gather information about the hotels in Vienna where a single room
costs less than 70 Euro per night and where pets are allowed (specified using thewithout construct).

CONSTRUCT
answer [all var H ordered by [P] ascending]

FROM
in {

resource { "http://hotels.net" },
voyage {{

hotels {{
city { "Vienna" },
desc var H hotel {{

price -per-room { var P },
without no-pets {}

}}
}}

}}
} where var P < 70

END

An Xcerpt query may contain one or several references toresources. Xcerpt rules may furthermore
bechainedlike active or deductive database rules to form complex query programs, i.e. rules may query
the results of other rules. Recursive chaining of rules is possible (but note that the declarative semantics
described here requires certain restrictions on recursion, cf. Section 2.2). In contrast to the inherent

4

structural recursion used e.g. in XSLT, which is essentially limited to the tree structure of the input
document, recursion in Xcerpt is always explicit and free in the sense that any kind of recursion can be
implemented. Applications of recursion on the Web are manifold:

• structural recursion over the input tree (like in XSLT) is necessary to perform transformations that
preserve the overall document structure and change only certain things in arbitrary documents
(e.g. replacing allem elements in HTML documents bystrong elements).

• recursion over the conceptual structure of the input data (e.g. over a sequence of elements) is
used to iteratively compute data (e.g. create a hierarchical representation from flat structures with
references).

• recursion over references to external resources (hyperlinks) is desirable in applications like Web
crawlers that recursively visit Web pages.

Example 4
The following scenario illustrates the usage of a “conceptual” recursion to find train connections, in-
cluding train changes, from Munich to Vienna.

The train relation (more precisely the XML element representing this relation) is defined as a
“view” on the train database (more precisely on the XML document seen as a database on trains):

CONSTRUCT
train [from [var From], to [var To]]

FROM
in {

resource { "file:travel.xml" },
travel {{

train {{
departure {{ station { var From } }},
arrival {{ station { var To } }}

}}
}}

}
END

A recursive rule implements the transitive closuretrain-connection of the relationtrain. If the
connection is not direct (recursive case), then all intermediate stations are collected in the subtermvia
of the result. Otherwise,via is empty (base case).

CONSTRUCT
train -connection [

from [var From],
to [var To],
via [var Via, all optional var OtherVia]

]
FROM

and {
train [from [var From], to [var Via]],
train -connection [

from [var Via],
to [var To],
via [[optional var OtherVia]]

5

]
}

END

CONSTRUCT
train -connection [

from [var From],
to [var To],
via []

]
FROM

train [from [var From], to [var To]]
END

Based on the “generic” transitive closure defined above, the following rule retrieves only connections
between Munich and Vienna.

GOAL
connections {

all var Conn
}

FROM
var Conn train -connection [[from { "Munich" } , to { "Vienna" }]]

END

2.2 Range Restrictedness and Stratification

The declarative semantics described in this article assumes certain restrictions on Xcerpt programs:
range restrictedness, negation stratification, andgrouping stratification. Range restrictedness restricts
the occurrences of variables in rules and grouping and negation stratification restricts the way recursion
is used in Xcerpt programs. Note that for all three kinds of restrictions, there exist examples where a
relaxation might be desirable.

2.2.1 Range Restrictedness

Range restrictedness (often referred to assafe-ness) means that a variable occurring in a rule head also
must occur at least once in every disjunctive part in the rule body. This requirement simplifies the
definition of the declarative semantics of Xcerpt, as it allows to assume that all query terms are unified
with data terms instead of construct terms (i.e. variable-free and grouping-free terms). Without this
restriction, it is necessary to consider undefined or infinite sets of variable bindings, which would be
a difficult obstacle for a forward chaining evaluation. Besides this technical reason, range restricted
programs are also usually more intuitive, as they disallow variables in the head that are not justified
somewhere in the body.

Range restrictedness can be verified by assigning “polarities” to every term and all its subterms in a
rule such that all terms in the query part initially have negative polarity while the construct term initially
has positive polarity (cf. [Sch04]). A variable occurrence withpositivepolarity represents aconsuming
occurrence of that variable, a variable occurrence withnegativepolarity represents adefiningoccurrence
of that variable. Polarities may switch if the query contains negation constructs likenot or without.

6

Range restrictedness requires that every variable occurring positively (i.e. as a consuming occurrence)
also must occur negatively (i.e. as a defining occurrence) in each disjunctive part of a rule.

Example 5
Consider the following Xcerpt program:

CONSTRUCT
f{var X, var Y}

FROM
or {

g{var X, var Y, var Z},
and {

h{var X, var Y},
not k{var X, var Z}

}
}

END

Because of theor-construct in the rule body, this rule contains two disjuncts. In the first disjunct, the
variablesX, Y, andZ occur with negative polarity (because they are part of the query), and the variablesX
andY also occur with positive polarity (because they occur in the rule head). This part of the rule would
thus be range restricted. However, in the second disjunct, only the variablesX andY occur positively,
while X, Y, andZ occur negatively (note thatZ is contained within anot-negation). Thus, this part is not
range restricted.

2.2.2 Stratification

Stratification is a technique to define a class of logic programs where non-monotonic features like
Xcerpt’s grouping constructs or negation can be defined in a declarative manner. The principal idea
of stratification is to disallow programs with a recursion over negated queries (“negation stratification”)
or grouping constructs (“grouping stratification”) and thereby preclude undesirable programs that have
a non-intuitive semantics. While this requirement is very strict, its advantages are that it is straightfor-
ward to understand and can be verified by purely syntactical means without considering terms that are
not part of the program (as is required by more elaborate techniques likestable models).

Several refinements over stratification have been proposed, e.g.local stratification[Prz88] that allow
certain kinds of recursion, but these usually require more “knowledge” of the program or the queried
resources. This section only gives an intuition over grouping and negation stratification; stratification of
Xcerpt programs is described in detail in [Sch04].

Grouping Stratification The grouping constructsall andsome are powerful constructs that are jus-
tified by many practical applications. However, using them in recursive rules allows to define programs
with no useful meaning. Consider for example the program

f{all var X}← f{{var X}}
f{a}

The meaning of such programs is unclear and probably unintended by the program author. The solution
is to disallow recursion of rules with grouping constructs, and to require that all rules on which a rule
with grouping constructs depends can be evaluated first. Programs that fulfill this propertiy are called
grouping stratifiable.

7

Negation Stratification Xcerpt’snot-construct is evaluated asnegation as failure (NaF), i.e. a negated
query succeeds if the query itself fails finitely (i.e. can be proven to be not provable). NaF is desirable
for a Web query language, because it is close to the intuitive understanding of negation: for instance,
it is natural to assume that a train not listed in a train timetable does not exist, instead of requiring that
every non-existent train is explicitly listed in the timetable.

Although NaF has a purely operational meaning, it is desirable to provide a declarative semantics as
well, because the latter is usually easier to understand than the evaluation algorithm. Unfortunately, like
recursion over grouping constructs, negation as failure allows for programs whose meaning is unclear.
Consider for instance the following Xcerpt program:

f{a}← not f{a}

Backward chaining evaluation of this rule does not terminate: for provingf{a}, it is necessary to show
(in an auxiliary computation) thatf{a} does not hold, which again requires to evaluate the rule, and so
on.

Declaratively, the meaning of this rule is problematic. When representing rules by implication as
in traditional logic programming, this rule is simply equivalent tof{a}∨¬¬ f{a}, which simplifies to
f{a}. This interpretation does not reflect the operational behaviour (which is the definition for negation
as failure) described in the previous paragraph. Other approaches have been considered (like Clarke’s
completion or default negation) that interpret the symbol← differently, but all of these have similar
problems.

Xcerpt programs are therefore assumed to be alsonegation stratifiable, a syntactic restriction that
excludes such programs that involve problematic use of negation as in the example above. Negation
stratification in Xcerpt programs is defined in the usual manner (as e.g. in [ABW88]). In stratifiable
programs, both recursion and negation are allowed, but a recursion “through negation” is disallowed.

2.3 Ground Query Terms and Ground Query Term Graphs

Let Tq be the set of all query terms.

Definition 6 (Ground Query Term)
1. A query term is calledground, if it does not contain (subterm, label, namespace, or positional)

variables.

2. Tg⊂ Tq denotes the set of all ground query terms, andTd ⊂ Tg denotes the set of all data terms.

In the following, we differentiate between the ground query term itself and the graphs induced by a
ground query term. Whereas the term itself contains subterms of the formˆid andid@t, all references
are dereferenced in the graph induced by the ground query term. By thepositionof a subterm in a
ground query term, we mean the position in the list of children of that term. For example, inf{a,b,c},
c is the subterm at position 3. Likewise, inf{id@a,ˆid}, id@a is the subterm at position 1, and̂id
is the subterm at position 2. The position of subterms in the graph induced by a ground query term is
defined differently: in the last example, the subterma has both the position 1 and the position 2. For this
reason, we will usually speak aboutsuccessorswhen referring to the graph induced by a ground query
term, and aboutsubterms, when referring to the syntactical representation of a ground query term.

The graph induced by a ground query term(or short: ground query term graph) is defined in a
straightforward manner as follows.

Definition 7 (Graph Induced by a Ground Query Term)
Given a ground query termt. Thegraph induced by tis a tupleGt = (V,E, r), with:

8

Figure 1 Graphs induced byf [a,a[c,d,a]] and f [[&1 @ a{{c,d,↑ &1}}]]

a

c d a

f[]

a{}

c

f[]

d

a{}

1. a set ofvertices(or nodes) V defined as the set of all (immediate and indirect) subterms oft
(includingt itself).

2. a set ofedges E⊆V×V×N characterised as follows:

• for all termst1, t2, t3 ∈V: if t2 is the subexpression oft1 at positioni and of the form̂ oid (a
referring occurrence), andt3 is of the formoid @ t’ (a defining occurrence), withoid an
identifier andt’ a term (∈V), then(t1, t3, i) ∈ E.

• for all termst1, t2 ∈V: if t2 is the subexpression oft1 at positioni andnot of the formˆoid,
then(t1, t2, i) ∈ E.

3. a distinguished vertexr ∈V called theroot nodewith r = t.

The label of a vertex is either the label, the string value, or the regular expression of the subterm it
represents.

Representing vertices as complete subterms and edges with positions is necessary for the definition
of the simulation relation as it conveys information about ordered/unordered and partial/total term spec-
ifications and the respective positions of subterms in a term. Figure 1 illustrates this definition on two
ground query terms. Note that for space reasons, the vertices in both graphs do not contain the subterms,
but only the term labels and specifications.

The following additional terminology from graph theory is used below. LetG = (V,E, r) be the
graph induced by a ground query term. For any two nodesv1 ∈V andv2 ∈V, if (v1,v2, i) ∈ E for some
integeri (i.e. there is an edge fromv1 to v2), v1 andv2 are calledadjacent, v2 is theith successorof v1,
andv1 is apredecessorof v2.

2.4 Term Sequences and Successors

The following sections use the notion of (finite)term sequencesto represent the (immediate) successors
of a term. Note that sequences of subterms are used regardless of the kind of subterm specification:
in case of unordered term specifications, there is still a sequence of subterms given by the syntactical
representation of the term.

Recall in the following that a functionf : N→ M can be seen as a (binary) relationf ⊆ N×M
such that for every two different pairs(n1,m1) ∈ f and(n2,m2) ∈ f holds thatn1 6= n2. Considering a
function as a relation is more convenient for the representation of sequences. A functionf : N→M is
furthermore calledtotal, if f is defined for every element ofN.

9

Definition 8 (Term Sequence)
1. Let X be a set of terms and letN = {1, . . . ,n} (n≥ 0) be a set of non-negative integers. Aterm

sequenceis a total functionS⊆ N×X mapping integers to terms.

Instead of writingS= {(1,a),(2,b), . . .}, term sequences are often denoted byS= 〈a,b, . . .〉.

2. Let Sbe a term sequence, and lets= (i, t) be an element inS.

• the indexof s is defined asindex(s) = i (projection on the first element)

• thetermof s is defined asterm(s) = x (projection on the second element)

If S= 〈. . . ,a, . . .〉 is a term sequence, i.e.S= {. . . ,(a, i), . . .}, thenterm((a, i)) = a. Since using
term((a, i)) is very inconvenient, we shall often writea instead of(a, i) and e.g. usea ∈ S instead of
(a, i) ∈ S. Accordingly, we use the notionindex(a) to represent the position of the subterma in the term
sequence, unless we have to distinguish multiple occurrences ofa in S.

Note that empty term sequences are not precluded by the definition, and term sequences are always
finite, because they serve to represent the (immediate) successors of a term. Instead ofterm sequence,
we shall often simply writesequenceas other sequences are not considered in this work. Theindexof
an element can also be called thepositionof that element. However, the notionindex is preferred to
better distinguish between theposition construct in a query term and the position in the sequence.

Sequences allow for multiple occurrences of the same term. For example, bothS= 〈a,b,a〉 =
{(1,a),(2,b),(3,a)} andT = 〈a,a,b〉= {(1,a),(2,a),(3,b)} are term sequences ofa andb.

Based on the graph induced by a ground query term, the definition of the sequence of successors is
as expected:

Definition 9 (Sequence of Successors)
Let t be a ground query term, letGt = (V,E, t) be the graph induced byt, and letv∈V be a node inGt

(i.e. subterm oft). Thesequence of successorsof v, denotedSucc(v), is defined as

Succ(v) =
{
(i,v′) | (v,v′, i) ∈ E

}
Note thatSucc(v) may be the empty sequence〈 〉, if v does not have successors.

Consider the termt1 = f{a,a,b}. The sequence of successors oft1 is Succ(t1) = 〈a,a,b〉 =
{(1,a),(2,a),(3,b)}. Consider furthermoret2 = o1@f [a,↑ o1,b]. The sequence of successors oft2
is Succ(t2) = 〈a,o1@f [a,↑ o1,b],b〉 = {(1,a),(2,o1@f [a,↑ o1,b]),(3,b)}. Note that the reference in
t2 is dereferenced (one level).

Mostly, the sequence of successors and the sequence of (immediate) subterms of a term coincide.
The most significant difference is that the sequence of successors is already dereferenced, i.e. all refer-
ences are “replaced” by the subterms they refer to. For this reason, the remainder of this Section uses
the termsuccessorsinstead ofsubterms. Although it is somewhat imprecise, the notionsubtermis often
added in parentheses to emphasise the coincidence of the two sequences in most cases.

In Section 4, the following additional notions of subsequences and concatenation of sequences are
needed. Both definitions are straightforward. In order to distinguish subsequences from subsets, we
usually writeS′ v S.

Definition 10 (Subsequences, Concatenation of Sequences)
Let S= 〈s1, . . . ,sm〉 andT = 〈t1, . . . , tn〉 be term sequences.

1. T is called asubsequenceof S, denotedT vS, if there exists a strictly monotonic mappingπ such
that for each(i,x) ∈ T there exists(π(i),x) ∈ S.

10

2. Theconcatenationof SandT, denotedS◦T, is defined as

S◦T = 〈s1, . . . ,sm, t1, . . . , tn〉

Consider for example the sequencesS1 = 〈a,b〉= {(1,a),(2,b)} andS2 = 〈a,a,b〉= {(1,a),(2,a),(3,b)}.
S1 is a subsequence ofS2 with π(1) = 1,π(2) = 3 or with π(1) = 2,π(2) = 3. The concatenation ofS1

andS2 yields
S1◦S2 = 〈a,b,a,a,b〉= {(1,a),(2,b),(3,a),(4,a),(5,b)}

2.5 Substitutions and Substitution Sets

In principle, the usual notion of substitutions is also used for Xcerpt terms. However, variable restric-
tions occurring in query terms have to be taken into account. As a variable might be restricted, not every
substitution is applicable to every query term.

Also, Xcerpt construct terms extend the usual terms by grouping constructs that group several sub-
stitutions within a single ground instance by using the constructsall andsome. For instance, given a
construct termf{all var X} and three alternative substitutions{X 7→ a}, {X 7→ b} and{X 7→ c}, the
resulting data term isf{a,b,c}.

In order to define such groupings, it is therefore necessary to provide a construct that represents
all possible alternatives and can be applied to a construct term. This is called asubstitution setbelow.
Since the application of substitution sets to query and construct terms involves some complexity, it is
described separately in Section 4. Substitution sets are then used in Section 6 which defines satisfaction
for Xcerpt term formulas. In the following, substitutions are denoted by lowercase greek letters (likeσ

or π), while substitution sets are denoted by uppercase greek letters (likeΣ or Π).

2.5.1 Substitutions

A substitutionis a mapping from the set of (all) variables to the set of (all) construct terms. In the
following, lower case greek letters (likeσ or τ) are usually used to denote substitutions. As usual in
mathematics, a substitution is a mapping of infinite sets. Of course, finite representations are usually
used, as the number of variables occurring in a term is finite. Substitutions are often conveniently
denoted as sets of variable assignments instead of as functions. For example, we write

{
X 7→ a,Y 7→ b

}
to denote a substitution that maps the variableX to a and the variableY to b, and any other variable
to arbitrary values. In general, a substitution provides assignments for all variables, but “irrelevant”
variables are not given in the description of substitutions.

If a substitution isappliedto a query termtq, all occurrences of variables for which the substitution
provides assignments are replaced by the respective assignments (see Section 4.1 below). The resulting
term is called aninstanceof tq and the substitution. Not every substitution can be applied to every
query term: variable assignments in the substitution have to respect variable restrictions occurring in
the pattern for a substitution to be applicable (see also 4.1). If a substitutionσ respects the variable
restrictions in a query termtq, it is said to bea substitution for tq. For example, the substitution

{
X 7→

f{a}
}

is a substitution forvar X ; f{{}}, but not forvar X ; g{{}}. Note that a substitution cannot
be applied to a construct term, because construct terms may contain grouping constructs that group
several instances of subterms together. Instead, substitution sets are used for this purpose (see below).

A substitutionσ is called agrounding substitutionfor a termt, if σ(t) is a ground query term.
Consequently, a grounding substitution is always a mapping from the set of variable names to the set
of data terms (i.e. ground construct terms). A substitutionσ is called anall-grounding substitution,

11

if it maps every variable to a data term. Naturally, every all-grounding substitution is a grounding
substitution for every query term to which it is applicable. Note that the reverse does not hold: a
grounding substitution is grounding wrt. some termt and does not necessarily assign ground terms to
variables not occurring int.

A substitutionσ1 is asubsetof a substitutionσ2 (i.e. σ1⊆ σ2), if σ1(X)∼= σ2(X) for every variable
nameX with σ1(X) 6= X (i.e.σ1 does not mapX to itself), where∼= denotes simulation equivalence (i.e.
mutual simulation, cf. Section 5.3). Correspondingly, two substitutionsσ1 andσ2 are considered to be
equal(i.e.σ1 = σ2), if σ1⊆σ2 andσ2⊆σ1. For example,

{
X 7→ f{a,b}

}
and

{
X 7→ f{b,a}

}
are equal.

This definition is reasonable because the data terms resulting from applying two such substitutions are
treated equally in the model theory described below.

The compositionof two substitutionsσ1 andσ2, denoted byσ1 ◦σ2 is defined as(σ1 ◦σ2)(t) =
σ1(σ2(t)) for every query termt. Note that the assignments inσ2 take precedence, becauseσ2 is applied
first. Consider for exampleσ1 = {X 7→ a,Y 7→ b} andσ2 = {X 7→ c}, and a termt = f{var X,var Y}.
Applying the compositionσ1◦σ2 to t yields(σ1◦σ2)(t) = f{c,b}.

Therestrictionof a substitutionσ to a set of variable namesV, denoted byσ|V , is the mapping that
agrees withσ onV and with the identical mapping on the other variables.

2.5.2 Substitution Sets

A substitution setis simply a set containing substitutions. In the following, upper case greek letters (like
Σ andΦ) are usually used to denote substitution sets.

Substitution sets can beapplied to a queryor construct term (cf. Sections 4.1 and 4.2). The result
of this application is in general a set of terms called theinstancesof the substitution set and the term. A
substitution setΣ is only applicable to a query termtq, if all substitutions inΣ are applicable totq. In
this case,Σ is calleda substitution set for tq. Since construct terms do not contain variable restrictions,
every substitution set except for the empty set is a substitution set for a construct term. There exists no
query or construct termt such that the empty substitution set{} is a substitution set fort.

A substitution setΣ for a termt is called agrounding substitution set, if all instances oft andΣ are
ground query terms or data terms. A substitution setΣ is called anall-grounding substitution set, if all
σ ∈ Σ are all-grounding substitutions.

Thecompositionof two substitution setsΣ1 andΣ2, denoted asΣ1◦Σ2, is defined as

Σ1◦Σ2 =
{

σ1◦σ2 | σ1 ∈ Σ1,σ2 ∈ Σ2
}

Consider for example the substitution setsΣ1 =
{
{X 7→ a}

}
andΣ2 =

{
{Y 7→ b},{Y 7→ c}

}
. Then

Σ1◦Σ2 =
{
{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ c}

}
.

Therestrictionof a substitution setΣ to a set of variablesV, denoted byΣ|V , is the set of substitutions
in Σ restricted toV.

Similarly, theextensionof a substitution setΣ restricted to a set of variablesV to a set of variablesV ′

with V ⊆V ′, extends every substitutionσ in Σ to substitutionsσ ′ by adding all possible assignments of
variables inV ′ \V to data terms. For example, the extension of the restricted substitution set

{
{X 7→ a}

}
to the set of variables{X,Y} is the (infinite) set

{
{X 7→ a,Y 7→ a},{X 7→ a,Y 7→ b}, . . .

}
Note that in practice, it would be desirable to define substitution sets asmulti-setsthat may contain

duplicate elements: if an XML document contains two persons named “Donald Duck”, then it should
be assumed that these are different persons with the same name. Providing a proper formalisation with
multi-sets is, however, not in the scope of this article, as subsequent definitions and proofs would be
much more complicated without adding an interesting aspect to the formalisation.

12

2.5.3 Maximal Substitution Sets

So as to properly convey the meaning ofall, it is not sufficient to consider arbitrary substitution sets.
The interesting substitution sets are those that aremaximalfor the satisfaction of the query partQ of a
rule. As satisfaction is not yet formally defined, this property shall for now simply be calledP.

Intuitively, the definition of maximal substitution sets is straightforward: a substitution setΣ satis-
fying P is a maximal substitution set, if there exists no substitution setΦ satisfyingP such thatΣ is a
proper subset ofΦ. However, this informal definition does not take into account that there might be
substitution sets that differ only in that some substitutions contain bindings that are irrelevant because
they do not occur in the considered term formulaQ. Maximal substitution sets are therefore formally
defined as follows:

Definition 11 (Maximal Substitution Set)
Let Q be a quantifier free query term formula with set of variablesV, let P be a property, and letΣ be a
set of substitutions such thatP holds forΣ. Σ is called amaximal substitution set wrt. P and Q, if there
exists no substitution setΦ such thatP holds forΦ andΣ|V is a proper subset ofΦ|V (i.e. Σ|V ⊂Φ|V).

3 Terms as Formulas

Classical logic distinguishes between

• terms, which are composed of function symbols and serve as data structures representing objects
of the application domain at hand, and

• atomic formulas, which are composed of relation symbols and terms and represent statements
about objects of the application domain.

Statements represented by formulas have truth values, objects represented by terms have no truth value.
In contrast, XML and Web data does not need this distinction, because it has no (formal) semantics and
merely holds semistructured data. Therefore, Xcerpt terms (corresponding to Web data) are considered
as being atomic formulas representing the statement that the respective terms “exist”. A salient aspect of
this representation is the possibility to specify integrity constraints for data terms. These are, however,
not covered in depth in this article.

3.1 Term Formulas

Atomic formulas are composed of Xcerpt query, construct, and data terms, and of the two special terms
⊥ and> (denoting falsity and truth). As an intuition, such atomic formulas are statements about the
existence or satisfiability of a term. Compound formulas can be constructed in the usual manner using
the binary connectives∨, ∧,⇒, and⇔, the unary connective¬, the zero-ary connectives> and⊥, and
the quantifiers∀ and∃. Instead of quantifying each variable separately, the construct∀∗ may be used to
universally quantify all free variables in a formula. Also, instead of writingF1∨·· ·∨Fn, we sometimes
write

∨
1≤i≤nFi , and instead of writingF1∧·· ·∧Fn, we sometimes write

∧
1≤i≤nFi .

In the following, formulas built in this manner shall be calledXcerpt term formulas, or simplyterm
formulas. If a term formula consists only of query terms, it is also calledquery term formula, if it
consists only of construct terms, it is calledconstruct term formula.

13

Example 12
The following example shows a term formula built up from query terms, implications and quantifiers.
It represents an integrity constraint that requires all books in thebib.xml document to have at least one
author:

∀ B . bib{{ var B → book{{ }} }} ⇒
∃ A . bib{{ var B → book{{ authors{{ var A }} }} }}

3.2 Xcerpt Programs as Formulas

Like in traditional logic programming, rules in Xcerpt are implications. However, Xcerpt rules with
grouping constructs have a particular semantics that cannot be represented as implications in the usual
manner. We therefore keep the denotationtc←Q to represent rules.

In addition to the usual quantifiers∀ and∃, the grouping constructsall andsome that may be part
of a construct term may bind variables in a formula within a specific scope, usually the head and body
of a rule. As these constructs are contained within the term structure, their scope is not immediately
apparent. It is thus useful to introduce new symbols� · � that are used to indicate the scope ofall
the grouping constructs contained in them. In practice, it is neither desirable nor useful to have scopes
extending over different subformulas for the grouping constructs contained in a single construct term,
thus a single scope for all grouping constructs suffices. The grouping constructs of a construct term
always refer to the variables of a single rule and thus all have the same scope.

Example 13
Consider for example the program (in formula notation)

g{a,b,c}
f{all var X} ← g{{var X}}

The scope of theall construct in the rule head is made explicit using� · � in the following
manner:

g{a,b,c} ∧ � f{all var X} ← g{{var X}} �

As usual, formulas representing programs are always considered to be universally closed, even if
quantifiers are not explicitly given.

Example 14
Consider the following Xcerpt program (in the notation introduced in Section 2 and with internalised
resources):

f{all var X, var Y} ← and{ g{{var X}}, h{{ e{var X,var Y} }} }
g[var X] ← h{{ e[var X] }}
h[e[a,1], e[b,1], e[c,1], e[d,2]]

The formula representation of this program is as follows:

∀ Y � f{all var X, var Y} ← g{{var X}} ∧ h{{ e{var X,var Y} }} � ∧
∀ X � g[var X] ← h{{ e[var X] }} � ∧
h[e[a,1], e[b,1], e[c,1], e[d,2]]

The variableX in the first rule is in the scope of theall construct in the rule head, while the variable
Y is in the scope of the universal quantification represented by∀Y. Note that the scope of theall is
restricted to the first rule and the occurrences ofX in the second rule are not affected (thus∀X in the
second rule).

14

4 Application of Substitutions to Xcerpt Terms

4.1 Application to Query Terms

Since query terms do not contain the grouping constructsall and some, applying substitutions and
substitution sets is straightforward. Application of a single substitution yields asingleterm where some
variable occurrences are substituted, while application of a substitution set yields asetof terms where
some variables are substituted.

Definition 15 (Substitutions: Application to Query Terms)
Let tq be a query term.

1. The application of asubstitutionσ to tq, writtenσ(tq) is recursively defined as follows:

• σ(var X) = t ′ if (X 7→ t ′) ∈ σ

• σ(var X ; s) = t ′ if (X 7→ t ′) ∈ σ andσ(s)� t ′

• σ(f{t1, . . . , tn}) = σ(f){σ(t1), . . . ,σ(tn)}
• σ(f [t1, . . . , tn]) = σ(f)[σ(t1), . . . ,σ(tn)]
• σ(f{{t1, . . . , tn}}) = σ(f){{σ(t1), . . . ,σ(tn)}}
• σ(f [[t1, . . . , tn]]) = σ(f)[[σ(t1), . . . ,σ(tn)]]
• σ(without t) = without σ(t)
• σ(optional t) = optionalσ(t)

for somen≥ 0.

2. The application of asubstitution setΣ to tq is defined as follows:

Σ(tq) =
{

σ(tq) | σ ∈ Σ
}

Note that not every substitution can be applied to a query termtq. If a variable intq is restricted as
in var X ; s, then a substitution can only be applied if it provides bindings forX that are compatible
to this restriction. Likewise, a substitution set is only applicable to a query termtq, if all its substitutions
are applicable totq.

Since query terms never contain grouping constructs, the cardinality ofΣ(t) always equals the cardi-
nality of Σ. In particular, ifΣ = /0, thenΣ(t) = /0, even ift is a ground query term. Since an interpretation
with an empty substitution set would be a model for any formula, substitution sets in the following are
considered to be non-empty. In case no variables are bound, substitution sets are usually defined as
Σ = { /0}.

4.2 Application to Construct Terms

Applying a single substitution to a construct term is not reasonable as the meaning of the grouping
constructsall andsomeis unclear in such cases. In the following, the application is thus only defined
for substitution sets. On substitution sets, the grouping constructs group such substitutions that have the
same assignment on thefree variablesof a construct term. For each such group, the application of the
substitutionΣ yields a different construct term. A variable is consideredfree in a construct term if it is
not in the scope of a grouping construct. The set of free variables of a construct termtc is denoted by
FV(tc). The relation∼= denotes simulation equivalence between two ground terms and is defined later
in this article.

15

Definition 16 (Grouping of a Substitution Set)
Given a substitution setΣ and a set of variablesV = {X1, . . . ,Xn} such that allσ ∈ Σ have bindings for
all Xi ,1≤ i ≤ n.

• The equivalence relation'V⊆ Σ×Σ is defined as:σ1'V σ2 iff σ1(X)∼= σ2(X) for all X ∈V.

• The set of equivalence classesΣ/'V with respect to'V is called thegrouping ofΣ on V.

• Each of the equivalence classesJσK∈ Σ/'V is accordingly defined asJσK =
{

τ ∈ Σ | τ 'V σ}.

Informally, each equivalence classJσK ∈ Σ/'V contains such substitutions that have the same as-
signment for each of the variables inV.

Example 17
Given the substitution setΣ =

{
σ1,σ2,σ3

}
with

σ1 = {X1 7→ a,X2 7→ b},σ2 = {X1 7→ a,X2 7→ c}, andσ3 = {X1 7→ c,X2 7→ b}

The grouping ofΣ onV = {X1} is

• Jσ1K = Jσ2K =
{
{X1 7→ a,X2 7→ b},{X1 7→ a,X2 7→ c}

}
• Jσ3K =

{
{X1 7→ c,X2 7→ b}

}
The application of a substitution set to a construct term (possibly containing grouping constructs) is

defined in terms of this grouping. Given a substitution setΣ, the applicationΣ(tc) to a construct term
tc with free variablesFV(tc) yields exactly|Σ/'FV(tc) | results, one for each different binding of the free
variables intc.

Example 18
Given a termt = f{X1,g{all X2}}, i.e.FV(t) = {X1}. Consider again

Σ =
{
{X1 7→ a,X2 7→ b},{X1 7→ a,X2 7→ c},{X1 7→ c,X2 7→ b}

}
from Example 17. The result of applyingΣ to t is

Σ(t) =
{

f{a,g{b,c}}, f{c,g{b}}
}

The following definition specifies how a substitution set is applied to a construct termtc. The
definition is divided into two parts: In the first part, it is assumed that all substitutions in the substitution
setΣ contain the same assignments for the free variables oftc (variables occurring within the scope
of grouping constructs are unrestricted). As the quotientΣ/'FV(tc) in this case obviously only contains
a single equivalence class, the application of this restrictedΣ to tc yields only a single term, which
simplifies the recursive definition. In the second part of Definition 19, this restriction is lifted.

Since the construction of data terms requires to construct new lists of subterms, the following defi-
nition(s) use the notion ofterm sequencesintroduced in Section 2.4. Recall that a sequence is a binary
relation between a set of integers and a set of terms, and usually denoted byS= 〈x1, . . . ,xn〉 for some
n and termsxi . Recall furthermore the definitions ofsubsequencesandconcatenation(Definition 10 on
page 10).

Defining the semantics oforder by furthermore requires a functionsortf (V)(·, ·), whereV is a se-
quence of variables, that takes as arguments a grouping of a substitution set onV and returns a sequence
of substitution sets ordered according tof (V) and the variables inV. f (V) is a total ordering on the set

16

of substitution sets that assign ground terms to the variables inV comparing variable bindings for the
variables inV. 1

Definition 19 (Substitutions: Application to Construct Terms)
1. Let Σ be a substitution set and lettc be a construct term such that all free variables oftc have the

same assignment in all substitutions ofΣ, i.e. Σ/'FV(tc) = {JσK}. The restricted application ofΣ
to tc, writtenJσK(tc), is recursively defined as follows:

• JσK(var V) = 〈σ(V)〉2

• JσK(f{t1, . . . , tn}) = 〈JσK(f){JσK(t1)◦ · · · ◦ JσK(tn)}〉 for somen≥ 0

• JσK(f [t1, . . . , tn]) = 〈JσK(f)[JσK(t1)◦ · · · ◦ JσK(tn)]〉 for somen≥ 0

• JσK(all t) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK}= JσK/'FV(t)

• JσK(all t group by V) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK}= JσK/'FV(t)∪V

• JσK(all t order by f V) = Jτ1K(t)◦ · · · ◦ JτkK(t)
where〈Jτ1K, . . . ,JτkK〉= sort(f (V),JσK/'FV(t)∪V

)

• JσK(some k t) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK} ⊆ JσK/'FV(t)

• JσK(some k t group by V) = Jτ1K(t)◦ · · · ◦ JτkK(t) where{Jτ1K, . . . ,JτkK} ⊆ JσK/'FV(t)∪V

• JσK(some k t order by f V) = Jτ1K(t)◦ · · · ◦ JτkK(t)
where〈Jτ1K, . . . ,JτkK〉 v sort(f (V),JσK/'FV(t)∪V

)

whereJτK1, . . . ,JτKk are pairwise different substitution sets.

2. Let tc be a term, and letFV(tc) be the free variables intc. The application of asubstitution setΣ
to tc is defined as follows:

Σ(t) =
{

tc′ | JσK ∈ Σ/'FV(tc) ∧ 〈t
c′〉= JσK(tc)

}
Although not explicitly defined above, integrating aggregations and functions in this definition is

straightforward.

Example 20
Consider the substitution set

Σ =
{
{X 7→ f{a},Y 7→ g{a}}, {X 7→ f{a},Y 7→ g{b}}, {X 7→ f{b},Y 7→ g{a}}

}
and the construct termst1 = h{all var X,var Y} andt2 = h{var X,all var Y}. GroupingΣ according to
the free variablesFV(t1) = {Y} in t1 andFV(t2) = {X} in t2 yields

Σ/'FV(t1) =
{{
{X 7→ f{a},Y 7→ g{a}},{X 7→ f{b},Y 7→ g{a}}

}
,
{
{X 7→ f{a},Y 7→ g{b}}

}}
Σ/'FV(t2) =

{{
{X 7→ f{a},Y 7→ g{a}},{X 7→ f{a},Y 7→ g{b}}

}
,
{
{X 7→ f{b},Y 7→ g{a}}

}}
The ground instances oft1 andt2 by Σ are thus

Σ(t1) =
{

h{ f{a}, f{b},g{a}}, h{ f{a},g{b}}
}

Σ(t2) =
{

h{ f{a},g{a},g{b}}, h{ f{a},g{b}}
}

1As the substitution set is grouped onV, all substitutions inJσK (respectivelyJτK) provide identical bindings for variables in
V.

2Note thatσ is the representative of the equivalence classJσK

17

4.3 Application to Query Term Formulas

In the following, it is often interesting to study ground instances not only of terms but also of compound
formulas. The following definition defines the application of substitution sets to formulas consisting
only of query terms (so-calledquery term formulas); construct terms are problematic, as they group
several substitutions and thus do not behave “synchronously” with query terms in the same formula.
Fortunately, the formalisation of Xcerpt programs does not need to consider formulas containing con-
struct terms. The only exception are program rules, which are treated separately anyway.

Applying a substitution set to a query term formula is straightforward: as each substitution in a
substitution set represents a different alternative, the application of the substitution set to a query term
formula simply yields a conjunction of all different instances.

Definition 21 (Substitutions: Application to Query Term Formulas)
Let F be a quantifier-free term formula where all atoms are query terms (aquery term formula).

1. The application of asubstitutionσ to F , writtenσ(F), is recursively defined as follows:

• σ(F1∧F2) = σ(F1)∧σ(F2)

• σ(F1∨F2) = σ(F1)∨σ(F2)

• σ(¬F ′) = ¬σ(F ′)

• σ(¬F ′) = ¬σ(F ′)

2. The application of asubstitution setΣ to F , writtenΣ(F), is defined as follows:

Σ(F) =
∧

σ∈Σ
σ(F)

5 Simulation and Simulation Unifiers

Matching query terms with data terms is based on the notion ofrooted graph simulations[HHK96,
Mil71]. Intuitively, a query term matches with a data term, if there exists at least one substitution for the
variables in the query term (calledanswer substitutionof the query term) such that the corresponding
graph induced by the resultinggroundquery term simulates in the graph induced by the data term. Of
course, graph simulation needs to be modified to take into account the different term specifications,
descendant construct, optional subterms, subterm negation, and regular expressions.

To simplify the formalisation below, it is assumed that strings and regular expressions are repre-
sented as compound terms with the string or regular expression as label, no subterms, and a total term
specification. For example, the string"Hello, World" is represented as the term"Hello, World"{}.

5.1 Rooted Graph Simulation

Pattern matching in Xcerpt (and UnQL, for that matter) is based on a similarity relation between the
graphs induced by two semistructured expressions, which is calledgraph simulation[HHK96, Mil71].
Graph simulation is a relation very similar to graph homomorphisms, but more general in the sense that
it allows to match two nodes in one graph with a single node in the other graph and vice versa.

The following definition is inspired by [HHK96, Mil71] and refines the simulation considered in
[BS02]. Recall that a (directed) rooted graphG = (V,E, r) consists in a setV of vertices, a setE of
edges (i.e. ordered pairs of vertices), and a vertexr called the root ofG such thatG contains a path from

18

Figure 2 Rooted Graph Simulations (with respect to vertex adornment equality)

E

B

A

G

F

ED

A

D

B BC

A

G

F

D

B

A

B

D E

B

r to each vertex ofG. Note that the initial definition of a rooted graph simulation does not take into
account the edge labels of graphs induced by a semistructured expression, it is defined on generic, node
labelled and rooted graphs. Note furthermore, that in general, there might be more than one simulation
between two graphs, which leads to the notion ofminimalsimulations also defined below.

Definition 22 (Rooted Graph Simulation)
Let G1 = (V1,E1, r1) andG2 = (V2,E2, r2) be two rooted graphs and let∼ ⊆ V1×V2 be an order or
equivalence relation. A relationS⊆V1×V2 is arooted simulationof G1 in G2 with respect to if:

1. r1 S r2.

2. If v1 S v2, thenv1∼ v2.

3. If v1 S v2 and(v1,v′1, i) ∈ E1, then there existsv′2 ∈V2 such thatv′1 S v′2 and(v2,v′2, j) ∈ E2

A rooted simulationSof G1 in G2 with respect to∼ is minimal if there are no rooted simulationsS′ of
G1 in G2 with respect to∼ such thatS′ ⊂ S(andS 6= S′).

Definition 22 does not preclude that two distinct verticesv1 andv′1 of G1 are simulated by the same
vertexv2 of G2, i.e. v1 S v2 andv′1 S v2. Figure 2 gives examples of simulations with respect to the
equality of vertex adornments. The simulation of the right example is not minimal.

The existanceof a simulation relation between two graphs (without variables) can be computed
efficiently: results presented in [Kil92] give rise to the assumption that such problems can generally be
solved in polynomial time and space. However, computation of pattern matching usually requires to
compute not only one, but all minimal simulations between two graphs, in which case the complexity
increases with the size of the “answer”.

5.2 Ground Query Term Simulation

Using the graphs induced by ground query terms (cf. Definition 7), the notion of rooted simulation
almost immediately extends to all ground query terms: intuitively, there exists a simulation of a ground
query termt1 in a ground query termt2 if the labels and the structure of (the graph induced by)t1 can
be found in (the graph induced by)t2 (see Figure 3). So as to define an ordering on the set of all ground
query terms, ground query term simulation is designed to be transitive and reflexive.

Naturally, the simulation on ground query terms has to respect the different kinds of term specifica-
tion: if t1 has atotal specification, it is not allowed that there exist successors (i.e. subterms) oft2 that do
not simulate successors oft1; if t1 has anorderedspecification, then the successors oft2 have to appear
in the same order as their partners int1 (but there might be additional successors between them if the
specification is also partial).

19

Figure 3 Minimal simulation of f [[a{{ }},a{{c,d,a{{ }} }}]] in f [&1 @ a{c,d,↑ &1}]

a{{}}

a{{}} a{}

f[[]] f[]

a{}

c ddc

The definition ofground query term simulationis characterised using a mapping between the se-
quences of successors (i.e. subterms) of two ground terms with one or more of the following proper-
ties, depending on the kinds of subterm specifications and occurrences of the constructswithout and
optional. Recall that a mapping is called total if it is defined on all elements of a set and partial if it is
defined on some elements of a set.

Definition 23
Given two term sequencesM = 〈s1, . . . ,sm〉 andN = 〈t1, . . . , tn〉.

A partial or total mappingπ : M→ N is called

• index injective, if for allsi ,sj ∈M with index(si) 6= index(sj) holds thatindex(π(si)) 6= index(π(sj))

• index monotonic, if for allsi ,sj ∈M with index(si)< index(sj) holds thatindex(π(si))< index(π(sj))

• index bijective, if it is index injective and for alltk ∈ N exists ansi ∈M such thatπ(si) = tk.

• position respecting, if for allsi ∈M such thatsi is of the formposition j s′i holds thatindex(π(si))=
j

• position preserving, if for all si ∈M such thatsi is of the formposition j s′i holds thatπ(si) is
of the formposition l t ′k and j = l .

Index monotonicmappings preserve the order of terms in the two sequences and are used for matching
terms with ordered term specifications.Index bijectivemappings are used for total term specifications.

A position respectingmapping maps a term with position specification to a term with the specified
position and is required (and only applicable) if the term with the sequence of successors (subterms)
N uses total and ordered term specification. E.g. given two termsf{{position2 b}} and f [a,b,b], a
position respecting mapping maps the subtermposition2 b only to the firstb, because its position is 2,
but not to the secondb, because its position is 3.

A position preservingmapping maps a term with position specification to a term with the same posi-
tion specification; it is applicable in case the sequence of successors of the second termN is incomplete
with respect to order or breadth, as the exact position cannot be determined otherwise in these cases. In
particular, this ensures the reflexivity and transitivity of the ground query term simulation (see Theorem
28 below). E.g. given the termsf{{position2 b}} and f{a,b,position2 b}, the subtermposition2 b of
the first term needs to be mapped to the subtermposition2 b of the second term, but cannot be mapped
to the firstb because its position is not “guaranteed”.

20

()

To summarise, aposition respectingmappingrespectsthe specified position by mapping the subterm
only to a subterm at this position. On the other hand, aposition preservingmappingpreservesthe
position by mapping the subterm only to a subterm with the same position specification.

Besides these properties, ground query term simulation needs a notion oflabel matchesto allow
matching of string labels, regular expressions, or both:

Definition 24 (Label Match)
A term labell1 matches with a term labell2, if

• if l1 andl2 both are character sequences or both are regular expressions, thenl1 = l2 or

• if l1 is a regular expression andl2 is a character sequence, thenl2 ∈ L(l1) whereL(l1) is the
language induced by the regular expressionl1

l1 does not match withl2 in all other cases.

Example 25
1. the labels of the termsf{a,b} and f{b,a} match

2. the labels of the termsf{a,b} andg{b,a} do not match

3. the labels of the terms/.*/ and"Hello World" match

4. the labels of the terms"Hello World" and/.*/ do not match

Let G = (V,E, t) be the graph induced by a ground query termt. In the following,Succ(t ′) denotes
the sequence of all successors (i.e. immediate subterms) oft ′ in G, Succ+(t ′) ⊆ Succ(t ′) denotes the
sequence of all successors of a termt ′ in G that are not of the formwithout t ′′, andSucc−(t) denotes the
sequence of all successors of a termt ′ in G that are of the formwithout t ′′ (i.e.Succ+(t ′)]Succ−(t ′)≡
Succ(t ′)). Furthermore,Succ!(t ′)⊆ Succ(t ′) denotes the sequence of all successors of a termt ′ in G that
are not of the formoptional t ′′, andSucc?(t ′) ⊆ Succ(t ′) denotes the sequence of all successors of a
termt ′ that are of the formoptional t ′′ (i.e.Succ!(t ′)]Succ?(t ′)≡Succ(t ′)). Note thatSucc− ⊆Succ! ,
because a combination ofwithout andoptional is not reasonable.3

Definition 26 (Ground Query Term Simulaton)
Let r1 and r2 be ground (query) terms, and letG1 = (V1,E1, r1) andG2 = (V2,E2, r2) be the graphs
induced byr1 andr2. A relation�⊆V1×V2 on the setsV1 andV2 of immediate and indirect subterms
of r1 andr2 is called aground query term simulation, if and only if:

1. r1� r2 (i.e. the roots are in�)

2. if v1 � v2 and neitherv1 nor v2 are of the formdesc tnor have successors of the formswithout
t or optional t, then the labelsl1 and l2 of v1 and v2 match and there exists atotal, index
injective mappingπ : Succ(v1) → Succ(v2) such that for alls∈ Succ(v1) holds thats� π(s).
Depending on the kinds of subterm specifications ofv1 andv2, π in addition satisfies the following
requirements:

3optional only has effect on the variable bindings, andwithout may never yield variable bindings

21

v1 v2 it holds that
l1[s1, . . . ,sm] l2[t1, . . . , tn] π is index bijectiveandindex monotonic
l1{s1, . . . ,sm} l2[t1, . . . , tn] π is index bijectiveandposition respecting

l2{t1, . . . , tn} π is index bijectiveandposition preserving
l1[[s1, . . .sm]] l2[t1, . . . , tn] π is index monotonicandposition respecting

l2[[t1, . . . , tn]] π is index monotonicandposition preserving
l1{{s1, . . .sm}} l2{t1, . . . , tn} π is position preserving

l2[t1, . . . , tn] π is position respecting
l2{{t1, . . . , tn}} π is position preserving
l2[[t1, . . . , tn]] π is position preserving

3. if v1� v2 andv1 is of the formdesc t1, then

• v2 is of the formdesc t2 andt1� t2 (descendant preserving, or

• t1� v2 (descendant shallow), or

• there exists av′2 ∈ SubT(v2) such thatv1� v′2 (descendant deep)

In all other cases (e.g. combinations of subterm specifications not listed above),� is no ground
query term simulation. In subsequent parts of this article, the symbol� always refers to relations that
are ground query term simulations.

Note that although graph simulation allows to relate two nodes of the one graph with a single node
of the other graph, it is desirable to restrict simulations between two ground query terms toinjective
cases, i.e. such cases where no two subterms oft1 are simulated by the same subterm oft2. While it
makes certain queries more difficult, this restriction turned out to be much easier to comprehend for
authors of Xcerpt programs and reflected the intuitive understanding of query patterns.

Example 27
The following comprehensive list of examples illustrates the different requirements for a ground query
term simulation. They are grouped in categories, each referring to the relevant requirement in Definition
26.

For illustration purposes, subterms are annotated with their index as subscript. This subscript is not
considered to be part of the label. Also,position is abbreviated aspos, optional is abbreviated as
opt, andwithout is abbreviated as¬ for space reasons.

1. total ordered term specification (cf. requirement 2)

Let t1 = f [a1,b2,c3], t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f{a1,b2,c3}, andt5 = g[a1,b2,c3]

• t1 � t1: there exists a total, index bijective, and index monotonic mappingπ from 〈a1,b2,c3〉 to
〈a1,b2,c3〉 with s� π(s), mapping each subterm to itself.

• t1 6� t2: there exists no index bijective mapping from〈a1,b2,c3〉 to 〈a1,b2,c3,d4〉, as the two sets have
different cardinality.

• t1 6� t3: there exists no index monotonic mapping from〈a1,b2,c3〉 to 〈a1,c2,b3〉 with s� π(s); the
only mapping that would satisfys� π(s), i.e.{a1 7→ a1,b2 7→ b3,c3 7→ c2}, is not index monotonic.

• t1 6� t4: the braces oft1 andt4 are incompatible.

• t1 6� t5: the labels oft1 andt5 do not match.

2. total unordered term specification (cf. requirement 2)

Let t1 = f{a1,b2,c3}, t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f{a1,b2,c3}, andt5 = g[a1,b2,c3]

22

• t1� t1: there exists a total and index bijective mappingπ from 〈a1,b2,c3〉 to 〈a1,b2,c3〉 with s� π(s),
mapping each subterm to itself, thus being position preserving.

• t1 6� t2: there exists no index bijective mapping from〈a1,b2,c3〉 to 〈a1,b2,c3,d4〉, as the two sets have
different cardinality.

• t1� t3: there exists a total and index bijective mappingπ from 〈a1,b2,c3〉 to 〈a1,c2,b3〉 with s� π(s),
the mapping{a1 7→ a1,b2 7→ b3,c3 7→ c2} (it does not need to be index monotonic) and it is trivially
position respecting, becauset1 does not contain position subterms.

• t1� t4: there exists a total and index bijective mappingπ from 〈a1,b2,c3〉 to 〈a1,b2,c3〉 with s� π(s),
mapping each subterm to itself, thus being position preserving.

• t1 6� t5: the labels oft1 andt5 do not match

3. partial ordered term specification (cf. requirement 2)

Let t1 = f [[b1,c2]], t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f{a1,b2,c3}, andt5 = f [b1,a2,c3]

• t1 � t1

• t1 � t2: there exists a total, index injective, and index monotonic mappingπ = {b1 7→ b2,c2 7→ c3}
with s� π(s). It is trivially position respecting.

• t1 6� t3: there exists no mappingπ with s� π(s) that is also index monotonic, becauset3 does not
containb andc in the right order.

• t1 6� t4: the braces oft1 andt4 are incompatible.

• t1 � t5: there exists a total, index injective, and index monotonic mappingπ = {b1 7→ b1,c2 7→ c3}
with s� π(s). It is trivially position respecting.

4. partial unordered term specification (cf. requirement 2)

Let t1 = f{{b1,c2}}, t2 = f [a1,b2,c3,d4], t3 = f [a1,c2,b3], t4 = f{a1,b2,c3}, t5 = f [b1,a2,c3], andt6 =
f [a1,b2,d3]. All mappingsπ onSucc(t1) are trivially position respecting and position preserving.

• t1 � t1

• t1 � t2: there exists a total, index injective mappingπ = {b1 7→ b2,c2 7→ c3} with s� π(s)

• t1 � t3: there exists a total, index injective mappingπ = {b1 7→ b3,c2 7→ c2} with s� π(s)

• t1 � t4: there exists a total, index injective mappingπ = {b1 7→ b2,c2 7→ c3} with s� π(s)

• t1 � t5: there exists a total, index injective mappingπ = {b1 7→ b1,c2 7→ c3} with s� π(s)

• t1 6� t6: there exists no total mappingπ such thats� π(s) holds for alls, ast6 does not contain a
subterm matching withc2.

5. position specification (cf. requirement 2)

Let t1 = f{{c1,pos 2b2}}, t2 = f [a1,b2,c3], t3 = f [b1,c2,a3], t4 = f [[a1,b2,c3]] andt5 = f [[a1,pos 2b2,c3]]

• t1 � t1: there exists a total, index injective, position preserving mappingπ = {c1 7→ c1,pos 2b2 7→
pos 2b2} with s� π(s)

• t1� t2: there exists a total, index injective, position respecting mappingπ = {c1 7→ c3),pos 2b2 7→ b2}
with s� π(s)

• t1 6� t3: there exists no position respecting mappingπ with s� π(s); the only mapping withs� π(s)
is not position respecting, as it contains pos 2b2 7→ b1.

• t1 6� t4: there exists no position preserving mappingπ with s� π(s), becauset4 contains no subterm
of the formpos 2 t ′; positionrespectingis not sufficient, ast4 is incomplete and might match further
terms withb at a different position than 2, e.g. the termf [a1,d2,b3,c4], in which case� would not be
transitive.

23

• t1 � t5: there exists a total, index injective, position preserving mappingπ = {c1 7→ c3),pos 2b2 7→
pos 2b)} with s� π(s); in contrast tot4, the termt5 “preserves transitivity” of�.

6. descendant (cf. requirement 3)
Let t1 = desc f{a}, t2 = desc f{a}, t3 = desc f{{a,b}}, andt4 = g{ f{a},h{b}}

• t1 � t2, becausef{a} � f{a}
• t1 6� t3, becausef{a} 6� f{{a,b}}
• t1 � t4, becauset4 contains a subtermt ′4 such thatf{a} � t ′4.

5.3 Simulation Order and Simulation Equivalence

Ground query term simulation has been designed carefully to be transitive and reflexive, because it is
desirable that ground query term simulation is an ordering over the setTg of ground query terms. This
is necessary e.g. for the definition ofGrouping of a Substitution Set(cf. Definition 16).

Theorem 28 (Transitivity and Reflexivity of � [Sch04])
� is reflexive and transitive.

With this result, the following corollary follows trivially:

Corollary and Definition 29
� defines a preorder4 on the set of all ground query terms called thesimulation order.

Note that the simulation order is not antisymmetric (e.g.f{a,b} � f{b,a} and f{b,a} � f{a,b},
but f{a,b} 6= f{b,a}) and thus does not immediately provide a partial ordering. We therefore define an
equivalence relation as follows:

Definition 30 (Simulation Equivalence)
Two ground query termst1 andt2 are said to besimulation equivalent, denotedt1 ∼= t2, if t1 � t2 and
t2� t1.

The meaning of simulation equivalence is rather intuitive: two terms are considered to be equivalent,
if they differ only “insignificantly”, e.g. in a different order in the sequence of subterms in unordered
term specifications (e.g.f{a,b} and f{b,a}). This is consistent with the intuitive notion of unordered
term specifications given above. Note, however, thatf{a,a} 6∼= f{a}, because the first term contains two
a subterms, whereas the second contains only onea subterm, i.e. there cannot exist an index bijective
mapping of the successors of the first into the successors of the second term (and vice versa). Simulation
equivalence plays an important role later, because it allows to consider terms as “equal” that behave
equally.

Simulation equivalence extends to non-ground terms in a straightforward manner: two non-ground
query termst1 andt2 are simulation equivalent, if for every grounding substitutionσ holds thatσ(t1)∼=
σ(t2). Note that for any two data termst1 andt2 it holds that ift1 � t2 thent1 ∼= t2, because data terms
do not contain partial term specifications.

Note that simulation equivalence is similar, but not equal to, bisimulation, because bisimulation
requires thesamerelation to be a simulation in both directions, whereas simulation equivalence allows
two different relations.
∼= partitionsTg into a set of equivalence classesTg/∼=. On this set,� is a partial ordering. Given

two equivalence classest̃1 ∈ Tg/∼= andt̃2 ∈ Tg/∼=, we shall writet̃1� t̃2 iff t1� t2.

4a preorder is defined as a transitive, reflexive relation

24

Corollary 31
� is a partial ordering onTg/∼=.

In this partial ordering, it even holds that given two termst1 andt2 such that there exists a least upper
boundt3, thent3 is unique except for termst ′3 that are equivalent wrt.∼=.

5.4 Simulation Unifiers

In Classical Logic, a unifier is a substitution for two termst1 andt2 that, applied tot1 andt2, makes
the two terms identical. Thesimulation unifiersintroduced here follow this basic scheme, with two
extensions: instead of equality, simulation unifiers are based on the (asymmetric) simulation relation
of Section 5 and instead of a single substitution, substitution sets are considered. Both extensions are
necessary for handling the special Xcerpt constructsall andsomeand incomplete term specifications.

Informally, asimulation unifierfor a query termtq and a construct termtc is a set of substitutions
Σ, such that each ground instancetq′ of tq in Σ simulates into a ground instancetc′ of tc in Σ. This
restriction is too weak for fully describing the semantics of the evaluation algorithm. For example,
consider a substitution setΣ =

{
{X 7→ a,Y 7→ b},{X 7→ b,Y 7→ a}, a query termtq = f{var X} and a

construct termtc = f{var Y}. With the informal description above,Σ would be a simulation unifier of
tq in tc, but this is not reasonable. We therefore also require that the substitutionσ ∈ Σ that yieldstq′

also is “used” bytc′ . This can be expressed by grouping the substitutions according to the free variables
in tc (cf. Definition 16 on page 16).

Definition 32 (Simulation Unifier)
Let tq be a query term, lettc be a construct term with the set of free variablesFV(tc), and letΣ be an
all-grounding substitution set.Σ is called asimulation unifierof tq in tc, if for eachJσK ∈ Σ/'FV(tc)
holds that

∀tq′ ∈ JσK(tq) tq′ � JσK(tc)

Recall from Section 4 that all substitutions in an all-grounding substitution set assign data terms to
each variable. Intuitively, it is sufficient to only consider grounding substitutions fortq andtc. However,
all-grounding substitution sets simplify the formalisation of most general simulation unifiers below.

Example 33 (Simulation Unifiers)
1. Let tq = f{{var X,b}} and lettc = f{a,var Y,c}. A simulation unifier oftq in tc is the (all-

grounding) substitution set

Σ1 =
{
{X 7→ a,Y 7→ b},{X 7→ c,Y 7→ b}

}
2. Let tq = f{{var X}} and let tc = f{all var Y}. A simulation unifier oftq in tc is the (all-

grounding) substitution set

Σ2 =
{
{X 7→ a,Y 7→ b},{X 7→ a,Y 7→ a}

}
Assignments for variables not occurring in the termstq and tc are not given in the substitutions

above.

Simulation unifiers are required to begroundingsubstitution sets, because otherwise the simulation
relation cannot be established. Also, only grounding substitution sets can be applied to construct terms
containing grouping constructs, because a grouping is not possible otherwise. This restriction is less
significant than it might appear: as rules in Xcerpt are range restricted, the evaluation algorithm always

25

determines bindings for the variables intc, so that it is always possible to extend the solutions determined
by the simulation unification algorithm to a grounding substitution set by merging with these bindings.

Usually, there are infinitely many unifiers for a query term and a construct term. Traditional logic
programming therefore considers the most general unifier (mgu), i.e. the unifier that subsumes all other
unifiers. Since simulation unifiers are always grounding substitution sets, such a definition is not possi-
ble for simulation unifiers. Instead, we define themost general simulation unifier(mgsu) as the small-
est superset of all other simulation unifiers. Note that the notionmost general simulation unifieris –
although different in presentation – indeed similar to the traditional notion of most general unifiers,
because a most general simulation unifier subsumes all other simulation unifiers.

Definition 34 (Most General Simulation Unifier)
Let tq be a query term and lettc be a construct term without grouping constructs such that there exists at
least one simulation unifier oftq in tc. Themost general simulation unifier(mgsu) oftq in tc is defined
as the union of all simulation unifiers oftq in tc.

Note that the most general simulation unifier is indeed always a simulation unifier iftc does not
contain grouping constructs. This is easy to see because the union of two simulation unifiers simply
adds ground instances oftq andtc where for every ground instancetq′ of tq there exists a ground instance
tc′ of tc such thattq′ � tc′ . This does in general not hold for construct terms with grouping.

6 Interpretations and Entailment

The definition of satisfaction of Xcerpt term formulas, and in particular of Xcerpt programs, is similar to
the approach taken in classical first order logic, but differs in several important aspects: term formulas do
not differentiate between relations and terms, and the incompleteness of query terms and the grouping
constructs in construct terms have to be taken into account. Section 6.1 gives an intuitive meaning of
interpretations for Xcerpt term formulas. Satisfaction is then defined in Section 6.2 in terms of the
simulation relationintroduced earlier in Section 5. Based on this definition of satisfaction, entailment
between formulas can be defined in the classical manner.

6.1 Interpretations

As terms are considered to be formulas themselves, interpretations – informally – convey whether “a
term exists” or “a term does not exist”. Thus, a first approximation defines an interpretation as a set
of data terms (which are also ground query terms). A ground atom (i.e. a ground query term) is then
satisfied if it is contained in the set, or it simulates into a term that is contained in the set. Since Xcerpt
data terms represent Web pages, this definition is natural and close to the application, and thus well
suited for reasoning on the Web. Such a definition may be unusual from a Classical Logic perspective,
but is rather common in logic programming for it is close to Herbrand interpretations.

Furthermore, an interpretation provides a grounding substitution set which provides assignments to
all free variables in the formulas considered. Interpretations are thus formally defined as follows:

Definition 35 (Interpretation)
An interpretation M is a tupleM = (I ,Σ) where I is a set of data terms andΣ 6= /0 is a grounding
substitution set.

The set of data termsI conveys what data terms (Web pages) are considered to exist. The substitution
setΣ is necessary to properly treat formulas containing free variables, and allows to provide a recursive

26

definition of satisfaction below. As formulas are usually always (explicitly or implicitly) universally
closed,Σ can be seen as a mere technicality of the definition and is irrelevant for the general notion of
satisfaction. For this reason, the following Sections often somewhat imprecisely equate interpretations
with the set of data termsI .

Note thatΣ 6= /0. Otherwise,Σ(t) would yield an empty set of terms even in caset is a ground
query term. As the application of a substitution set to a query term formula yields a conjunction over
all substitutions, application of /0 would yield an empty conjunction, i.e.>. To define a substitution set
that merely maps each term to itself it has to be specified asΣ =

{
/0
}

, where the empty substitutionσ
corresponds to the identity function.

It is important to note that the interpretations considered here are very specific in that they only
considertermsas objects, instead of arbitrary objects. They are thus similar to Herbrand interpretations
in traditional model theory. However, this restriction is reasonable, as term formulas do not intend to
represent arbitrary objects.

6.2 Satisfaction and Models

Although similar to the definition of satisfaction in classical logic, satisfaction for Xcerpt term formulas
differs in several important aspects, in particular the satisfaction of atoms (i.e. terms) and of program
rules. A term (atomic formula) is considered to be satisfied if (and only if) its ground instance simulates
in some term of the interpretation. Considering the Web as an interpretation, this means that a query
term “succeeds” (is satisfied) if there exists a Web page (data term) such that the ground instance of the
query term simulates into this data term.

Unlike in traditional logic programs, rules in Xcerpt are not treated as (classical) implications (⇒
below), because the grouping constructsall andsome require that the query part of a rule is not only
satisfied, but that it is also satisfied in the maximal manner, i.e. the substitution set yielding the ground
instance of the construct term must include all possible substitutions for which the query part is sat-
isfied. Otherwise, interpretations would include answer terms for a rule that differ from the intuitive
understanding of the constructsall andsome (see Example 38 below). The definition of satisfaction
for Xcerpt rules uses the notion of maximal substitution sets defined above in Definition 11.

With the exception of term and rule satisfaction, the following definition follows the classical def-
inition of satisfaction. Note in particular, that the negation used in this definition isclassicalnegation
and not negation as failure (as the query negation in Xcerpt programs).

Definition 36 (Satisfaction, Model)
1. Let M = (I ,Σ) be an interpretation (i.e. a set of data termsI and a substitution setΣ), and lett be

a construct or query term.

The satisfaction of a term formulaF in M, denoted byM |= F , is defined recursively over the
structure ofF :

27

M |=> holds
M |=⊥ does not hold
M |= t iff for all t ′ ∈ Σ(t) there exists a termtd ∈ I such thatt ′ � td

M |= ¬F iff M 6|= F
M |= F1∧·· ·∧Fn iff M |= F1 and . . . andM |= Fn

M |= F1∨·· ·∨Fn iff M |= F1 or . . . orM |= Fn

M |= F ⇒G iff M |= ¬F ∨G
M |= ∀x.F iff for all t ∈ I holds thatM′ = (I ,Σ′) |= F ,

whereΣ′ =
{

σ ◦ {x 7→ t} | σ ∈ Σ
}

M |= ∃x.F iff there exists at ∈ I such thatM′ = (I ,Σ′) |= F ,
whereΣ′ =

{
σ ◦ {x 7→ t} | σ ∈ Σ

}
M |= ∀∗� tc←Q� iff M′ = (I ,Σ′) |= tc for a maximal grounding substitution setΣ′ for Q

with M′ |= Q

2. If a formulaF is satisfied in an interpretationM , i.e.M |= F , thenM is called amodelof F .

Note that the maximality requirement in the last part of (1) refers to the satisfaction ofQ in M and
ensures that grouping constructs in the head of the rule are substituted properly.

As instances of Xcerpt rules are variable disjoint (so-calledstandardisation apart), it is possible to
replaceΣ by Σ′ in the model definition for∀∗ � t ← Q�. Otherwise, the substitutions inΣ andΣ′
would have to be merged toΣ◦Σ′.
Example 37 (Satisfaction of Term Formulas)
Let M = (I ,Σ) be an interpretation with

I :=
{

f [a,b], f [a,c],b
}

Σ :=
{
{X 7→ a, Y 7→ b},{X 7→ a, Y 7→ c}

}
The following statements hold forM:

1. M |= f [a,b], because for eacht ∈ Σ(f [a,b]) =
{

f [a,b]
}

exists at ′ ∈ I with t � t ′

2. M 6|= f [a,d], because fort = f [a,d] ∈ Σ(f [a,d]) =
{

f [a,d]
}

does not exist at ′ ∈ I with t � t ′.

3. M |= f{a,b}, because for eacht ∈ Σ(f{a,b}) =
{

f{a,b}
}

exists at ′ ∈ I with t � t ′

4. M |= f{{var X,var Y}}, because

• σ1 = {X 7→ a, Y 7→ b} andσ1(f{{var X,var Y}})� f [a,b], and

• σ2 = {X 7→ a, Y 7→ c} andσ2(f{{var X,var Y}})� f [a,c]

5. M |= ∃Z. f{{var Z}}, becauseM′ = (I ,Σ′) with
Σ′ =

{
{X 7→ a, Y 7→ b, Z 7→ a},{X 7→ a, Y 7→ c, Z 7→ a}

}
is a model forf{{var Z}}

6. M 6|= ∀Z. f{{var Z}}, because there exists a termf [a,b] as substitution forZ such thatM 6|=
f{{ f [a,b]}}

7. M |= ∀Z.var Z, because for allt ∈ I holds thatM′ = (I ,Σ′) with Σ′ =
{
{X 7→ a, Y 7→ b, Z 7→

t},{X 7→ a, Y 7→ c, Z 7→ t}
}

is a model forvar Z5

5This result might be surprising from a classical perspective, but it is self-evident when considering terms as formulas: univer-
sal quantification quantifies over all existing terms, and obviously all these are satisfied in any interpretation.

28

For a programP, a model is intuitively an interpretation that contains all the data terms that are
“produced” byP (and possibly also further data terms unrelated toP).

Example 38 (Satisfaction of Xcerpt Programs)
Let P be the following Xcerpt program (in compact notation):

p{all var X} ← q{{var X}}
q{a,b,c}

• the interpretationM1 = (I1,{ /0}) with I1 =
{

q{a,b,c}, p{a,b,c}
}

is a model forP, i.e.M1 |= P.

• the interpretationM2 = (I2,{ /0}) with I1 =
{

q{a,b,c}, p{a,b}
}

is no model forP, i.e. M1 6|= P,
becausep{a,b} is not the ground instance ofp{all var X} by themaximalsubstitution set for
whichq{{var X}} is satisfied

• the interpretationM3 = (I3,{ /0}) with I3 =
{

q{a,b,c}, p{a,b,c}, p{a,b}
}

is a model forP, i.e.
M3 |= P, becausep{a,b,c} ∈ I ; the additionalp{a,b} is not produced byP, but irrelevant for the
satisfaction ofP in M3.

Note that “terms” with infinite breadth are precluded by the definition of terms and can thus never
appear in an interpretation. Programs where a rule “defines” such terms do not have a model. For
example, the program

f{all var X}← g{var X}
g{g{var Y}}← g{var Y}
g{a}

does not have a model, because the first rule defines a “term” of the formf{a,g{a},g{g{a}}, . . .}.
To avoid non-terminating evaluation of such programs, it is desirable to find sufficient requirements to
preclude such programs syntactically. This is however out of the scope of this article.

7 Fixpoint Semantics

A classical approach to describing the semantics of logic programs is the so-calledfixpoint semantics,
first proposed by Van Emden and Kowalski [vEK76]. In the fixpoint semantics, a model is constructed
by iteratively trying to apply program rules (using an operator calledTP) to a set of data terms and adding
their results until a fixpoint is reached, i.e. no new data terms can be added. This smallest fixpoint is
then a model of the program (assuming that programs do not contain negation).

Example 39
Consider again the program

f{all var X}← g{{var X}}
g{a}

By definition, the starting point is alwaysI0 = /0. In the first iteration, no rules are applicable, but the
data terms are added to the set. Thus,

I1 = TP(/0) =
{

g{a}
}

The next iteration allows to apply the program rule. Thus,

I2 = TP(I1) =
{

g{a}, f{a}
}

29

Further application of rules does not add new terms, thusI2 is the smallest fixpoint. It is easy to see
that I2 is also a “reasonable” model of the program. Note that there are other fixpoints besidesI2, e.g.{

g{a}, f{a}, f{b}
}

, all of them supersets ofI2.

The following section proposes a fixpoint semantics for Xcerpt programs with grouping constructs
but without negation, and shows that the fixpoint of the program is also a model of a program. Since the
fixpoint semantics is the most precise characterisation of Xcerpt programs available, it is also used as
the reference for the verification of the backward chaining algorithm. Programs with negation are not
considered in this article, but their treatment should be very similar to the treatment of negation in other
logic programming languages. Since Xcerpt programs are negation stratifiable, a similar approach to
the approach taken by Apt, Blair, and Walker [ABW88] appears promising.

This article slightly diverges from the traditional definition of the fixpoint operatorTP in that it
definesTP as a function whose result contains not only the new terms but also those given as argument.
Thus, it is sufficient to simply letTP saturate in iterative applications instead of using a complex notion
of powers of the formTP ↑n. Arguably, this approach is more straightforward, because it reflects the
intuitive understanding of program evaluation.

Recall thatω denotes the first ordinal number, i.e. the smallest number that is larger than any natural
number. Thus,Tω

P denotes the application ofTP “until a fixpoint is reached” (whether it be finite or
infinite). The fixpoint operator is defined as follows:

Definition 40 (Fixpoint Operator TP, Fixpoint Interpretation)
Let P be an Xcerpt program.

1. The fixpoint operatorTP is defined as follows:

TP(I) = I ∪
{

td | there exists a ruletc←Q in P and substitution setΣ
such thatΣ is the maximal set with(I ,Σ) |= Q andtd ∈ Σ(tc),
or td is a data term inP

}
2. The fixpoint ofTP is denoted byMP = Tω

P (/0) and called the fixpoint interpretation ofP.

A problem with this first definition is that it can yield interpretations that contain unjustified terms in
case the program contains grouping constructs, because rules with grouping constructs require the rule
body to be satisfied maximally, but not all required information might be available in the iteration ofTP

where the rule is applied.

Example 41
Consider the following Xcerpt program:

f{all var X}← g{{var X}}
g{var Y}← h{{var Y}}
g{a}
h{b}

Applying the fixpoint operatorTP yields the following results:

T1
P (/0) =

{
g{a},h{b}

}
T2

P (/0) =
{

g{a},h{b},g{b}, f{a}
}

MP = T3
P (/0) =

{
g{a},h{b},g{b}, f{a}, f{a,b}

}
However,f{a} should not occur, because it is not the result of the maximal substitution forg{{var X}}.
Obviously, applying the first rule already inT2

P is too early.

30

Therefore, we refine the notion of fixpoint interpretations to fixpoint interpretations for stratifiable
programs. Constructing fixpoints for Xcerpt programs containing grouping constructs is based on the
grouping stratification of such programs and simply applies the fixpoint operator stratum by stratum,
beginning with the lowest stratum and ending with the highest. The following definition follows closely
a definition by Apt, Blair, and Walker [ABW88]:

Definition 42 (Fixpoint Interpretation for Stratifiable Programs)
Let P be a program with grouping stratificationP = P1]·· ·]Pn (n≥ 1). The fixpoint interpretationMP

is defined by
M1 = Tω

P1
(/0)

M2 = Tω
P2

(M1)
...
Mn = Tω

Pn
(Mn−1)

with MP = Mn.

Note that this definition ofMP is in principle applicable to all kinds of stratification, i.e. grouping
stratification, negation stratification, and full stratification.

Example 43
Consider the following Xcerpt program stratifiable into two strataP1 andP2:

P2 f{all var X}← g{{var X}}
P1 g{var Y}← h{{var Y}}

g{a}
h{b}

Applying the fixpoint operatorTP1 for the stratumP1 yields the following sets:

T1
P1

(/0) =
{

g{a},h{b}
}

M1 = T2
P1

(/0) =
{

g{a},h{b},g{b}
}

M1 = T2
P1

is a fixpoint for this stratum. Further application of the fixpoint operatorTP2 for the stratumP2

to this set then results in:

M2 = T1
P2

(M1) =
{

g{a},h{b},g{b}, f{a,b}
}

it is easy to see thatM2 = T1
P2

(M1) is a model ofP, and thatM2 does not contain unjustified terms.

We now show that the fixpoint of a program is also a model. Note, however, that the inverse state-
ment does not hold:

Theorem 44
Let P be a grouping stratified program without negation. Then the fixpointMP of P is a model ofP.

Proof. SupposeMP is not a model ofP. Then there exists a termt not in MP that is required byMP andP. There
are two cases for this:

• t is a data term inP. By definition ofTP, t is then inMP.

• t is a ground instance of a rule inP, i.e. there exists a ruletc← Q in P and a substitution setΣ that is a
maximal substitution withMP |= Σ(Q) such thatt ∈ Σ(tc). By definition ofTP, it holds thatΣ(tc)⊆MP.

31

8 Outlook and Future Work

The semantics described in this article is unsatisfactory in that it only covers a limited set of Xcerpt
programs (namely those that are grouping stratifiable), does not cover negation (as failure), and does not
provide a theory of minimal model as is usually done in traditional logic programming. The following
sections briefly suggest refinements that might be addressed in future work.

8.1 Semantics of Advanced Xcerpt Constructs

Some more advanced Xcerpt constructs are not covered by the model-theoretic semantics described
in this article. This section gives a brief outline over possible approaches for these constructs. More
elaborated proposals can be found in [Sch04].

Arithmetic Expressions and Aggregation Functions. Xcerpt construct terms may contain arithmetic
expressions (like+, -, string concatenation, etc.) and aggregation functions (likecount, sum, etc., usu-
ally in conjunction with grouping constructs). In general, both arithmetic expressions and aggregation
functions are applied to a number of data terms (i.e. ground construct terms) and yield a new data term
(for example,sum can be applied to the three data terms3, 4, and5, and yields the data term12).
Extending the model-theoretic semantics to convey their meaning can be achieved by a simple modifi-
cation of theapplication of substitution sets to construct terms(cf. Section 4.2). Expressions might e.g.
be evaluated on the ground instances that are the result of applying a substitution set to a construct term.

Optional Subterms. Xcerpt query and construct terms may contain so-calledoptionalsubterms pre-
ceded by the keywordoptional. Intuitively, optional subterms have the following meaning:

• query termscontaining optional subterms may match with data terms even if there exists no
corresponding subterm in the data term, i.e. matching does not fail in this case (but does not yield
variable bindings). On the other hand, if the data term does contain at least one corresponding
subterm, optional subterms are required to match (and possibly yield variable bindings). The
semantics of optional subterms in a query term can be formalised by properly adapting the notion
of ground query term simulation(cf. Section 5). To reflect that optional subterms are required to
match if possible, it is furthermore necessary to allow only those substitutions as valid answers
for a query term and a data term that provide bindings for a maximal subset of variables.

• optional subterms inconstruct termsmay be omitted if a substitution or substitution set does not
provide bindings for at least one of the variables contained in the optional subterm (such “in-
complete” substitutions might be the result of optional subterms in the query part of a rule). The
sematics of optional subterms in a construct term can be formalised by extending the definition of
application of substitution sets to construct terms(cf. Section 4.2).

Subterm Negation. In query terms, subterm negation (using the keywordwithout) denotes that
matching data terms may not contain corresponding subterms that are matched by the negated sub-
term. For example,f{{without b}} matches only with data terms that have a root with labelf and
arbitrary subterms except for such that are matched byb. Thus, the data termf{a,c} would match,
whereas the data termf{a,b} would not.

The semantics of subterm negation is best integrated into theground query term simulationdefined
in Section 5. A first approach following this idea is described in [Sch04].

32

8.2 (Non-)Monotonicity: Negation and Grouping Constructs

Requiring grouping/negation stratification as in this article is too strict for many applications. Therefore,
it would be worthwhile to investigate relaxations of these requirements (likelocal stratification[Prz88])
or even entirely different approaches that have been proposed in the last 20 years (likestable models
[GL88] or paraconsistent interpretations[Bry02]) to non-monotonic constructs in Xcerpt.

8.3 Minimal Models

In traditional logic programming, the fixpoint of a program coincides with itsminimal model, which is
simply the intersection of all models of the program. It is easy to see that this approach is not feasible in
the presence of grouping constructs like in Xcerpt. Consider the following simple programP consisting
of a single rule and a single data term:

CONSTRUCT
f{all var X}

FROM
g{var X}

END

CONSTRUCT
g{a}

END

Models for this program are e.g.

• I1 =
{

g{a}, f{a}
}

• I2 =
{

g{a},g{b}, f{a,b}
}

• I3 =
{

g{a},g{b},g{c}, f{a,b,c}
}

Obviously,I1 is the only “desirable” model, and also the fixpoint ofP, i.e. I1 = Tω
P (/0). It is easy to see

that the intersection of e.g.I1 andI2 is not a model ofP, i.e. the minimal model cannot be determined
by simple set intersections.

Approaches to this problem could redefine intersection to “look inside terms”. In the above example,
a solution could be to not only do set intersection but also “term intersection”. Thus, the intersection of
f{a,b} and f{a}would bef{a}. However, several further problems arise with this kind of definition: it
is unclear which terms to intersect, one cannot rely on known properties of set operations (if intersection
is redefined, how about union?), and the resulting minimal model semantics is no longer as “declarative”
as would be desirable.

Regardless of the approach taken, the minimal model semantics needs to be simple, because it
is intended todescribethe meaning of a program without relying on its operational behaviour; if no
reasonable, understandable minimal model semantics can be found, it would probably be preferrable to
be stick to the operational description given in form of the fixpoint semantics.

Acknowledgements.
This research has been funded by the European Commission and by the Swiss Federal Office for

Education and Science within the 6th Framework Programme project REWERSE number 506779 (cf.
http://rewerse.net).

33

http://rewerse.net

References

[ABW88] Krzysztof Apt, Howard Blair, and Adrian Walker. Towards a Theory of Deductive Knowl-
edge. In Jack Minker, editor,Foundations of Deductive Databases and Logic Programming,
chapter 2, pages 89–148. Morgan Kaufmann, 1988.

[Bry02] Franois Bry. An Almost Classical Logic for Logic Programming and Nonmonotonic Rea-
soning. InProceedings of Workshop on Paraconsistent Computational Logic (PCL’2002),
Copenhagen, Denmark, July 2002.

[BS02] François Bry and Sebastian Schaffert. Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. InProceedings of
the International Conference on Logic Programming (ICLP’02), LNCS 2401, Copenhagen,
Denmark, July 2002. Springer-Verlag.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert A. Kowalski and Kenneth Bowen, editors,Proceedings of the Fifth International
Conference on Logic Programming, pages 1070–1080, Cambridge, Massachusetts, 1988.
The MIT Press.

[HHK96] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing Simulations
on Finite and Infinite Graphs. Technical report, Computer Science Department, Cornell
University, July 1996.

[Kil92] Pekka Kilpel̈ainen.Tree Matching Problems with Applications to Structured Text Databases.
PhD thesis, Dept. of Computer Sciences, University of Helsinki, November 1992.

[Mil71] Robin Milner. An Algebraic Definition of Simulation between Programs. Technical Re-
port CS-205, Computer Science Department, Stanford University, 1971. Stanford Aritifical
Intelligence Project, Memo AIM-142.

[Prz88] Teodor Przymusinsik. On the Declarative Semantics of Deductive Databases and Logic Pro-
grams. In Jack Minker, editor,Foundations of Deductive Databases and Logic Programming,
chapter 5, pages 193–216. Morgan Kaufmann, 1988.

[SB04] Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Practical Intro-
duction to Xcerpt. InExtreme Markup Languages 2004, Montral, Canada, August 2004.
IDEAlliance. http://www.extrememarkup.com/extreme/2004/.

[Sch04] Sebastian Schaffert.Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, Institute for Informatics, University of Munich, October 2004.

[vEK76] M. H. van Emden and R. Kowalski. The Semantics of Logic as a Programming Language.
Journal of the ACM, 3:733–742, 1976.

34

http://www.extrememarkup.com/extreme/2004/

	Introduction
	Preliminaries
	Xcerpt: A versatile Web Query Language
	Data Terms
	Query Terms
	Construct Terms
	Construct-Query Rules

	Range Restrictedness and Stratification
	Range Restrictedness
	Stratification

	Ground Query Terms and Ground Query Term Graphs
	Term Sequences and Successors
	Substitutions and Substitution Sets
	Substitutions
	Substitution Sets
	Maximal Substitution Sets

	Terms as Formulas
	Term Formulas
	Xcerpt Programs as Formulas

	Application of Substitutions to Xcerpt Terms
	Application to Query Terms
	Application to Construct Terms
	Application to Query Term Formulas

	Simulation and Simulation Unifiers
	Rooted Graph Simulation
	Ground Query Term Simulation
	Simulation Order and Simulation Equivalence
	Simulation Unifiers

	Interpretations and Entailment
	Interpretations
	Satisfaction and Models

	Fixpoint Semantics
	Outlook and Future Work
	Semantics of Advanced Xcerpt Constructs
	(Non-)Monotonicity: Negation and Grouping Constructs
	Minimal Models

