

SEVENTH FRAMEWORK PROGRAMME
THEME SECURITY

FP7-SEC-2009-1

Project acronym: EMILI
Project full title: Emergency Management in Large Infrastructures
Grant agreement no.: 242438

D4.1

A Survey on IT-Techniques for a Dynamic Emergency
Management in Large Infrastructures

Due date of deliverable: 30/06/2010
Actual submission date:

Revision: Version 1

Ludwig-Maximilians University Munich (LMU)

Project co-funded by the European Commission within the Seventh Framework Programme (2007–2013)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

emlll
Emergency Management in Large Infrastructures

SEVENTH FRAMEWORK
PROGRAMME

Project EMILI FP7-SEC-2009-1

Author(s) Simon Brodt, Steffen Hausmann,

Francois Bry, Olga Poppe,

Michael Eckert
(meanwhile TIBCO Software Inc.)

Contributor(s) LMU

Remove the contents below from this page before submission

INTERNAL REVISION: V0.1
(please note that the final draft accepted by the general quality manager will receive the external
“Version 1” as submitted to the EU; if the EU requires an improvement, i.e. an official “Version
2”, then the drafts for this revision may receive several further INTERNAL revision numbers,

to be maintained on this page)

Work package WP 4: “Semantic Web Technology for Complex Events”

Task(s) Task 4.1: “State-of-the-Art Analysis of Complex Event
Processing”

Quality Manager

Approval Date
Remarks

Internal Review CWI

Approval Date

Remarks

Project EMILI FP7-SEC-2009-1

Preface

This deliverable is a survey on the IT techniques that are relevant to the three use cases of the
project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing,
supervisory control and data acquisition, wireless sensor networks and complex event process-
ing. Even though the deliverable’s authors have tried to avoid a too technical language and have
tried to explain every concept referred to, the deliverable might seem rather technical to readers
so far little familiar with the techniques it describes.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 3 of 48

Project EMILI FP7-SEC-2009-1

Index

1 Introduction 5

2 Data Cleansing 7
2.1 Origin of Noise and Unreliability . 7
2.2 Data Quality Criteria . 8
2.3 Need for Physical Models . 9
2.4 The Phases of Data Cleansing . 9
2.5 Dimensions of Data Cleansing . 10
2.6 Difficulties of Data Cleansing . 11
2.7 Conclusions . 12

3 Supervisory Control and Data Acquisition 13

4 Wireless Sensor Networks 15
4.1 Overview . 15
4.2 Categorization of applications . 15
4.3 Query evaluation in sensor networks . 17
4.4 Conclusion . 18

5 Complex Event Processing 20
5.1 Introduction . 20
5.2 Terminology . 21
5.3 Identification of Language Styles . 23
5.4 Composition Operators . 23
5.5 Data Stream Query Languages . 26
5.6 Production Rules . 29
5.7 Timed State Machines . 32
5.8 Logic Languages . 34
5.9 Application Areas of the Language Styles . 37
5.10 Combination of Different Language Styles . 38
5.11 Conclusion . 39

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 4 of 48

Project EMILI FP7-SEC-2009-1

1 Introduction

The main goal of EMILI is the development of a new generation of intelligent data manage-
ment and control systems in order to improve the security of large infrastructures. This includes
a more efficient and reliable detection of critical and emergency situations and automatic as
well as semi-automatic reactions of the system which support the operator of the critical in-
frastructure (CI) in such a situation. The assessment of the CI’s condition and the execution
of appropriate actions will be mainly based on the sensor readings and whenever reasonable
on the output of appropriate simulations which enable more appropriate reactions based on the
prediction of the conditions in the near future.

Thus the basis for an intelligent system for emergency management and decision support are
good and reliable measurements which describe the physical conditions of the CI and are typ-
ically provided by sensors. However, the data gathered by the sensors is inherently noisy and
unreliable. The noise is caused by measurement errors of the sensors, transmission and pro-
cessing errors of the data provided by the sensors or even by people which are trying to confuse
the system on purpose by manipulating single sensors. Therefore adequate methods for the
cleaning of noisy sensor data are required within EMILI in order to provide reasonable and
appropriate results. Section 2 summarizes the problems and possible approaches for cleaning
noisy sensor data in the context of EMILI.

Before the assessment of the situation and the decision support based on the sensor data can be
carried out, the data needs to be collected from the sensors. Supervisory Control and Data Ac-
quisition (SCADA) systems and (wireless) sensor networks are two different approaches which
perform this task. A SCADA system is basically used to integrate the data of various hetero-
geneous sensors and to provide the operator the overview of the current state or condition of
the system based on single sensor values. Typically some kind of traditional hard wired net-
work is used in a SCADA system to send the sensor measurements to the SCADA server. In
contrast a wireless sensor network is a self organizing wireless network of small sensor nodes
which is particularly suitable for harsh environmental conditions which make the installation of
a traditional hard wired network either infeasible or too expensive. However, for our approach
both systems can form the basis the collection of sensor measurements. Section 3 and 4 respec-
tively provide an overview of the techniques which are used in SCADA systems and wireless
sensor networks to collect the data from the devices of distributed industrial installations and
infrastructures.

Based on the sensor data which is either provided by the SCADA system or the wireless sensor
network, the single measurements can be combined in order to derive new knowledge on the
condition of the CI and based thereon trigger appropriate reactions. In contrast to SCADA
systems, not only single measurements are taken into account, but also the combination (and
even absence) of multiple events is regarded. These properties of the system will be realized by
means of complex event processing (CEP) and event condition action (ECA) rules. However, in
order to specify the events and their dependencies which are representing such new knowledge
in a way that is appropriate for the CEP engine, they need to be specified in a formal manner,

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 5 of 48

Project EMILI FP7-SEC-2009-1

that is a CEP query. The same applies of course for the specification of ECA rules as well.
In recent years, a myriad of different CEP languages and engines have been proposed by the
research community and the industry. Section 5 contains a summary and categorization of the
currently available complex event query languages.

This document is focused on techniques for a dynamic emergency management in large infras-
tructures which are related to the detection of situations relevant for CIs. It is tightly coupled to
the deliverable D3.1 (Use Case Requirement Analysis and Specification) and its annexes as the
focus of each topics of this documents is adjusted to the requirements of the described use cases.
While this document is regarding the detection of situations, the reaction to detected situations
is considered within the deliverable D4.2 (State-of-the-Art Analysis of Event-Condition-Action
Rules). It gives an introduction to Event-Condition-Action Rules and their use for emergency
management based on real-life examples from the use-cases.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 6 of 48

Project EMILI FP7-SEC-2009-1

2 Data Cleansing

Data delivered by sensors is typically noisy and unreliable. Limitations of the sensors, mea-
surement errors, poor measurement conditions, parallel activities causing interferences, trans-
mission and processing errors and even malicious manipulations make it necessary to take a
careful look at sensor signals. The proper handling of noisy and unreliable sensor signals is an
important issue for the EMILI use cases, e.g. the metro use case described in deliverable 3.1
Annex B (See ‘Sensors and Signals’).

The task of improving, correcting and filtering the incoming data is called data cleansing or
data scrubbing. These terms originally stem from data management in data base systems. The
intention of data cleansing in this field is to achieve a consistent database state, where ‘con-
sistent’ refers to more or less explicit and application dependent data models and consistency
specifications. In the following we give an overview of data cleansing for complex event pro-
cessing in the context of emergency management in general and with particular regard to our
use cases. The overview does not claim to be comprehensive. The reason for this is that data
cleansing is strongly application dependant and there is no “one size fits all” approach for the
kind of data used in emergency management. The use case descriptions in the annexes of De-
liverable 3.1, i.e. Annex A for the airport use case, Annex B for the metro use case and Annex C
for the power grid use case, identify a number of points where noisy and unreliable sensor sig-
nals have to be treated. However the specific goals and tailored methods for data cleansing need
further examination within EMILI.

2.1 Origin of Noise and Unreliability

The “noise” or “dirt” which should be eliminated while data cleansing may have different rea-
sons. In the case of sensor signals the following reasons are probably the most common ones:

• Limitations of Sensors. The quality of the available sensors is typically limited by tech-
nical and economical constraints. Sometimes there are also physical limits to measure-
ments. These limitations of sensors lead to fluttering and spontaneous errors in measure-
ments. This kind of noise is typically stochastically distributed. Many sensor devices
already try to eliminate these effects by themselves.

• Interferences. In the context of emergency management sensors typically have to work
under poor, i.e. in non-laboratory conditions. The surveyed infrastructure is in use during
the measurements are taken and thus other activities may interfere with the measurement.
In the metro use case for example, one is interested in the current wind speed within a
tunnel because this information is needed for controlling the ventilation. Anemometers
are able to detect the current air flow at their positions. However the anemometers do not
only register the continuous airflow through a tunnel but also local and temporal turbu-
lence caused by moving trains or passengers. These interferences have to be removed to
obtain the relevant information, i.e. the wind speed. Note that the sensors work perfectly
fine from the point of physical measurement in this case. Therefore sensors are hardly

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 7 of 48

Project EMILI FP7-SEC-2009-1

able to eliminate this kind of noise.

• Failure of Sensors. Due to defects, pollution or other reasons sensors fail from time to
time. This results in missing or faulty signals. The sensor devices might be able to detect
some of the failures. However the emergency management system should also be able to
recognize faulty sensors.

• Human Errors. Some of the incoming data is not coming from sensors but from some
kind of manual input. For example an operator may enter information based on his/her
own observations or on a received emergency call. A passenger may press an emergency
button or indirectly trigger an emergency signal by removing a fire extinguisher. De-
pending on the person where the information comes from, it is more or less reliable and
may need further validation. Moreover there is always some risk of human errors when
entering the information, i.e. typing errors for instance.

• Manipulation. Critical infrastructures are always threatened by vandalism, sabotage or
even terrorism. Therefore one should account for malicious manipulations of the systems.
This is particularly important when data cleansing is considered, because methods doing
some kind of filtering are potentially vulnerable for manipulations. See Sec. 2.6 for an
example.

• Transmission Errors. The communication in an emergency management system usually
bases on more or less standard network components and protocols. Therefor the system
should be able to cope with data losses due to transmission errors.

Which kinds of “noise” and “dirt” have to be considered strongly depends on the type of the
incoming signals and on the way they are used in the application. Temperature values might
be checked for impossible values, i.e. values outside of the physically possible range where
the range may depend on the actual position of a sensor, for example a temperature below
-20◦C is quite impossible inside a metro station. Anemometers need some smoothing of the
measurements to correctly determine the current wind speed. And optical smoke sensors might
want to ignore very short alarms as they might be caused by some piece of dust entering the
sensor accidentally.

2.2 Data Quality Criteria

The overall objective of data cleansing is called “data quality”. Data quality is specified de-
pending on the characteristics of the applications considered. The data quality criteria usually
considered are the following (in alphabetical order):

• Accuracy: Cumulative criterion defined in terms of integrity, consistency and density.

• Completeness: Refers to data without anomalies, e.g. no impossible values. The defini-
tion is application dependent.

• Consistency: States that the data is free of contradictions with respect to application
dependent consistency condition or constraints (like an age not being over 120 years).

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 8 of 48

Project EMILI FP7-SEC-2009-1

• Density: Ratio of the amount of missing data compared to the total amount of data which
was expected

• Integrity: Cumulative criterion defined in terms of completeness and validity.

• Uniqueness: Refers to the number of (unwanted) duplicates in the data. Note that not all
applications reject duplicates.

• Validity: Approximate value reflecting the relative amount of data satisfying integrity
conditions or constraints.

2.3 Need for Physical Models

In the context of sensor signals the specification of the above criteria, particularly complete-
ness, consistency and density, is closely related to the physics of the surveyed infrastructure.
Therefore physical models of the infrastructure are often necessary for data cleansing. In the
case of completeness for example a physical model could determine which values are possible
at a certain location and under specific conditions. The cross-checking of different sensor sig-
nals which is a measure for finding and eliminating inconsistencies also depends on an accurate
physical model. Finally physical models, in this case actually physical simulations, are required
to meet the density criterion. The reason is that simulations can help to replace missing sen-
sor data, based on the available one. This is an important issue as sensors could be destroyed
during an emergency situation like fire (metro and airport use cases) or just are not sufficiently
available (power grid use case).

How and which physical models are actually used obviously depends on the application, i.e. the
kind and structure of the critical infrastructure and the concrete surveillance and emergency
management tasks. Physical models will never reflect all physical aspects of an infrastructure
but only those parts which are essential for emergency management. The power grid use case
for instance, needs precise models for electricity, but it is not concerned about people movement
or smoke and fire propagation which are important for the metro and the airport use case. For
simplicity and efficiency, there will typically not be one comprehensive physical model for all
physical aspects considered for some infrastructure and the physical model used for a particular
aspect may be tailored to the infrastructure and not be designed for maximum generality. Even
the way how physical models are brought into emergency management depends on the goal
of the integration. The knowledge extracted from the physical model could for example be
expressed by constraints (identifying anomalies), in form of logic-style rules (cross-checking)
or be coded into a simulation (replacing missing data, prediction).

2.4 The Phases of Data Cleansing

• Data Analysis / Auditing: The first and already challenging task for data cleansing is
the correct identification of the occurring kinds of “noise” and “dirt” in the data. This
can be done on the semantic as well as on the data level. The analysis on the semantic

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 9 of 48

Project EMILI FP7-SEC-2009-1

level bases on the meaning and known properties and relationships of the data. This kind
of analysis has typically to be done mostly manually and refers to human experience.
In the case of sensor signals the meaning, properties and relationships of the data are
usually given by physical values and laws. Therefore one important part of the semantic
analysis is building appropriate physical models for the data. The analysis on the data
level is frequently based on statistical methods which are able to recognize unusual or
unlikely data. This is also referred to as outlier detection. Outlier detection has been
widely examined on the field of databases. However the research on applying statistical
methods to stream data is still in a very early phase.

• Cleansing specification: Based on the identification of “noise” and “dirt” in the previous
step, a sequence of operations has to be defined to specify a suitable cleansing. This is can
be done by a kind of workflow specification which makes it possible to consider partly
cleansed data sets for further cleansing. The type of workflow needed depends on the
application considered: Cleansing texts does not call for the same processes as cleansing
sensor data for fire detection in a metro station or airport and the cleansing for alarm
signals from electrical devices in power grids is different again. Cleansing workflows are
verified for completeness (all cleansing needed is performed), correctness (the cleansing
performed does not introduce inconsistencies), termination and efficiency (the cleansing
can be performed in the time imparted on the data sets expected). Software verification
methods are used in this task as far as possible. The specification of a data cleansing
workflow is a static task, that is, it is performed when data cleansing is implemented.

• Workflow execution: The application of the formerly specified cleansing workflow to
the data. Additional consistency checks are often performed at run time because a prop-
erly specified cleansing workflow, for example for efficiency reasons, does not always
preclude inconsistencies.

• Post-Processing and Controlling: Final inspection of the cleansed data for checking
its correctness. If needed, manual cleansing and/or a new cleansing process might be
initiated.

2.5 Dimensions of Data Cleansing

Data Cleansing has different dimensions which are related to the different kinds of “noise” and
“dirt” as discussed in Section 2.1.

• Noise Reduction / Smoothing. Stochastic noise or noise caused by interferences can of-
ten be treated by some kind of smoothing (like a moving average) or other noise reduction
methods. The idea is to extract the relevant portion of the incoming signal. The incoming
signal is modified but not removed. Thus the risk of loosing relevant information by this
kind of cleansing is very low.

• Filtering. Faulty data due to sensor failures or human errors can often be recognized
by cross-checking information from different sources. This is often based on physical

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 10 of 48

Project EMILI FP7-SEC-2009-1

models. In a metro station for example one could use temperature and smoke sensors
to detect fire. Cross-checking the signals from spatially close sensors of both kinds al-
lows to detect unlikely or impossible measurements of a single sensor and could help to
avoid false-alarms. However filtering has to be used carefully as it might be vulnerable
for manipulations. Consider the following example: Under normal conditions it is physi-
cally impossible that one temperature sensor measures great heat, e.g. 800◦C, and another
sensor in only little distance returns a normal measurement of 20◦C. In this situation the
system might assume that the first sensor is faulty and decide to ignore its measurements
until the sensor has been checked by some maintenance staff. This behavior could be
exploited to manipulate the system. A small burner could be used to make the system
believe that some of the sensors were broken. After that a real emergency, e.g. fire, is
initiated but the system does not react, even though the sensors report the emergency,
because the system considers the sensors unreliable.

• Generation. Data cleansing may also try to fill gaps in the data due to missing sensors or
transmission errors. This task is likely to employ physical models. Filling up missing data
can be very useful as it allows to draw an overall picture of the state of an infrastructure
(see for example the “State Estimator” in the power grid use case). Such data should be
marked as generated, virtual or simulated since it is not as reliable as real measurements.

2.6 Difficulties of Data Cleansing

Data cleansing is an important task for ensuring accurate results when using data from sensors.
However data cleansing also introduces some difficulties and has to be applied carefully as it has
a great impact on the whole emergency management system. The careless use of data cleansing
is able to cause serious risks for an infrastructure.

• Data losses: Cleansing might yield losses. This is the most critical point in data cleansing
(See the example in Filtering). A trade-off must be strived for between possibly losing
data and possibly not sufficiently cleansing data. This trade-off depends on the applica-
tion.

• Physical models: Cleansing of sensor data depends on physical models. Such models
may be very simple: a simple speed equation suffices to recognize faulty data reporting
the presence of tracked vehicle at a given place and given time. Person or crowd move-
ments, smoke and fire propagation might, but must not, need more involved mathematical
models.

• Efficiency: When the data to cleanse is to be used in real-time applications, like in emer-
gency management application, then efficiency is an sensitive issue. A trade-off between
data quality and cleansing timer must be strived for. The trade-off depends on the appli-
cation and its time constraints.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 11 of 48

Project EMILI FP7-SEC-2009-1

2.7 Conclusions

This section provided an overview of data cleansing in general. Regarding EMILI, data cleans-
ing is an issue that mostly depends on the goals, approaches and data collected in the use cases.
An “one size fits all” cleansing does not exist so far for the kind of data used in emergency man-
agement (as opposed for example to generic well established methods, data sets and algorithms
for text cleansing).

Current state-of-the-art SCADA systems are already capable of cleaning sensor data (c.f. de-
liverable 3.1 annex b and annex c respectively). However, if the data cleaning capabilities
provided by the SCADA systems of the use case partners are sufficient for our purposes or
whether methods for data cleaning need to be integrated into the CEP engine is still an open
question. The benefit of data cleaning inside a CEP engine is that the engine integrates the data
of all (sub)system of the infrastructure whereas the data cleaning in a SCADA system is limited
to a certain (sub)system. The additional data that is available to the CEP engine might be used
to yield better data cleaning results.

For further information on data cleansing see [84, 45, 74, 35, 36, 70, 53, 1].

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 12 of 48

Project EMILI FP7-SEC-2009-1

3 Supervisory Control and Data Acquisition

Supervisory Control and Data Acquisition (SCADA) Systems [9] are used for the monitoring
and controlling of large and distributed industrial installation and infrastructures such as fac-
tories, manufacturing lines, power plants and networks, oil and gas pipelines, and facilities in
transport systems (e.g., airports, train and metro stations). They collect and interpret data from
the various devices in such an infrastructure and provide an overview of its current condition
to the operator which is responsible for the maintenance and safety of the infrastructure. Fur-
thermore, SCADA systems offer a centralized interface to the operator which allows him to
intervene and alter the current processes of the infrastructure’s components. Such an manual
reaction of the operator is required in case the automatic regulations of the components are not
appropriate for a certain situation and thus require adaptations (for instance during an emer-
gency or ongoing maintenance work).

A SCADA system typically consists of the following components [61]:

• Remote Terminal Units (RTUs) are connected to the sensors and devices of the system
and are in charge of convering the (possibly) analog values of the sensors to digital values.
They are also able to receive simple commands and thus alter the state of connected
devices.

• Programmable Logic Controllers (PLCs) are specialized digital computers that have
been designed to operate under the particular conditions of process control such as par-
ticular high or low temperatures, vibrations and high humidity. Both RTUs and PLCs are
programmable which implies that their behavior can be adopted by exchanging the code
that they are running.

• Master Terminal Unit (MTU) is connected to the communication infrastructure of the
SCADA system and collects all data that is provided by the RTUs.

• Human Machine Interface (HMI) presents the data collected by the MTU to the oper-
ator. It offers means for the operator to monitor the condition of the infrastructure and to
send commands to its devices.

• Communication Infrastructure. Messages which are exchanged between the RTUs
and the MTU are send over some kind of communication infrastructure, for instance a
wireless or hard wired network.

Intelligent RTUs and PLCs are connected to the devices of the infrastructure in order to establish
an interface between the physical devices and the SCADA system. RTUs and PLCs typically
serve two main purposes, namely to gather the measurements which are describing the current
condition of the device they are connected to and the regulating the operation of the devices.

Under normal conditions, the SCADA system works on a supervisory level, that is, it does not
influence the behavior of single components. Instead the RTUs and PLCs are responsible for the
automatic execution of control actions that are regulating the operation of the physical devices
of the infrastructure. However, in case an operator needs to intervene in the behavior of one or

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 13 of 48

Project EMILI FP7-SEC-2009-1

multiple devices, for instance when something goes wrong and the (predefined) reactions of the
RTUs and PLCs are no longer appropriate for the new situation, the operator can use the HMI
of the SCADA system to override the controls of the RTUs and PLCs and thus influence the
situation as it is required to cope with the changed conditions.

In addition to the supervisory methods which are provided by SCADA systems, they offer
means for trending and analytical processing [27]. To this end a log of respectively an archive
of all measurements, alarms and taken actions is stored in a database for the subsequent off-line
analysis.

SCADA systems face issues of heterogeneity. Various different devices from different manu-
facturers may be employed in an infrastructure which leads to a plurality of different and often
proprietary protocols that have to be supported by the SCADA system. Recently, this issue is
approached by building on open, Web-based standards for data formats and communication pro-
tocols. All the proprietary protocols which appear in an infrastructure are translated to a single,
uniform and open format which is then used for the communication between the SCADA sys-
tem and the other components. An example of such an protocol is the Facility Control Markup
Language (FCML) [20], which provides an XML format HTTP-based communication.

Complex event processing (CEP) in SCADA systems can be used to detect higher level events
which are derived from multiple lower level events or rather measurements. By combining
multiple measurements, not only the condition of a single device, but rather the condition of
a complete area or component of the infrastructure can be reflected. Since the measurements
of various different subsystems are integrated in a SCADA system, a CEP engine based on a
SCADA system has a complete view of the system, in contrast to the RTUs and PLCs which
are only aware of the components they are directly connected to. This is important since the
different subsystems of an infrastructure can easily interfere during an exceptional or emergency
situation. For instance during a fire, the heating, ventilating, and air conditioning (HVAC)
system can easily interfere with the smoke extraction system.

During an exceptional or emergency situation many components of the infrastructure are likely
to report warnings and abnormal measurements in a small period of time (avalanche of alarms).
Many of those warnings contain only little and/or highly redundant information which is rather
useless for the operator in such a situation. Consequently the few warnings which need the
immediate attention of the operator are easily overseen. The aggregated view of the infrastruc-
ture’s condition, which is provided by the CEP engine in form of complex events, contributes
to support the operator during such a situation. The aggregated view is an abstraction of the
actual infrastructure and only events which are related to the change of a component’s condi-
tion are presented to the operator. In this way, the operator can concentrate on fewer but more
meaningful events.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 14 of 48

Project EMILI FP7-SEC-2009-1

4 Wireless Sensor Networks

4.1 Overview

A wireless sensor network (WSN) commonly consists of a potentially large number of small
sensor nodes which form a self-organizing wireless network. The nodes of the network are
small devices equipped with an energy supply, a processor, a communication unit and one or
several sensors. Their main task is to measure the conditions of their environment and to send
the measured data towards an information sink for further processing.

The size of sensor nodes can range from a few millimeters to several centimeters [85]. Due to
their small size, sensor nodes are heavily constrained in processing power, available memory
and communication bandwidth and range. This has severe consequences for the network: each
sensor node can only communicate with its neighboring nodes and data is sent to remote nodes
by passing it from node to node until it reaches its destination. Complicated computations
cannot be carried out by the nodes and only a small amount of data can be kept in memory.

Typical application fields of WSN are military applications for the surveillance and tracking of
enemies [95, 67], environmental and habitat monitoring [97, 66], monitoring of factories and
machines [57] and monitoring of health conditions [10].

Energy consumption is an important issue for WSNs, since the lifetime of a sensor node is lim-
ited by the amount of available energy. Therefore one main interest of the research community
is to find ways to reduce the energy consumption of the nodes of the network. This includes
the development of efficient network protocols which enable a reliable and robust communi-
cation between nodes while keeping the communication between all nodes of the network low
and techniques like data aggregation and compression which also reduce the communication
between nodes.

Other topics of interest for WSNs are time synchronization, securing communications between
nodes and (spatial) localization of nodes. [6, 103] are survey on WSN in general which provide
an comprehensive overview on these and other WSN related topics.

4.2 Categorization of applications

In general WSNs are used to acquire data in a distributed and fault tolerant fashion in environ-
ments which are infeasible or too expensive to be monitored by sensors that are connected to
a traditional network. Compared to traditional networks WSNs are cheap and easy to set up,
robust against the failure of single components of the network and are thus appropriate to be
used in rather harsh environments.

WSNs can be classified into one of the following categories depending on how the gathered
data is processed:

Data gathering for off-line analysis. The main purpose of applications belonging to this cat-
egory is to collect data of sensors with a relative low data rate for subsequent analysis on a

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 15 of 48

Project EMILI FP7-SEC-2009-1

regular PC. The data can either be distributed among all nodes of the network or be stored in a
dedicated node. In order to gain good results from the analysis the focus of this kind of WSNs
is to provide accurate and complete measurements.

Tolle et al. [97] used such a WSN to monitor temperature, relative humidity and light levels at
different heights of a redwood tree. The sampling rate of the sensor nodes was set to 5 minutes
and the reported measurements where sent to a gateway node which stored them in a database
for later analysis.

Monitoring and event detection. A major characteristic of applications of this category is
that the processing of the data is done inside the network, that is in the sensor nodes and not
just in the gateway node or even later. For these type of applications not every measurement is
of importance but rather aggregated values and certain measurements which indicate a special
situation. Therefore the network is not expected to transmit all measurements to the information
sink which makes it possible to filter and aggregate values in the sensor nodes what leads to a
reduced communication and thus saves energy.

Werner-Allen et al. [99] used a WSN to monitor the activity of an active volcano. In order
to reduce the data rate of 100 Hz averaging filters were applied on the measurement in the
sensor nodes. Only when the difference of the two averages exceeded a threshold an event was
generated and sent through the network to the base station.

Data gathering for on-line analysis. These types of applications use WSNs as a lower level
tool for the real-time collection of sensor measurements. The analysis of the data is carried out
on a high performance machine which is connected to a gateway node of the WSN. A WSN
is preferred for this type of applications, since it is easier to set up than a traditional network
and does not require an expensive wiring. Therefore the network is well structured and contains
only a few nodes at well chosen locations. Typically all sensor nodes communicate directly with
a gateway node which is in turn connected to a traditional network. The WSN is thus optimized
for high throughput and low latency while the reduction of communication is of lower concern.

Krishnamurthy et al. [57] employed a WSN of this kind for vibration analysis in an industrial
factory to monitor the health of the equipment. In order to obtain an adequate resolution of
the measurements a sample rate between 19.2 and 40 KHz was required. A hierarchical WSN
which is optimized for a high bandwidth and low latency is used to sent the measurements to
an enterprise server which is powerful enough to carry out the analysis of the data.

The fields of complex event processing (CEP) and WSNs are closely related whereas the focus
of each field is slightly different. CEP deals with the detection of complex events from a given
stream of basic events. The major concern is a high throughput of a large amount of events
whereas the detection of basic events is left open. Thus WSNs (especially of the third type,
namely data gathering for on-line analysis) can be used to provide the input for CEP solutions.

In contrast, WSNs are used for the detection and delivery of basic events from the sensor nodes
to an information sink while operating with resource constrained equipment. They allow a
robust and reliable monitoring of environmental conditions in harsh environments which are
inappropriate for traditional networks. Event detection in WSNs is used as an optimization

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 16 of 48

Project EMILI FP7-SEC-2009-1

method to reduce communication and energy consumption. Powerful approaches have been
proposed which enable an efficient in-network evaluation of filters, aggregation and even joins.

4.3 Query evaluation in sensor networks

Of special interest in WSNs is the in-network evaluation of queries. This includes the aggre-
gation of values and sensor fusion techniques. In contrast to naive query evaluation, which
gathers all measurements in a gateway node and performs query evaluation in a centralized
way, in-network query evaluation is, at least to some extend, performed in the sensor nodes.
This can substantially reduce the communication of a network and thus save energy. A key
issue is to reduce communication on the one hand, but on the other hand maintain robust and
reliable query results in case of package loss or node failure.

Madden et al. [63] proposed to use the routing tree of a network for the stepwise application
of aggregation functions (like max, avg, sum). As the data is sent from a leave of the routing
tree towards the information sink it gets more and more aggregated. Since the aggregate is
only a summary of multiple values the communication between nodes is substantially reduced.
Similar approaches have been proposed by [102, 104, 49]. Tolle et al. [94] proposed methods
for the in-network computation of median and other quantile values. Approximate aggregation
techniques which reduce the number of packages sent though the network in exchange for the
quality of the query result have been investigated in [76, 24, 93].

Besides in-network data aggregation a similar technique called information fusion is often ap-
plied to WSNs. Information fusion is known from digital signal processing and combines the
measurements of a single or multiple sensors in order to increase the reliability and accuracy of
the sensor measurements. For the efficient usage of those techniques in the field of WSNs adap-
tations of the algorithms for in-network computation have been developed. As a side effect of
information fusion the amount of messages which is sent through the network can be reduced.
A comprehensive survey of information fusion for WSNs can be found in [75].

Aggregation and information fusion is used to increase the quality of the measurements and to
reduce network communication. However, these techniques can only provide limited support
of sophisticated query predicates, if at all. Furthermore, the capability to evaluate general joins
is required for the detection of complex events, that is events which are derived from multiple
base events.

Adabi et al. [2] address the problem of very complicated filter predicates which compare the
sensor data to predefined patterns. Their idea is to store filter conditions in a table and join tuples
with this table in order to evaluate the filter predicates. Therefore they developed a method for
in-network evaluation for joins between dynamic tuples (the measurements) and a static table
(the filter conditions).

Recently the problem of in-network join computation has been addressed by the community
[96, 106, 25, 14]. The efficient in-network computation of joins is quite challenging, since a
sensor node can not decide locally whether a tuple has a matching join partner in the network.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 17 of 48

Project EMILI FP7-SEC-2009-1

Some of these approached are limited to special cases of a general join. For instance, Yang et
al. [101] proposed a join method which requires one relation to contain only a few tuples and
thus makes it feasible to distribute one relation among all nodes of the network. SENS-Join [96]
addresses the problem of computing a general purpose join in sensor networks. The basic idea
is to only sent the join attribute values to a base station in a first step in order to create a filter
containing all values which find a join partner. In the second step, this filter is then distributed
in the network and the complete tuples which are matching the filter are then sent to the base
station where the join result is computed.

Besides the work on methods for the efficient in-network computation of aggregation, filters and
joins there has been considerable work on frameworks for the evaluation of queries in a WSN
[64, 102, 63]. These frameworks provide an abstraction of WSNs by regarding them as common
relations and offer declarative query languages for querying the network. The propagation of
queries in the network, the collection of the partial results and the computation of the query
result is realized by the framework and transparent for the user. This approach has the advantage
that query optimization can be applied, and that adequate and efficient methods for in-network
computation can be chosen by the framework based on the given query.

4.4 Conclusion

CEP and query evaluation in WSNs are closely related. Both fields deal with measurements
and observations of the real world and provide means for the efficient detection of events which
occur in the underlying observations. However, the scope of the two domains is a bit different.
WSNs focus on the gathering and delivery of basic events under highly resource constrained
conditions. Event detection is used to reduce the amount of events which are of interest for the
use and thus need to be communicated over the network. According to that, event detection is
used to optimize communication in a WSN and as a consequence to increase the lifespan of the
network. In contrast, CEP focuses on the detection of complex events from a given stream of
basic events. Of major interest are massive streams of events (containing hundreds of thousands
events per second) and efficient methods for the detection of complex events which guarantee
a high throughput. It is generally assumed that the basic events of the stream are provided in
a way which is appropriate for the CEP engine and the detection of those basic events is not
further regarded.

Another substantial difference of both fields beside the detection of basic events is how queries,
or more precisely the basic operators a query can be decomposed into, are evaluated. Due to
the limited resources of the nodes of a WSN, the evaluation of even simple operators needs
to be distributed among several nodes, whereas the evaluation of a single operator is typically
not distributed in a network of CEP engines. Instead, the operators of a CEP query may be
distributed among several nodes, but the evaluation of a single operater is never distributed
among several nodes.

Summarizing, WSNs are mainly optimized for low energy consumption and heavily constrained
devices, whereas CEP engines are optimized for a high throughput and quick response times.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 18 of 48

Project EMILI FP7-SEC-2009-1

However, WSNs which are intended for data gathering for on-line analysis, and thus power
consumption and constrained devices are of lower concern, can be used (similar to a SCADA)
as an input layer for a CEP engine.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 19 of 48

Project EMILI FP7-SEC-2009-1

5 Complex Event Processing1

5.1 Introduction

Event-driven information systems demand a systematic and automatic processing of events.
Complex Event Processing (CEP) encompasses methods, techniques, and tools for processing
events while they occur, i.e., in a continuous and timely fashion. CEP derives valuable higher-
level knowledge from lower-level events; this knowledge takes the form of so called complex
events, that is, situations that can only be recognized as combinations of several events.

The term Complex Event Processing was popularized in [62]; however, CEP has many inde-
pendent roots in different research fields, including discrete event simulation, active databases,
network management, and temporal reasoning. Only in recent years, CEP has emerged as a
discipline of its own and as an important trend in the industry. The founding of the Event
Processing Technical Society [30] in early 2008 underlines this development.

Important application areas of CEP are the following:

Business activity monitoring aims at identifying problems and opportunities in early stages by
monitoring business processes and other critical resources. To this end, it summarizes events
into so-called key performance indicators such as, e.g., the average run time of a process.

Sensor networks transmit measured data from the physical world to, e.g., Supervisory Control
and Data Acquisition systems that are used for monitoring of industrial facilities. To minimize
measurement and other errors, data of multiple sensors has to be combined frequently. Further,
higher-level situations (e.g., fire) usually have to be derived from raw numerical measurements
(e.g., temperature, smoke).

Market data such as stock or commodity prices can also be considered as events. They have to
be analyzed in a continuous and timely fashion in order to recognize trends early and to react to
them automatically, for example, in algorithmic trading.

The situations (specified as complex events) that need to be detected in these applications and
the information associated with these situations are distributed over several events. Thus CEP
can only derive such situations from a number of correlated (simple) events. To this end many
different languages and formalisms for querying events, the so called Event Query Languages
(EQLs), have been developed in the past.

There are also some surveys in the realm of CEP. For example, in [80, 79], rule-based ap-
proaches for reactive event processing are classified according to their origins. In [17], EQLs
are divided into groups depending on the kind of system architecture they are used in. The
survey of EQLs described in [90] distinguishes between a non-logic and logic-based view on
handling the event triggered reactivity. There are also comparisons of different single CEP prod-
ucts, e.g., [44]. Both the multitude of EQLs and the diversity of surveys on event processing
and reactivity can be attributed in part to the fact that CEP has many different roots and is only

1The following text will appear as a chapter in the Springer book “Reasoning in Event-based Distributed Systems”
with the title “A CEP Babelfish: Languages for Complex Event Processing and Querying Surveyed”.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 20 of 48

Project EMILI FP7-SEC-2009-1

now recognized as an independent field.

To the best of our knowledge, there are no comprehensive surveys so far that (1) classify differ-
ent EQLs into groups according to the language “style” or “flavor” and (2) compare the groups
by means of the same example queries with respect to their expressivity, ease of use and read-
ability, formal semantics, success in the industry and some other features. This chapter surveys
the state of the art in CEP regarding these two points. Since CEP is a field that is very broad and
without clear-cut boundaries, this chapter focuses strongly on querying events. It concentrates
on EQLs that are known and specified at the outset. Other, less developed aspects of CEP such
as detecting unknown events using approaches like machine learning and data mining on event
streams, are not discussed here.

The contributions of this chapter are:

1. Identification and abstract description of five language styles, namely composition oper-
ators, data stream query languages, production rules, timed state machines, and logic
languages

2. Illustration of each language style on a sensor network use case

3. Discussion on suitable application areas of each language style

4. Abstract description of some of the combined approaches

5.2 Terminology

Since CEP has evolved from many different research areas, a standard terminology has not
yet established and found broad adoption. For example, what is called a (complex) event query
might also be called a complex event type, an event profile, or an event pattern, depending on the
context. We will therefore devote this section to the basic notions and our informal definitions
of them.

An event is a message indicating that something of interest happens, or is contemplated as
happening. Events can be represented in different data formats such as relational tuples, XML
documents or objects of an object-oriented programming language (e.g., Java).

In this chapter, we use the following presentation of events: event type (attribute name1
(attribute value1), . . . , attribute namen (attribute valuen)). An event type specifies an event
structure, similar to a relational database schema specifying the structure of tuples of a relation.
For example, high temp(area) is an event type of an event high temp(area(a)) indicating high
temperature in area a. In this event, area is an attribute and a is its value. (In the following,
capital letters denote variables and small letters denote literals.) An event attribute is a com-
ponent of the structure of an event. It can be an entry of a tuple, an XML fragment, or a field
of an object, depending on the event representation. The set of attribute values of an event is
called event data.

The formalism introduced here is by no means compelling. One could prefer to use unnamed
perspective identifying attribute values by their positions or use any alternative event represen-

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 21 of 48

Project EMILI FP7-SEC-2009-1

tation instead. Since in all languages proposed so far, events are flat or structured records or
tuples, the formalism retained for this chapter is no restriction.

Since events happen at particular time which is essential for event processing, all events must
have a possibly implicit attribute called event occurrence time. An event occurrence time is
a time point or time interval indicating when this event happens. A time interval is described
by two timestamps indicating its bounds. A time point is described by a single timestamp. We
shall see below that using time points or time intervals has far reaching consequences for event
processing.

Timing and event order are difficult issues of distributed systems. Each node (computer, device,
etc.) in a distributed system has its own local clock and the clocks of different nodes are hard to
be synchronized perfectly [26]. Furthermore the transmission time of messages varies depend-
ing on sender and receiver, routing, network load, and other factors. Therefore the reception
order of some events may differ from their emission order [58]. These issues are ignored in this
chapter for the sake of simplicity.

Another characteristical feature of events is event identification. For example, one can assign
an identifier t to the event high temp(area(a)), written in the following t : high temp (area(a)).
We will see the advantages of this feature below.

Events are sent by event producers (e.g., sensors) to event consumers (e.g., Supervisory Control
and Data Acquisition system) on so called event streams.

In order to react to an event e (e.g., turn on air conditioning in an area if an event indicating
high temperature in the area arrives) or to derive a new event from another event e (e.g., derive
an event indicating high temperature from an event containing a temperature measurement if
the measurement is considered to be high), an event query which matches e is specified in an
event query language. An event query language (EQL) is a high level programming language
(possibly of limited expressivity) for querying events. A simple event query is a specification
of a certain kind of single events by means of an event query language. A complex event
query is a specification of a certain combination of events using multiple simple event queries
and conditions describing the correlation of the queried events.

A simple event is either an event arriving on the event stream or an event derived by a simple
event query (i.e., from a single event). A complex event is an event derived by a complex event
query (i.e., from a certain combination of at least two events occurring or not occurring over
time). In EPTS Glossary [30] many other kinds of events are defined, such as composite event,
virtual event, derived event, raw event and some others.

Note that the occurrence time of a complex event e comprises the occurrence time of all events
e it has been derived from. For example, a complex event f:fire(area(a)) indicating fire can be
derived from two simple events s:smoke(area(a)) and t: high temp(area(a)) indicating smoke
and high temperature respectively. f begins as soon as s or t begins and it ends as soon as both
simple events are over.

The derivation of complex events is called Complex Event Processing. Complex Event Pro-
cessing (CEP) denotes algorithmic methods for making sense of base events (low-level knowl-

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 22 of 48

Project EMILI FP7-SEC-2009-1

edge) by deriving complex events (high-level knowledge) from them in a timely fashion and
over periods of time.

These are the most important notions in the field of event processing. In this chapter we will
also need some other notions which will be informally introduced before using.

5.3 Identification of Language Styles

To bring some order into the multitude of EQLs, we try to group languages with a similar “style”
or “flavor” together. We will focus on the general style of the languages and the variations
within a style, rather than discussing each language and its constructs separately. It turns out
most approaches for querying events fall into one of the following five categories:

1. languages based on composition operators (sometimes also called composite event alge-
bras or event pattern languages),

2. data stream query languages (usually based on SQL),

3. production rules,

4. timed (finite) state machines, and

5. logic languages.

As we will see, the first, the second and the fifth approaches are languages explicitly developed
for specifying event queries, while the third one is only a clever way to use the existing tech-
nologies of production rules to implement event queries. Similarly, the fourth approach is the
use of an established technology to model event queries in a graphical way.

In Sections 5.4–5.8, we will describe each language style individually, mentioning the respec-
tive important languages from the research and industry. We will also discuss the strengths
and weaknesses of each style and illustrate them on a sensor network use case which can be
implemented using, e.g., TinyDB [65]. Section 5.9 summarizes the comparison by a discussion
on suitable application areas of each language style. It is further worth mentioning that many
industry products follow approaches where several languages of different flavors are supported
or a single language combines aspects of several flavors. Section 5.10 will therefore be devoted
to hybrid approaches. Section 5.11 concludes this chapter.

5.4 Composition Operators

5.4.1 General Idea

The first group of languages that we discuss builds complex event queries from simple event
queries using composition operators. Historically, these languages have their roots primarily in
Active Database Systems [83], though newer systems like Amit [5] run independently from a
database. Some examples include: the COMPOSE language of the Ode active database [41, 42,
43], the composite event detection language of the SAMOS active database [39, 40], Snoop [23]

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 23 of 48

Project EMILI FP7-SEC-2009-1

Composition fire(area(A)) = (smoke(area(A))∧high temp(area(A)))1 min
Sequence fire(area(A)) = (smoke(area(A)); high temp(area(A)))1 min

or
fire(area(A)) = s:smoke(area(A)); high temp(area(A));
s+1 min

Negation failure(sensor(S)) = t:temp(sensor(S)); not
temp(sensor(S)); t+12 sec

Aggregation –

Figure 1: Example queries in pseudo code for composition operators

and its successor SnoopIB [3, 4], GEM [68], SEL [105], CEDR [11], ruleCore [92, 73], the
SASE Event Language [100], the original event specification language of XChange [28, 18,
19], and the unnamed languages proposed in the following papers: [86], [71], [47], [21], [12],
[88, 87].

Complex event queries are expressed by composing single events using different composition
operators. Typical operators are conjunction of events (all events must happen, possibly at
different times), sequence (all events happen in the specified order), and negation within a
sequence (an event does not happen in the time between two other events). Consider the use of
the operators in the sensor network use case below.

5.4.2 Sensor Network Use Case

Since different composition-operator-based EQLs have very different and rather unreadable
syntax we formulate the example queries in pseudo code in Figure 1. The pseudo code illustrates
the idea of this kind of EQLs but it does not mean that each of the queries in Figure 1 can be
analogously formulated in every composition-operator-based EQL.

The first query in Figure 1 triggers fire alarm for an area when smoke and high temperature
are both detected in the area within 1 minute, in other words the query derives a complex
event fire(area(A)) from the two events smoke(area(A)) and high temp(area(A)). The events
smoke(area(A)) and high temp(area(A)) are joined on variable A. Their order does not matter
but it is important that both events appear within 1 minute indicated by the time window spec-
ification (. . .)1 min. This is a typical example of event composition realized by the conjunction
operator ∧ and a time window specification.

The second example is similar to the first one but the events in the event query are con-
nected by the sequence operator ; denoting that the order of events is important, i.e., the event
smoke(area(A)) must appear before the event high temp(area(A)). Only if the events appear
within 1 minute and in the right order the complex event fire(area(A)) is derived.

Alternatively if a composition-operator-based EQL supports event identification and relative
timer events, this query can be formulated by means of the event identifier s for the event
smoke(area(A)) and a relative timer event s+1 min. In this case an EQL must decide whether

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 24 of 48

Project EMILI FP7-SEC-2009-1

the complex event f ire(area(A)) is derived after the event high temp(area(A)) or after the
event s+1 min.

Sequence operator is not as intuitive as it seems at first sight. Let A,B and C be simple event
queries. Under time point semantics (A;B);C is not equivalent to A;(B;C), i.e., both queries do
not yield the same answers. Let b,a,c be events arriving in this order and matching B, A, and
C, respectively. They yield an answer for the query A;(B;C) since b and c satisfy (B;C) with
the occurrence time (point) of c which is later than that of a. b happens before a which is not
allowed by the query (A;B);C.

Under time interval semantics A;(B;C) and (A;B);C are equivalent. They both match events
a,b,c arriving only in this order. (B;C) matches b,c and has the occurence time interval starting
as soon as b begins and ending as soon as c ends. Furthermore A;(B;C) requires that a is over
before b begins. This query matches a,b,c arriving exclusively in this order. Analogously (A;B)
matches a,b and has the time interval described by two time points, namely the begin of a and
the end of b. Consequently (A;B);C requires that c begins after b is over. This query can also
match only the events a,b,c arriving in this order. Hence, using time points or time intervals
has far reaching consequences [37].

The third example in Figure 1 shows how negation can be expressed by means of composition
operators. The query uses event identification and relative timer events. It demonstrates the
necessity for event identification if two events of the same type are used within one query and
it has to be distinguished between them.

Assume all sensors of our network send temperature measurements every 12 seconds. The third
query detects a failure of a sensor when its measurement is missing, i.e., the query derives a
complex event failure(sensor(S)) when there is an event temp(sensor(S)) which is not followed
by another event temp(sensor(S)) within 12 seconds.

Another feature which must be supported by an EQL is aggregation. Aggregation means col-
lection of data satisfying certain conditions, analysis of the data and construction of new data
containing the result of the analysis. An example of aggregation in our use case is the com-
putation of the average temperature reported by a sensor during the last minute every time a
temperature measurement from the sensor arrives. Such a query is unfortunately not express-
ible by means of composition operators (compare Figure 1).

Nesting of expressions makes it possible to specify more complicated queries but we restrict
ourselves to simple examples which should illustrate the main ideas of the language styles
without embracing their whole expressivity.

5.4.3 Summary

Many composition-operator-based EQLs support restrictions on which events should be con-
sidered for the composition of a complex event. Event instance selection, for example, allows
selection of only the first or last event of a particular type [107, 5, 47]. Event instance con-
sumption prevents the reuse of an event for further complex events if it has already been used

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 25 of 48

Project EMILI FP7-SEC-2009-1

in another, earlier complex event [40, 107].

Composition operators offer a compact and intuitive way to specify complex events. Partic-
ularly temporal relationships and negation are well-supported. Event instance selection and
consumption are features that are not present in the other approaches. Yet, there are hidden
problems with the intuitive understanding of operators sometimes, e.g., several variants of the
interpretation of a sequence (amongst others, interleaved with other events or not). Further,
event data (i.e., access to the attribute values of an event) is often neglected in languages of this
style, in particular regarding composition and aggregation.

Currently only very few CEP products are based on composition operators, among them IBM
Active Middleware Technology (Amit) [5] and ruleCore [92, 73].

5.5 Data Stream Query Languages

5.5.1 General Idea

The second style of languages has been developed in the context of relational data stream man-
agement systems. Data stream management systems are targeted at situations where loading
data into a traditional database management system would consume too much time. They
are particularly targeted at nearly real-time applications where a reaction to the incoming data
would already be useless after the time it takes to store it in a database. A typical example
of data stream query languages is the Continuous Query Language (CQL) that is used in the
STREAM systems [8]. The general ideas behind CQL apply to a number of open-source and
commercial languages and systems including Esper [31], the CEP and CQL component of the
Oracle Fusion Middleware [77], and Coral8 [72]. See also [52, 60] for the recent research in
the field of data stream query languages.

Data stream query languages are based on the database query language SQL and the following
general idea: Data streams carry events represented as tuples. Each data stream corresponds to
exactly one event type. The streams are converted into relations which essentially contain (parts
of) the tuples received so far. On these relations a (almost) regular SQL query is evaluated. The
result (another relation) is then converted back into a data stream. Conceptually, this process is
done at every point of time. Note that this implies a discrete time axis. (See however [50] for
variations.)

For the conversion of streams into relations, stream-to-relation operators like time windows
such as “all events of the last hour” or “the last 10 events” are used. For the conversion of the
result relation back into a stream there are three options: “Istream” stands for “insert stream”
and contains the tuples that have been added to the relation compared to the previous state of the
relation, “Dstream” stands for “delete stream” and contains the tuples that have been removed
from the relation compared to its previous state, or “Rstream” stands for “relation stream” and
contains simply every tuple of the relation. In the following we only use “Istream”.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 26 of 48

Project EMILI FP7-SEC-2009-1

5.5.2 Sensor Network Use Case

Figure 2 shows equivalent example queries as Figure 1 but in Continuous Query Language
(CQL). A CQL query is very similar to an SQL query. The FROM part of a CQL query is
a cross product of relations, the optional WHERE part defines selection conditions, and the
SELECT part is a usual projection.

For example, the FROM part of the first query in Figure 2 joins two relations smoke and
high temp which were generated out of event streams of type smoke and high temp respec-
tively by means of time windows. Generally there are several types of time windows. For the
sake of brevity only two of them are explained here.

The first one is a simple sliding window. The resulting relation contains all stream tuples of a
particular type between now–d and now where now is the current time point and d is a duration
such as “1 Minute” or “12 Seconds”. The syntax for a sliding window of duration d is T [Range
d] where T is an event type and the name of the resulting relation. For example, the notation
smoke [Range 1 Minute] produces the relation smoke containing tuple representations of all
events of type smoke which happened in the last minute.

The second time window that we explain here is a now window. The resulting relation contains
only the stream tuples of a particular type with the occurrence time now where now denotes
the current time point. The syntax for this window is T [Now] where T is the event type and
the name of the resulting relation. For example, the result of the expression high temp [Now]
is the relation high temp containing tuple representations of all events of type high temp which
happened at the current moment. Note that T [Range 0 Minutes] is equivalent to T [Now].

Remember that the first query triggers fire alarm for an area when smoke and high temperature
were both detected in the area within one minute. This temporal condition can be intuitively
formulated by means of 1 minute-long simple sliding windows restricting the smoke and the
high temp streams. The join condition is specified in the WHERE block of the query. Consider
the first example in Figure 2.

When the order of queried events is important the same query becomes less intuitive. Consider
the second example in the figure. The query triggers fire alarm for an area when high temper-
ature is being measured in the area now and smoke has been detected in the same area during
the last minute.

The definition of correct time windows is essential as it has semantic consequences such as
differentiation between an unordered composition and a sequence. Observe that a sequence of
more than two events can only be expressed by means of rule chaining. E.g., the sequence of
three events e1,e2,e3 can be expressed in the following way: The first query guarantees that e1
happens before e2 and generates a complex event e as an intermediate result. The second rule
queries events e and e3 in this order and derives the resulting events.

Negation is hard to express in CQL (as well as in SQL) because the negated tuples have to
be queried by an auxiliary query which is nested in the WHERE block of the main query and
must be empty to let the main query produce an answer. For example, the third rule in the figure

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 27 of 48

Project EMILI FP7-SEC-2009-1

Composition SELECT Istream s.area
FROM smoke [Range 1 Minute] s,

high_temp [Range 1 Minute] t
WHERE s.area = t.area

Sequence SELECT Istream s.area
FROM smoke [Range 1 Minute] s,

high_temp [Now] t
WHERE s.area = t.area

Negation SELECT Istream t1.sensor
FROM temp [Now] t1
WHERE NOT EXISTS (SELECT *

FROM temp [Range 12 Seconds] t2
WHERE t1.sensor = t2.sensor)

Aggregation SELECT Istream t1.sensor, avg(t1.value)
FROM temp [Range 1 Minute] t1,

temp [Now] t2
WHERE t1.sensor = t2.sensor

Figure 2: Example queries in Continuous Query Language

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 28 of 48

Project EMILI FP7-SEC-2009-1

reports a failure of a sensor when it does not send a temperature measurement every 12 seconds.

Aggregation is well supported by the language as shown by the last example in Figure 2. Every
time a temperature measurement from a sensor arrives the query computes the average temper-
ature reported by the sensor during the last minute.

5.5.3 Summary

Data stream query languages are very suitable for aggregation of event data, as particularly
necessary for market data, and offer a good integration with databases. Expressing negation and
temporal relationships, on the other hand, is often cumbersome. The conversion from streams
to relations and back may be considered somewhat unnatural and as may the prerequisite of a
discrete time axis.

SQL-based data stream query languages are currently the most successful approach commer-
cially and are supported in several efficient and scalable industry products. The better known
ones are Oracle CEP, Coral8, StreamBase, Aleri and the open-source project Esper. However,
there are big differences between the various projects and there also exist important extensions
that go beyond the general idea that has been discussed here.

5.6 Production Rules

5.6.1 General Idea

Production rules are not an event query language as such, however they offer a fairly convenient
and very flexible way of implementing event queries. The first successful production rule engine
has been OPS [33], in particular in the incarnation OPS5 [32]. Since then, many others have
been developed in the research and industry, including systems like Drools (also called JBoss
Rules) [51], ILOG JRules [48], and Jess [89]. While the general ideas of production rules will
be explained here, we refer the reader to [13] for a deeper introduction.

Production rules, which nowadays are mainly used in business rule management systems like
Drools or ILOG JRules, are not EQLs in the narrower sense. The rules are usually tightly
coupled with a host programming language (e.g., Java) and specify actions to be executed when
certain states are entered [13]. The states are expressed as conditions over objects in the so-
called working memory. These objects are also called facts.

Besides their use in business rule management systems that are not focused on events, pro-
duction rules are also an integral part of the CEP product TIBCO Business Events, which also
offers more CEP-specific features such as support for temporal aspects or modelling of event
types and data.

The incremental evaluation (e.g., with Rete [34]) of production rules makes them also suitable
for CEP. Whenever an event occurs, a corresponding fact must be created. Event queries are
then expressed as conditions over these facts. In doing so, the programmer has much freedom

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 29 of 48

Project EMILI FP7-SEC-2009-1

but little guideline.

5.6.2 Sensor Network Use Case

Figure 3 contains our four example queries in the open source production rule system Drools.
In Drools all events are represented as Java objects. Every time an event arrives some Java
method has to convert it into an object, insert the object into the working memory, and call the
rule engine to perform the rule evaluation (more precisely, fire all rules until no rule can fire).
Note that in CEP-tailored systems such as TIBCO Business Events this happens automatically.
If a complex event is derived by a rule it is also saved as an object in the working memory. We
assume that in this case the insert-method sets the occurrence time of a complex event.

The occurrence time is a usual attribute of an object. This is actually a problem because every
method can change every occurrence time inadvertently. This in turn leads to incorrect answers.

For the sake of simplicity we use time point semantics, assume that timestamps are given in
seconds since the epoch (i.e., since the midnight of January 1, 1970) and we do not perform
any garbage collection (i.e., deletion of events). These assumptions are not suitable for real-life
applications but they help to keep the examples simple. Under the above assumptions we can
express the temporal relations between events as simple comparisons of numbers. In real-life
applications temporal relations would have to be programmed as Java methods that are called
in Drools rules.

A Drools rule consists of two parts. The WHEN part is an event query, it specifies both, the types
of queried events and conditions on the events. The THEN part derives an object representing
the complex event, sets its occurrence time, and saves the object into the working memory. This
newly asserted object can then also activate further rules.

Remember that the first rule detects fire in an area when smoke and high temperature are both
detected in this area within one minute (consider the first rule in Figure 3). These conditions
are coded into the specification of a High temp object. Its attribute values are compared with
the respective attribute values of a Smoke object s. In particular a High temp event may happen
at most one minute before or after a Smoke event.

In the second rule of the figure the order of the queried events is relevant. Smoke appears before
high temperature is measured in the area. This is expressed by changing one of the conditions
on the occurrence time of a High temp object.

Negation is supported in Drools as shown by the third query. Recall that the query reports a
failure of a sensor when the sensor does not send a temperature measurement every 12 seconds.

Aggregation of events is also supported. Consider the last rule in Figure 3. Every time a sensor
sends a temperature measurement the query computes the average temperature reported by the
sensor during the last minute. As this example illustrates aggregation is hard to express in
Drools because the result of aggregation must be represented as an object in the WHEN part
of a rule (an Avg() object in this case) to be used as a parameter of an object representing the
complex event in the THEN part of a rule (an Avg temp() object in this case).

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 30 of 48

Project EMILI FP7-SEC-2009-1

Compositionwhen s: Smoke()
High_temp(area == s.area &&

timestamp >= (s.timestamp - 60) &&
timestamp <= (s.timestamp + 60))

then insert(new Fire(s.area));

Sequence when s: Smoke()
High_temp(area == s.area &&

timestamp > s.timestamp &&
timestamp <= (s.timestamp + 60))

then insert(new Fire(s.area));

Negation when t: Temp()
not(exists(Temp(sensor == t.sensor &&

timestamp >= t.timestamp &&
timestamp <= (t.timestamp + 12))))

then insert(new Failure(t.sensor));

Aggregationwhen t: Temp()
a: Avg() from accumulate(

Temp(sensor == t.sensor &&
timestamp >= (t.timestamp - 60) &&
timestamp <= t.timestamp &&
v: value),

average(v))
then insert(new Avg_temp(t.sensor, a));

Figure 3: Example queries in Drools

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 31 of 48

Project EMILI FP7-SEC-2009-1

As the examples show all relations between events must be programmed manually and even
simple temporal conditions (already in our strongly simplified time model) require low-level
code which is hard to read.

5.6.3 Summary

CEP with production rules is very flexible and well integrated with existing programming lan-
guages. However, it entails working on a low abstraction level that is — since it is primarily
state and not event oriented — somewhat different from other EQLs. Especially aggregation
and negation are therefore hard to express. Garbage collection, i.e., the removal of events from
the working memory, has to be programmed manually. (See however [98] for work towards
an automatic garbage collection.) Production rules are considered to be less efficient than data
stream query languages; this is however tied to the flexibility they add in terms of combining
queries (in rule conditions) and reactions (in rule actions).

5.7 Timed State Machines

5.7.1 General Idea

State machines are usually used to model the behavior of a stateful system that reacts to events.
The system is modelled as a directed graph. The nodes of the graph represent the possible states
of the system. Directed edges are labeled with events and temporal conditions on them. The
edges specify the transitions between states that occur in reaction to in-coming events.

State machines are founded formally on deterministic or non-deterministic finite automata
(DFAs or NFAs). Since states in a state machine are reached by particular sequences of multi-
ple events occurring over time, they implicitly define complex events. Timed Büchi Automata
(TBA) [7] were the first attempt to extend automata to temporal aspects for modelling real-time
systems. In a TBA each transition between states depends not only on the type of arriving events
but also on their occurrence time. For this, temporal conditions are added to transitions. Other
examples of this kind of EQLs are UML state diagrams and regular real-time languages [46].
Many representatives of this language style were developed to achieve a particular task or solve
a problem of real-time distributed systems, examples are Timed abstract state machine lan-
guage for real-time system engineering [78], Timed automata approach to real time distributed
system verification [56], Timed-constrained automata for reasoning about time in concurrent
systems [69].

5.7.2 Sensor Network Use Case

In this chapter we do not describe different kinds of real-time automata but explain their com-
mon principle. Figure 4 contains our example queries in a pseudo code for timed state machines.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 32 of 48

Project EMILI FP7-SEC-2009-1

Composition

s: smoke (area (A))

t: high_temp (area (A))

high_temp (area (A)), x ≤ end(s) + 1min

smoke (area (A)), x ≤ end(t) + 1min

fire (area (A))

Sequence

s: smoke (area (A)) high_temp (area (A)), x ≤ end(s) + 1 min

fire (area (A))

Negation

t: temp (sensor (S))

failure (sensor (S)) end(t) + 12 sec < x

temp (sensor (S)), x ≤ end(t) + 12 sec

Aggregation –

Figure 4: Example queries in pseudo code for timed state machines

The pseudo code is an extension of Timed Büchi Automata [7]. The first extension is the consid-
eration of event data. The second extension is the representation of complex events as automata
in such a way that only if the end state of an automaton is reached the respective complex event
is derived. A complex event can determinate a transition between states of another automaton
so that arbitrary levels of abstraction can be achieved.

Remember that our first example derives a complex event fire(area(A)) out of two events smoke(area(A))
and high temp(area(A)) if these events happen within one minute. Their order does not matter.
Since an automaton implicitly describes an ordered sequence we have to specify both acceptable
orders of queried events. Consider the first query in Figure 4. The longer the composition of
events the more acceptable orders (all possible permutations of events) must be considered by
the machine, i.e., a simple composition query provokes a complicated automaton (exponential
blow-up).

The events smoke(area(A)) and high temp(area(A)) must happen within one minute. This con-
dition is expressed using event identifiers, an auxiliary function end(i) which returns the end

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 33 of 48

Project EMILI FP7-SEC-2009-1

timestamp of event i and a global clock x. (As mentioned above, we do not consider such prob-
lems as clock synchronization in this chapter and refer the reader to [59].) Note that both events
smoke(area(A)) and high temp(area(A)) are joined upon the value of attribute area. If the end
state of the state machine is reached the complex event fire(area(A)) is derived.

The second query describes the sequence of events smoke(area(A)) and high temp (area(A)).
The latter must happen at most one minute after the former to let the automaton reach its end
state, i.e., to derive the complex event fire(area(A)). This is a very intuitive presentation.

Aggregation is not supported by timed state machines. Negation is not supported also but can be
simulated by a failure state without outgoing edges and with an incoming edge which is labeled
by a temporal condition and an event which should not arrive for the query to return an answer.
For example, the third machine in Figure 4 detects a failure of a sensor when it does not send
a temperature measurement every 12 seconds. If a temperature measurement comes within 12
seconds after the last measurement the state machine goes into the failure state, meaning that the
end state is unreachable and the complex event failure(sensor(S)) cannot be derived anymore.
If 12 seconds since the last temperature measurement are over (consider the temporal condition
of the incomimg edge of the end state) and no new measurement has arrived during this time,
the state machine goes into the end state and derives the complex event failure(sensor(S)).

5.7.3 Summary

Though timed state machines provide intuitive visualization of complex events their expressivity
is limited. They do not support aggregation. Negation and even composition of events are
cumbersome. Conditions on the event data which are more complex than equi-joins (e.g., an
attribute value must grow) cannot be expressed.

To overcome deficits of the theoretical automata, state machines are usually combined with lan-
guages of other styles. An example of this is the combination of state machines with production
rules in TIBCO Business Events. There, a transition between two states is specified with a
production rule. The condition of the production rule expresses when the transition is activated.
Frequently reactions to the complex events that are implicit in a state machine are desirable.
These can be specified for a transition (in the action part of the production rule) as well as for
the entry or exit of states.

5.8 Logic Languages

5.8.1 General Idea

Logic languages express event queries in logic-style formulas. An early representative of this
language style is the event calculus [54]. While event calculus is not an event query language
per se, it has been used to model event querying and reasoning tasks in logic programming
languages such as Prolog or Prova [55]. The latter combines the benefits of declarative and
object-oriented programming by merging the syntaxes of Prolog and Java. Prova is used as a

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 34 of 48

Project EMILI FP7-SEC-2009-1

rule-based backbone for distributed Web applications in biomedical data integration. One of the
key advantages of Prova is its separation of logic, data access, and computation.

XChangeEQ [15, 29] also adopts some ideas from event calculus-like approaches, but extends
and tailors them to the needs of an expressive high-level event query language. XChangeEQ

identifies and supports the following four complementary dimensions (or aspects) of event
queries: data extraction, event composition, temporal (and other) relationships between events,
and event accumulation. Its language design enforces a separation of the four querying dimen-
sions.

A further example of this language style is Reaction RuleML [82, 81] combining derivation
rules, reaction rules and other rule types such as integrity constraints into the general framework
of logic programming.

5.8.2 Sensor Network Use Case

Figure 5 contains our four example queries in XChangeEQ. An XChangeEQ rule consists of
two parts. The ON part, i.e., the rule body, is a complex event query which is a conjunction
or disjunction of simple or complex event queries and an optional WHERE block containing
temporal and other conditions on the queried events. The DETECT part, i.e., the rule head, is
a construction of a complex event using the variable bindings returned by the respective event
query.

Note that events are neither converted to relational tuples nor to objects of an object-oriented
programming language. Furthermore, it is not possible to manipulate event timestamps neither
consciously nor unwittingly. Finally, relative timer events are supported by XChangeEQ.

Event query specifications are very intuitive and flexible in XChangeEQ. There are four types
of event queries charaterized by different kinds of brackets. Single brackets denote a complete
event query, i.e., the query matches only those events which do not have attributes other than
the ones specified in the query. In contrast double brackets denote an incolmplete event query,
i.e., events matched by the query may have additional attributes. Curly brackets denote an
unordered query, i.e., the order of attributes does not matter. Square brackets denote an ordered
event query. Hence, there are four possible combinations of brackets, i.e., four types of event
queries (ordered complete, unordered complete and so on).

Consider the first rule in Figure 5. Its complex event query is a conjunction of two simple
incomplete and unordered event queries event s: smoke{{ area{{ var A }} }} and event t:
high temp{{ area{{ var A }} }} where variable A is bound to the value of attribute area. Since
the same variable is used in both queries the queried events are joined on the value of this
variable.

The WHERE block of the first rule in Figure 5 contains the additional temporal condition that
both events, i.e., smoke and high temperature, appear within one minute. Note the use of event
identifiers s and t. Note also that the temporal conditions (like before and within) are built-in
into the language and must not be manually programmed.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 35 of 48

Project EMILI FP7-SEC-2009-1

Composition DETECT fire { area { var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: high_temp {{ area {{ var A }} }}
} where { {s,t} within 1 min }

END

Sequence DETECT fire { area{ var A } }
ON and { event s: smoke {{ area {{ var A }} }},

event t: high_temp {{ area {{ var A }} }}
} where { s before t, {s,t} within 1 min }

END

Negation DETECT failure { sensor { var S } }
ON and { event t: temp {{ sensor {{ var S }} }},

event i: timer:from-end [event t, 12 sec],
while i: not temp {{ sensor {{ var S }} }} }

END

Aggregation DETECT avg_temp { sensor{ var S }, value { avg(all var T) } }
ON and { event t: temp {{ sensor {{ var S }} }},

event i: timer:from-start-backward [event t, 1 min],
while i: collect temp {{ sensor {{ var S }},

value {{ var T }} }} }
END

Figure 5: Example queries in XChangeEQ

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 36 of 48

Project EMILI FP7-SEC-2009-1

The second query contains the additional temporal condition that the smoke event must appear
before the high temperature event. The effect that the additional temporal condition is mapped
to an additional statement in the query is an outstanding feature of XChangeEQ.

Negation and aggregation of events are supported as shown by the last two examples in Figure 5.
Both negation and aggregation are restricted to finite time intervals. In the examples, the time
intervals are given by relative timer events which are defined as follows:

• timer:from-end[event e, d] the relative timer t extends over the length of duration d start-
ing at the end of e, i.e., begin(t):=end(e), end(t):=end(e)+d

• timer:from-start-backward[event e, d] the relative timer t extends over the length of du-
ration d ending at the start of e, i.e., begin(t):=begin(e)–d, end(t):=begin(e)

In the above we write begin(t) and end(t) to denote the beginning and the end of event t re-
spectively. There are of course many other relative timer events which are not discussed here,
see [29].

Recall that the third example detects a failure of a sensor when it does not send a temperature
measurement every 12 seconds, i.e., the query derives a complex event failure{ sensor{ var S }
} when there is an event temp{{ sensor{{ var S }} }} which is not followed by another temp{{
sensor{{ var S }} }} event within 12 seconds.

The last query of the figure computes average temperature reported by a sensor during the last
minute every time the sensor sends a temperature measurement. More precisely, every time an
event t: temp{{ sensor{{ var S }} }} arrives, a relative timer event i denoting the time interval
of one minute before t, is defined, all events happening during i and matched by the query
temp{{ sensor{{ var S }}, value{{ var T }} }} are collected and a complex event avg temp{
sensor{ var S }, value{ avg(all var T) } } containing the average temperature from the sensor
S, is derived.

5.8.3 Summary

As the simple examples above demonstrate, logic languages offer a natural and convenient
way to specify event queries. The main advantage of logic languages is their strong formal
foundation, an issue which is neglected by many languages of other styles. (Chapter “Two
Semantics for CEP, no Double Talk”, in this volume describes a general, easily transferable
approach for defining both, the declarative and operational semantics of an EQL). Thanks to the
separation of different dimensions of event processing, logic languages are highly expressive,
extensible and easy to learn and use. Some languages of this style, e.g., XChangeEQ supports
an automatic garbage collection of events [16].

5.9 Application Areas of the Language Styles

Having described the strengths and weaknesses of the five language styles, we summarize the
comparison by a discussion on suitable application areas of each language style.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 37 of 48

Project EMILI FP7-SEC-2009-1

Composition operators allow an intuitive specification of event patterns. This makes them at-
tractive in scenarios, where business users should be allowed to define event patters such as
real-time promotions and upselling (e.g., send three text messages within one hour to receive a
free ringtone).

Data stream query languages are very suitable for aggregation of event data, as particularly nec-
essary for applications involving market data (e.g., average price over 21 day sliding window)
such as algorithmic trading. They also usually offer a good integration with databases, sharing
in particular the common basis of SQL.

Production rules are very flexible and well integrated with existing programming languages.
Since they allow the specification of actions to be executed when certain states are reached, they
are particularly useful for applications involving tracking of stateful objects such as track and
trace in logistics (maintain and react upon changes of the state of packages, containers, etc.) or
monitoring of business processes and objects (also called Business Activity Monitoring). Due
to their wide-spread use in business rules management systems, production rules often offer
some support for exposing part of the logic to business users such as decision tables or trees.

Timed state machines also offer an easy and convenient way to maintain the current state. How-
ever they are limited to a finite set of states (e.g., “shipped”, “delivered”). This makes them
suitable, e.g., for monitoring of processes (which typically have a well-defined, finite number
of states), but not suitable for applications involving infinite state spaces (e.g., a temperature
control system where the temperature is a numeric value).

Logic languages have strong formal foundations, allow an intuitive specification of complex
temporal conditions and account for event data. They could be successfully used in medical
applications or emergency management in critical infrastructures.

Combination of different language styles in one approach allows to benefit from their strengths.
This is the main reason why hybrid approaches are most successful in the industry. The next
section is devoted to the combined approaches.

5.10 Combination of Different Language Styles

A comparison of the different language styles shows that so far there is no one-fits-all approach
to querying events. Hence particularly industry products trend towards hybrid approaches,
where several languages of different styles are supported or aspects of different styles are com-
bined within one language. Hybrid approaches include the introduction of pattern matching into
data stream query languages as in Oracle CEP [77], Esper [31], and some CQL dialects like the
one used in [91], the use of composition operators on top of data stream queries [38, 22], the
addition of composition operators to production rules [98], the combination of production rules
and state machines, e.g., in TIBCO Business Events (see Section 5.7), the decoupled use of
different languages (and possibly evaluation engines) that communicate only by means of ex-
changing events (derived as answers to queries).

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 38 of 48

Project EMILI FP7-SEC-2009-1

5.11 Conclusion

CEP is an industrial growth market as well as an important research area that is emerging from
coalescing branches of other research fields.

Even though the prevalent event query languages can be categorized roughly into five families
as done in this document, there are significant differences between the individual languages of
a family. Whether a convergence to a single, dominant query language for CEP is possible and
advisable is currently in no way agreed upon.

Efforts towards a standard for a SQL-based data stream query language are on the way [50],
but not yet within an official standardization body. A standardized XML syntax for production
rules is being developed by the W3C as part of the Rule Interchange Format (RIF); however, the
special requirements of CEP are not considered there yet. The same applies to the Production
Rule Representation (PRR) by the OMG.

Activities of the Event Processing Technical Society (EPTS) [30] aim at a coordination and
harmonization with the work on a glossary of CEP notions, the interoperability analysis of Event
Processing systems from different vendors, a common reference architecture or framework of
architectures, that handles current and envisioned Event Processing architectures, the analysis
of the application areas of CEP, and the creation of a business value for a user in order to
increase the adoption of Event Processing in the business and industry. The EPTS has also a
working group for the analysis of EQLs.

An event query language for EMILI From our point of view, the logic style languages are
most relevant with respect to the needs of EMILI, since languages of this category are the most
mature event query languages currently available. For instance, the language XChangeEQ has a
clear formal semantic which includes an operational and even a declarative semantic which is
unique for EQLs. Beyond that declarative languages are perfectly suited for query optimization
which therefore can easily be added to an CEP engine for improving the efficiency of query
evaluation. Furthermore another requirement of an EQL for EMILI is the clear separation of
the four query dimensions which leads to a complete covering of all these dimensions.

Since XChangeEQ fulfills all these requirements it is a good basis for the development of an
EQL which is specifically designed and adopted to the needs of EMILI. Although XChangeEQ

forms a good basis for an EQL for EMILI, it has been developed for CEP in general and has
not been optimized for applications in the domain of emergency management. Therefore the
requirements which have been (and will further be) extracted from the use cases will have an
significant influence on the design of the upcoming CEP language for EMILI.

Based on the description of the use cases in Deliverable D3.1 (Use Case Requirement Analysis
and Specification) and its annexes two major characteristics have been identified so far which
are relevant for the EQL but are not addressed in the current language definition of XChangeEQ

(some more are described in the deliverable D4.2).

First, the use cases require an integration of physical models into the CEP language. As already

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 39 of 48

Project EMILI FP7-SEC-2009-1

discussed in section 2, the cleansing of noisy sensor data would clearly benefit from such an
integration. Moreover, these models can be used to support decision making by providing
predictions of the likely development of a situation in the future. This information can be used
to compare the effectiveness of different possible reactions to a detected situation.

Second, current EQLs offer no or only limited means for dealing with states, e.g. of the super-
vised infrastructure. For instance, the state of the entrance hall of a metro station may reflect
whether the hall is save (i.e. there is no fire or smoke) and how many people are currently lo-
cated there. Only production rule based EQLs have some notion of states. However, due to
their lack of an explicit representation of events, these kind of languages are not well suited for
complex event processing. Thus, their ideas for dealing with states may be adopted for the EQL
of EMILI to some extend, but due to their design flaws the language itself cannot be used as a
basis for an appropriate EQL.

Summarizing, an EQL for EMILI should

• have a clear operational and declarative semantic,

• make a clear separation between the four query dimensions,

• integrate physical models and

• provide a notion of states.

There are few EQLs available which fulfill the requirements for the first two points. But cur-
rently there are no approaches which combine the requirements of all four characteristics into a
single and homogeneous EQL. Therefore a new EQL based on XChangeEQ will be developed
within the EMILI project which addresses all those requirements in a homogeneous language.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 40 of 48

Project EMILI FP7-SEC-2009-1

References

[1] Data cleaning material collection. http://paul.rutgers.edu/˜weiz/
readinglist.html.

[2] D. J. Abadi, S. Madden, and W. Lindner. Reed: robust, efficient filtering and event detec-
tion in sensor networks. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 769–780. VLDB Endowment, 2005.

[3] R. Adaikkalavan and S. Chakravarthy. Formalization and detection of events using
interval-based semantics. In Proc. Int. Conf. on Management of Data (COMAD), pages
58–69. Computer Society of India, 2005.

[4] R. Adaikkalavan and S. Chakravarthy. SnoopIB: Interval-based event specification and
detection for active databases. Data and Knowledge Engineering, 1(59):139–165, 2006.

[5] A. Adi and O. Etzion. Amit — the situation manager. The VLDB Journal, 13(2):177–203,
2004.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:
a survey. Computer Networks, 38(4):393 – 422, 2002.

[7] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. Int. Collo-
quium on Automata, Languages and Programming, volume 443 of LNCS, pages 322–
335. Springer, 1990.

[8] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, 2006.

[9] D. Bailey and E. Wright. Practical SCADA for Industry. Newnes, 2003.

[10] C. R. Baker, K. Armijo, S. Belka, M. Benhabib, V. Bhargava, N. Burkhart, A. D. Minas-
sians, G. Dervisoglu, L. Gutnik, M. B. Haick, C. Ho, M. Koplow, J. Mangold, S. Robin-
son, M. Rosa, M. Schwartz, C. Sims, H. Stoffregen, A. Waterbury, E. S. Leland, T. Per-
ing, and P. K. Wright. Wireless sensor networks for home health care. In AINAW ’07:
Proceedings of the 21st International Conference on Advanced Information Networking
and Applications Workshops, pages 832–837, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[11] R. S. Barga and H. Caituiro-Monge. Event correlation and pattern detection in CEDR.
In Proc. Int. Workshop Reactivity on the Web, volume 4254 of LNCS, pages 919–930.
Springer, 2006.

[12] M. Bernauer, G. Kappel, and G. Kramler. Composite events for XML. In Proc. Int. Conf.
on World Wide Web, pages 175–183. ACM, 2004.

[13] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-L. Pătrânjan. Reactive rules on the Web.
In Reasoning Web, Int. Summer School, volume 4636 of LNCS, pages 183–239. Springer,
2007.

[14] B. J. Bonfils and P. Bonnet. Adaptive and decentralized operator placement for in-

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 41 of 48

http://paul.rutgers.edu/~weiz/readinglist.html
http://paul.rutgers.edu/~weiz/readinglist.html

Project EMILI FP7-SEC-2009-1

network query processing. Telecommunication Systems, 26(2-4):389–409, June 2004.

[15] F. Bry and M. Eckert. Rule-Based Composite Event Queries: The Language XChangeEQ

and its Semantics. In Proc. Int. Conf. on Web Reasoning and Rule Systems, volume 4524
of LNCS, pages 16–30. Springer, 2007.

[16] F. Bry and M. Eckert. On static determination of temporal relevance for incremental
evaluation of complex event queries. In Proc. Int. Conf. on Distributed Event-Based
Systems, pages 289–300. ACM, 2008.

[17] F. Bry, M. Eckert, O. Etzion, A. Paschke, and J. Riecke. Event processing language
tutorial. In 3rd ACM Int. Conf. on Distributed Event-Based Systems. ACM, 2009.

[18] F. Bry, M. Eckert, and P.-L. Pătrânjan. Querying composite events for reactivity on the
Web. In Proc. Int. Workshop on XML Research and Applications, volume 3842 of LNCS,
pages 38–47. Springer, 2006.

[19] F. Bry, M. Eckert, and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and applications
of the language XChange. J. of Web Engineering, 5(1):3–24, 2006.

[20] F. Bry, B. Lorenz, H. J. Ohlbach, M. Roeder, and M. Weinberger. The facility control
markup language FCML. International Conference on the Digital Society, 0:117–122,
2008.

[21] J. Carlson and B. Lisper. An event detection algebra for reactive systems. In Proc. ACM
Int. Conf. On Embedded Software, pages 147–154. ACM, 2004.

[22] S. Chakravarthy and R. Adaikkalavan. Events and streams: Harnessing and unleashing
their synergy! In Proc. Int. Conf. on Distributed Event-Based Systems, pages 1–12.
ACM, 2008.

[23] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for
active databases: Semantics, contexts and detection. In Proc. Int. Conf. on Very Large
Data Bases, pages 606–617. Morgan Kaufmann, 1994.

[24] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-network aggregation in sensor
networks. In CCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security, pages 278–287, New York, NY, USA, 2006. ACM.

[25] A. Coman, M. A. Nascimento, and J. Sander. On join location in sensor networks. In
MDM ’07: Proceedings of the 2007 International Conference on Mobile Data Manage-
ment, pages 190–197, Washington, DC, USA, 2007. IEEE Computer Society.

[26] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design.
Addison-Wesley, third edition, 2001.

[27] A. Daneels and W. Salter. What is SCADA? In Proc. of Int. Conf. on Accelerator and
Large Experimental Physics Control Systems, pages 339–343, 1999.

[28] M. Eckert. Reactivity on the Web: Event Queries and Composite Event Detection in
XChange. Master’s thesis (Diplomarbeit), Institute for Informatics, University of Mu-
nich, 2005.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 42 of 48

Project EMILI FP7-SEC-2009-1

[29] M. Eckert. Complex Event Processing with XChangeEQ: Language Design, Formal Se-
mantics and Incremental Evaluation for Querying Events. PhD thesis, Institute for Infor-
matics, University of Munich, 2008.

[30] Event Processing Technical Society (EPTS). http://www.ep-ts.com.

[31] EsperTech Inc. Event stream intelligence: Esper & NEsper. http://esper.
codehaus.org.

[32] C. Forgy. OPS5 user’s manual. Technical Report CMU-CS-81-135, Carnegie Mellon
University, 1981.

[33] C. Forgy and J. P. McDermott. OPS, a domain-independent production system language.
In Proc. Int. Joint Conf. on Artificial Intelligence, pages 933–939. William Kaufmann,
1977.

[34] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17–37, 1982.

[35] H. Galhardas. Data Cleaning: Model, Language and Algoritmes. PhD thesis, University
of Versailles, 2001.

[36] H. Galhardas, D. Florescu, and D. Shasha. Declarative data cleaning: Language, model,
and algorithms. In In VLDB, pages 371–380, 2001.

[37] A. Galton and J. C. Augusto. Two approaches to event definition. In Proc. Int. Conf.
on Database and Expert Systems Applications, volume 2453 of LNCS, pages 547–556.
Springer, 2002.

[38] V. Garg, R. Adaikkalavan, and S. Chakravarthy. Extensions to stream processing ar-
chitecture for supporting event processing. In Proc. Int. Conf. on Database and Expert
Systems Applications, volume 4080 of LNCS, pages 945–955. Springer, 2006.

[39] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database system. In
Proc. Int. Workshop on Rules in Database Systems, pages 23–39. Springer, 1993.

[40] S. Gatziu and K. R. Dittrich. Detecting composite events in active database systems
using petri nets. In Proc. Int. Workshop on Research Issues in Data Engineering: Active
Database Systems, pages 2–9. IEEE, 1994.

[41] N. H. Gehani, H. Jagadish, and O. Shmueli. Event specification in an active object-
oriented database. In Proc. Int. ACM Conf. on Management of Data (SIGMOD), pages
81–90. ACM, 1992.

[42] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model & implementation. In Proc. Int. Conf. on Very Large Data Bases,
pages 327–338. Morgan Kaufmann, 1992.

[43] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Compose: A system for composite spec-
ification and detection. In Advanced Database Systems, LNCS, pages 3–15. Springer,
1993.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 43 of 48

http://www.ep-ts.com
http://esper.codehaus.org
http://esper.codehaus.org

Project EMILI FP7-SEC-2009-1

[44] M. Gualtieri and J. R. Rymer. The Forrester WaveT M: Complex Event Procecess-
ing (CEP) Platforms. http://www.forrester.com/rb/Research/wave%
26trade%3B_complex_event_processing_cep_platforms%2C_q3/q/
id/48084/t/2, 2009.

[45] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauffman,
2001.

[46] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages.
In In Proc. 25th Int. Coll. Automata, Languages, and Programming (ICALP’98, pages
580–591. Springer, 1998.

[47] A. Hinze and A. Voisard. A parameterized algebra for event notification services. In
Proc. Int. Symp. on Temporal Representation and Reasoning, pages 61–65. IEEE, 2002.

[48] ILOG. ILOG JRules. http://www.ilog.com/products/jrules.

[49] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network den-
sity on data aggregation in wireless sensor networks. In ICDCS ’02: Proceedings of the
22 nd International Conference on Distributed Computing Systems (ICDCS’02), page
457, Washington, DC, USA, 2002. IEEE Computer Society.

[50] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan, U. Çetintemel,
M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a streaming SQL standard. In Proc.
Int. Conf. on Very Large Data Bases, volume 1, pages 1379–1390. VLDB Endowment,
2008.

[51] JBoss.org. Drools. http://www.jboss.org/drools.

[52] M. Kersten, E. Liarou, and R. Goncalves. A query language for a data refinery cell. In
Proc. Int. Workshop on Event-Driven Architecture, Processing and Systems, 2007.

[53] E. M. Knorr. Outliers and Data Mining: Finding Exceptions in Data. PhD thesis,
University of British Columbia, 2002.

[54] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Compututing, 4(1):67–95, 1986.

[55] A. Kozlenkov, R. Penaloza, V. Nigam, L. Royer, G. Dawelbait, and M. Schroeder. Prova:
Rule-based Java scripting for distributed web applications: A case study in bioinformat-
ics. In Current Trends in Database Technology (EDBT), volume 4254 of LNCS, pages
899–908. Springer, 2006.

[56] J. Krákora, L. Waszniowski, and Z. Hanzálek. Timed automata approach to real time
distributed system verification. In In Proc. of IEEE Int. Workshop on Factory Communi-
cation Systems (WFCS), pages 407–410, 2004.

[57] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan, N. Kushalnagar,
L. Nachman, and M. Yarvis. Design and deployment of industrial sensor networks:
experiences from a semiconductor plant and the north sea. In SenSys ’05: Proceedings
of the 3rd international conference on Embedded networked sensor systems, pages 64–

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 44 of 48

http://www.forrester.com/rb/Research/wave%26trade%3B_complex_event_processing_cep_platforms%2C_q3/q/id/48084/t/2
http://www.forrester.com/rb/Research/wave%26trade%3B_complex_event_processing_cep_platforms%2C_q3/q/id/48084/t/2
http://www.forrester.com/rb/Research/wave%26trade%3B_complex_event_processing_cep_platforms%2C_q3/q/id/48084/t/2
http://www.ilog.com/products/jrules
http://www.jboss.org/drools

Project EMILI FP7-SEC-2009-1

75, New York, NY, USA, 2005. ACM.

[58] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558–565, 1978.

[59] Q. Li and D. Rus. Global clock synchronization in sensor networks. IEEE Transactions
on Computers, 55(2):214–226, 2006.

[60] E. Liarou, R. Goncalves, and S. Idreos. Exploiting the power of relational databases for
efficient stream processing. In Int. Conf. on Extending Database Technology (EDBT),
volume 360, pages 323–334. ACM, 2009.

[61] B. G. Lipták. Instrument Engineers’ Handbook: Process Software and Digital Networks,
volume 3. CRC Press, 2002.

[62] D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, 2002.

[63] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation
service for ad-hoc sensor networks. In OSDI, 2002.

[64] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst., 30(1):122–
173, 2005.

[65] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisitional
query processing system for sensor networks. ACM Transactions on Database Systems,
30(1):122–173, 2005.

[66] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor
networks for habitat monitoring. In WSNA ’02: Proceedings of the 1st ACM international
workshop on Wireless sensor networks and applications, pages 88–97, New York, NY,
USA, 2002. ACM.

[67] G. Mallapragada, Y. Wen, S. Phoha, D. Bein, and A. Ray. Tracking mobile targets using
wireless sensor networks. In S. Latifi, editor, ITNG, pages 873–878. IEEE Computer
Society, 2010.

[68] M. Mansouri-Samani and M. Sloman. GEM: A generalized event monitoring language
for distributed systems. Distributed Systems Engineering, 4(2):96–108, 1997.

[69] M. Merritt, F. Modugno, and M. R. Tuttle. Time-constrained automata. In CONCUR ’91:
2nd Int. Conf. on Concurrency Theory, volume 527 of LNCS, pages 408–423. Springer,
1991.

[70] A. E. Monge. Adaptive detection of approximately duplicate database records and the
database integration approach to information discovery. PhD thesis, University of Cali-
fornia, San Diego, 1997.

[71] D. Moreto and M. Endler. Evaluating composite events using shared trees. IEE Proceed-
ings — Software, 148(1):1–10, 2001.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 45 of 48

Project EMILI FP7-SEC-2009-1

[72] J. Morrell and S. D. Vidich. Complex Event Processing with Coral8. White
Paper. http://www.coral8.com/system/files/assets/pdf/Complex_
Event_Processing_with_Coral8.pdf, 2007.

[73] MS Analog Software. ruleCore(R) Complex Event Processing (CEP) Server. http:
//www.rulecore.com.

[74] H. Müller and J.-C. Freytag. Problems, methods, and challenges in comprehensive data
cleansing. HUB-IB-164, Humboldt University Berlin, 2003.

[75] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery. Information fusion for wireless
sensor networks: Methods, models, and classifications. ACM Comput. Surv., 39(3):9,
2007.

[76] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed
data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 563–574, New York, NY, USA, 2003. ACM.

[77] Oracle Inc. Complex Event Processing in the real world. White
Paper. http://www.oracle.com/technologies/soa/docs/
oracle-complex-event-processing.pdf.

[78] M. Ouimet and K. Lundqvist. The timed abstract state machine language: Abstract state
machines for real-time system engineering. Journal of Universal Computer Science,
14(12):2007–2033, 2008.

[79] A. Paschke and H. Boley. Rules capturing events and reactivity. In Handbook of Research
on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches,
pages 215–252. IGI Global, 2009.

[80] A. Paschke and A. Kozlenkov. Rule-based event processing and reaction rules. In Rule
Interchange and Applications, volume 5858 of LNCS, pages 53–66. Springer, 2009.

[81] A. Paschke, A. Kozlenkov, and H. Boley. A homogenous reaction rule language for
Complex Event Processing. In In Proc. 2nd Int. Workshop on Event Drive Architecture
and Event Processing Systems, 2007.

[82] A. Paschke, A. Kozlenkov, H. Boley, S. Tabet, M. Kifer, and M. Dean. Reaction RuleML.
http://ibis.in.tum.de/research/ReactionRuleML/, 2007.

[83] N. W. Paton, editor. Active Rules in Database Systems. Springer, 1998.

[84] Rahm and Do. Data cleaning: Problems and current approaches. IEEE Bulletin 23(4),
2000.

[85] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE Wireless
Communications, 11(6):54–61, 2004.

[86] C. Roncancio. Toward duration-based, constrained and dynamic event types. In Proc.
Int. Workshop on Active, Real-Time, and Temporal Database Systems, volume 1553 of
LNCS, pages 176–193. Springer, 1997.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 46 of 48

http://www.coral8.com/ system/files/assets/pdf/ Complex_Event_Processing_with_Coral8.pdf
http://www.coral8.com/ system/files/assets/pdf/ Complex_Event_Processing_with_Coral8.pdf
http://www.rulecore.com
http://www.rulecore.com
http://www.oracle.com/technologies/soa/docs/oracle-complex-event-processing.pdf
http://www.oracle.com/technologies/soa/docs/oracle-complex-event-processing.pdf
http://ibis.in.tum.de/research/ReactionRuleML/

Project EMILI FP7-SEC-2009-1

[87] C. Sánchez, S. Sankaranarayanan, H. Sipma, T. Zhang, D. L. Dill, and Z. Manna. Event
correlation: Language and semantics. In Proc. Int. Conf. on Embedded Software, volume
2855 of LNCS, pages 323–339. Springer, 2003.

[88] C. Sánchez, M. Slanina, H. B. Sipma, and Z. Manna. Expressive completeness of an
event-pattern reactive programming language. In Int. Conf. on Formal Techniques for
Networked and Distributed Systems, volume 3731 of LNCS, pages 529–532. Springer,
2005.

[89] Sandia National Laboratories. Jess, the rule engine for the Java(TM) platform. http:
//herzberg.ca.sandia.gov/.

[90] K.-U. Schmidt, D. Anicic, and R. Stühmer. Event-driven reactivity: A survey and re-
quirements analysis. In SBPM2008: 3rd Int. Workshop on Semantic Business Process
Management in Conjunction with the 5th European Semantic Web Conf. (ESWC’08).
CEUR Workshop Proceedings, 2008.

[91] B. Seeger. Kontinuierliche kontrolle. IX: Magazin für Professionelle Informationstech-
nik, 2, 2010.

[92] M. Seiriö and M. Berndtsson. Design and implementation of an ECA rule markup lan-
guage. In Proc. Int. Conf. on Rules and Rule Markup Languages for the Semantic Web,
volume 3791 of LNCS, pages 98–112. Springer, 2005.

[93] A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis. Balancing energy efficiency and
quality of aggregate data in sensor networks. The VLDB Journal, 13(4):384–403, 2004.

[94] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: new
aggregation techniques for sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 239–249, New
York, NY, USA, 2004. ACM.

[95] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai, and
K. Frampton. Sensor network-based countersniper system. In SenSys ’04: Proceedings
of the 2nd international conference on Embedded networked sensor systems, pages 1–12,
New York, NY, USA, 2004. ACM.

[96] M. Stern, E. Buchmann, and K. Böhm. Towards efficient processing of general-purpose
joins in sensor networks. In ICDE ’09: Proceedings of the 2009 IEEE International
Conference on Data Engineering, pages 126–137, Washington, DC, USA, 2009. IEEE
Computer Society.

[97] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Dawson,
P. Buonadonna, D. Gay, and W. Hong. A macroscope in the redwoods. In SenSys ’05:
Proceedings of the 3rd international conference on Embedded networked sensor systems,
pages 51–63, New York, NY, USA, 2005. ACM.

[98] K. Walzer, T. Breddin, and M. Groch. Relative temporal constraints in the Rete algorithm
for complex event detection. In Proc. Int. Conf. on Distributed Event-Based Systems,
pages 147–155. ACM, 2008.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 47 of 48

http://herzberg.ca.sandia.gov/
http://herzberg.ca.sandia.gov/

Project EMILI FP7-SEC-2009-1

[99] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees.
Deploying a wireless sensor network on an active volcano. IEEE Internet Computing,
10(2):18–25, 2006.

[100] E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event Processing over
streams. In Proc. Int. ACM Conf. on Management of Data (SIGMOD), pages 407–418.
ACM, 2006.

[101] X. Yang, H. B. Lim, T. M. Özsu, and K. L. Tan. In-network execution of monitoring
queries in sensor networks. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 521–532, New York, NY, USA,
2007. ACM.

[102] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec., 31(3):9–18, 2002.

[103] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer Net-
works, 52(12):2292 – 2330, 2008.

[104] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wireless
sensor networks. In Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications, pages 139–148, 2003.

[105] D. Zhu and A. S. Sethi. SEL, a new event pattern specification language for event corre-
lation. In Proc. Int. Conf. on Computer Communications and Networks, pages 586–589.
IEEE, 2001.

[106] X. Zhu, H. Gupta, and B. Tang. Join of multiple data streams in sensor networks. IEEE
Trans. on Knowl. and Data Eng., 21(12):1722–1736, 2009.

[107] D. Zimmer and R. Unland. On the semantics of complex events in active database man-
agement systems. In Proc. Int. Conf. on Data Engineering, pages 392–399. IEEE, 1999.

D4.1 A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures • Page 48 of 48

	Introduction
	Data Cleansing
	Origin of Noise and Unreliability
	Data Quality Criteria
	Need for Physical Models
	The Phases of Data Cleansing
	Dimensions of Data Cleansing
	Difficulties of Data Cleansing
	Conclusions

	Supervisory Control and Data Acquisition
	Wireless Sensor Networks
	Overview
	Categorization of applications
	Query evaluation in sensor networks
	Conclusion

	Complex Event Processing
	Introduction
	Terminology
	Identification of Language Styles
	Composition Operators
	Data Stream Query Languages
	Production Rules
	Timed State Machines
	Logic Languages
	Application Areas of the Language Styles
	Combination of Different Language Styles
	Conclusion

