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SUMMARY

In this paper, a class of multivariate distributions introduced by Koehler and Symanowski
(1995) is discussed with regard to whether it can be reasonably applied in the frame-
work of graphical modeling. Therefore, the focus lies on properties like marginal and
conditional independence, marginalization and the flexibility as far as the modeling of a

dependence structure is concerned.

1 Introduction and Notations

Koehler and Symanowski (1995) introduce a class of multivariate distribution families
which can be constructed for almost any given univariate marginal distributions and
can be viewed as a generalization of the generalized Burr—Pareto-logistic distributions
(Johnson, 1987; Cook and Johnson, 1981, 1986). The distribution can be defined in two
different ways. One possibility is the definition via the cumulative distribution function
(cdf) by adding interaction terms to the independence case, i.e. to the product of the
marginal cdf’s. Furthermore, it can be derived similarly to the generalized Burr-Pareto—
logistic distributions by transforming independent exponential and gamma distributed
random variables. The transformation rule can directly be translated into an algorithm
to carry out simulation studies.

In contrast to the generalized Burr—Pareto—logistic distributions and a lot of other mul-
tivariate distributions like the different multivariate exponential distributions described
in Johnson and Kotz (1972, pp. 268) the class of distributions discussed here allows to
model on the one hand complex associations between arbitrary subsets of the variable
set and on the other hand pairwise independences in the margins. This property is a
minimum requirement in the framework of graphical models (Lauritzen and Wermuth,
1989, Wermuth and Lauritzen, 1990, Lauritzen, 1996) where the focus lies on conditional
independencies between pairs or even subsets of variables. These independences are rep-

resented by missing edges in a graph which consists of vertices depicting the variables
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and edges depicting associations between them. An association has to be understood
as the absence of a conditional independence (Dawid, 1979, 1980). So—called Markov
properties describe the conditions which have to be fulfilled by the distribution model
to connect the graph with these independence statements (Frydenberg, 1990, Lauritzen,
1996). Distributions which are able to capture these demands are the multinomial, mul-
tivariate normal, and the conditional gaussian distribution (c.f. Lauritzen and Wermuth,
1989) which contains the former as special cases. In situations where these distributions
are not adequate, for example when investigating multivariate survival times, alternative
multivariate distributions are called for. Therefore, in this paper the class of distributions
introduced by Koehler and Symanowski is inspected in the face of the mentioned require-
ments. Here, the importance is attached to basic properties like marginal and conditional
independence and marginalization rather than the Markov properties which can be found
in Caputo (1998).

The paper is organized as follows. The remaining part of this Section is dedicated to
the definition of the class of KS distributions and a subclass which essentially serves for
illustrating porposes. In Section 2, the form of marginal distributions and some special
conditional probabilities are derived before the conditions for marginal and conditional
independence are discussed. In the following section, the results of a simulation study
are presented which considers the interpretation of the parameters of KS distributions.
The paper ends with a brief discussion of the derived findings and an outlook to further

research questions.

With V = {1,...,p} and V being the powerset of V, let X = Xy = (Xj,...,X,)T denote
a vector of random variables with marginal cumulative density functions F;(-), i € V.

The joint distribution of X is assumed to be given by the following cdf

F(z1,...,2p) = [[ Fi(z:) I] er(z) . (1.1)

i€V Iez
Forallsets I €e Z={I € V with |I| >2}1let RS> a; > 0andforalli e Viet IR> a; >0
with . = Yrey ey o < 00. For all I € T the factors ¢;(z) in Equation (1.1) are defined

as

cr(w) =Y AL wjz)} — (1] = 1) [T wila:)
el Jjel 1€l
j#i
1
with w;(z;) = Fj(x;)*+ for all i € V. Here, the structure of the cdf is fairly easy. It
factorizes into the product of the marginal cdf’s and a product of association terms.
If it is assumed that marginal density functions f;(-) exist for all i € V it can easily
be shown that the joint density function also exists (Koehler and Symanowski, 1995).

However, in contrast to the cdf the functional representation of the density function is



rather complicated. Besides the product of the marginal densities there are more complex
factors with additive components due to the derivation. The explicit formula for a subclass
can be found in Koehler and Symanowski (1995).

In the following a special case of KS distributions is considered which arises if a priori all
association parameters «; with |[I| > 2 equal zero. Strictly speaking, only second order
associations are taken into account. A lot of properties which are valid in this special case
denoted as KS(2) distribution as well as in general can be illustrated in a more transparent

way.

Remark 1.1 Let X = Xy = (Xy,...,X,)" be a vector of random variables with mar-
ginal cdf’s F;(-) and for each set I € Ty, = {I € V with |I| = 2} let a; > 0 and for all
1€V a; >0 with
Qi = o + Z Of[:Oéi+ZOéij<OO.
1€Ty jev
il i
The joint cdf given by
Flar,...r) = T] B [1er@)™ = [[ B [[ @™ (2)
i€V IeT, i€V eV
1<j
defines the KS(2) distribution. Note that the index in «;; is to be interpreted as a set,

i.e. as {7, j}. Therefore, aj; = ay;.

2 Properties

This section is devoted to the study of some important properties of KS distributions.
First, the structure of marginal distributions and conditional probabilities is considered.
Throughout the paper let A, B, and C' be disjoint proper subsets of V' and let A, B, and
C denote the powersets of A, B, and C, respectively. Whenever A and B are a partition
of V', the set D is defined as

D={IeV|IINA#0and INB #0}.

Recalling the above definition Zy, indicates the set Zy, :=Z = {I € V with |[I| > 2}. The
sets Z 4, Zg and Zp are defined correspondingly.
In addition, let

Ip,, = {IcIplINnA=Jy€Tyand INB=Jg € Iz},

Ip, = {I€IplInA=Jy€T and INB=1{j},je B},
Ip, = {I€IplInA={j},j€ A and INB=Jy € Iy}
and Ip = {Ie€Ip|lINA={js},jac A and INB={jp}, js € B}.
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Now, a partition A, B, and C' of V is considered. In analogy to the above set D the set
AB={I C (AUB)|INA#Dand I N B # 0} and in the same way AC, BC and ABC
are defined. To each of these sets Z4, ..., Zapc and Zagp,,, --., Zasc. are formulated.
Following the proceeding for the set D the sets Zaz,,,--.,Zasc, . are defined.

Remark 2.1 (a) For a partition A and B of V, the following statements are valid:

(i) The sets A, B, and D form a partition of V.
(i) D={leV|dic A je Bwithielandjel}.
(iii) The sets Zp,,, Ip, , Ip 5, and Ip form a partition of Zp.

(b) For a partition A, B, and C of V the sets A, B, C, AB, AC, BC, and ABC form a
partition of V.

2.1 Marginal distributions and conditional probabilities

In the following the structure of marginal distributions and particular conditional prob-
abilities are established. In the first theorem it is shown that KS distributions are closed
under marginalization. Conditional distributions are in general not again of KS type.

Some conditional probabilities, however, can be explicitly formulated.

Theorem 2.2 Let X = Xy = (Xy,...,X,)" be a KS distributed random vector with
parameters oy, I € V, let further A # () be a proper subset of V, and J = {J €
A with |J| > 2}. The marginal distribution of X4 = (X;)jea ts then again a KS dis-
tribution with parameters 3;, J € A, where 3; = Y ez qa=yar for all J € J and
B = aj + Xrer na—gj ou for all j € A.

Proof:
The distribution function of X, is given by

FA(Z‘A) = mV{LH—lM)O Fv(l‘v) = H F‘J(Z‘J) H lim C[(Q]‘)ial.

JEA IeT

Inspecting the terms limg,,, , o0 ci(x) for I € Z, the following four cases have to be taken
into account:

(i) For In(V'\ A) =0, ie. for I C A, it trivially holds that limg,. , se0 cr(x) = cr(2).

(ii) For IN A =10, i.e. for I C(V'\ A), note that
1

() iy walee) = Jim, Fi(m)® =1,

Thus, limg,,, , e cr(z) = 1.



(iii) For IN A= J# 0 and I N (V\ A) # 0 with |J| > 1, () yields lim,,, , s c1(2) =

cy(x).
(iv) For IN A= {j} with j € Aand I N (V' \ A) # 0, (+) implies limg,, , o0 c1(2) = 1.

Thus, 8y = ¥ ez 1na=y @ for all J € J. In addition, for all j € A we obviously have that

Biv=ajp =) ar=a;+y ar=a;+ Y ar+ Y a

Iev Iz 1€z 1€z
jel jel
7€ 7€ Iﬂil:{j} nics

and B = a; + > 1ez  ay. O

INA={j}

Example 2.3 Consider the case p = 3, i.e. X = (X1, Xy, X3)" is a KS distributed
random vector. The two—dimensional marginal distribution of (X1, Xs) is given by the

following cdf

lim F(zy,z2,x3)

2300
= lim Fy(e1)Fy(2)Fy (z3)crz(z) “Perz(z) e (@) P erg (@)
= Fi(x)Fy(z2)cia(x) ™" llinoo ci3(x) ™ wil_r)noo co3(x) ™ wil_r)noo cia3(z) 1%
= Fi(z)Fs(z2)cia(x)” 2 epa(z) 12
= Fi(21) Fy(wa)crp(w) (12t e1=)
= Fi(z1)Fa(z)cra(z) 72,

where B1o = ayg + o3, Pir = a1y, and Poy = agy. Thus, it can be concluded that
01 =a1+ a3 >0 and By = an + asg > 0.

This result can be obtained directly from the above theorem:

Here, V. =1{1,2,3}, T = {{1,2},{1,3},{2,3},{1,2,3}}, A = {1,2}, and J = {{1,2}}.
That means, there is only one set J € J. In addition, only for the elements I = {1,2}
and Iy = {1,2,3} of T it holds that y,NA = J and [,NA = J which yields 15 = a1a+q23.
Correspondingly, I = {1,3} € T is the only set with I N A = {1} and only for the set
I ={2,3} € T it holds that I N A = {2}. Summarizing, it can be seen that B = a1 + aq3

and Py = ao + aos.

Theorem 2.2 directly implies the following corollary. Note that (iii) of the proof does not

occur.

Corollary 2.4 For a KS(2) distributed vector X = Xy = (Xy,..., X,)" with parameters
a; >0 forallt €V and oj; > 0 fori,j € V with t # j and a set A C V the subvector
Xa = (Xj)jea is again KS(2) distributed with parameters B, = oy, for j,k € A, j # k
and [ = o + Xpev\a i for all j € A.



Example 2.5 Consider again the case p = 3. Let now X = (X1, Xy, X3)T be KS(2)

distributed. The two-dimensional marginal distribution of (X1, Xs) is then given as

lim F(zy,x,03) = lim Fy(21) Fy(we) Fy(ws)cra(r) ™ ers ()" ca(2) ™

Tr3—00
= F1 (.’L‘l)FQ (.'1,'2)612(1')7&12.

It is easy to see that $19 = 19, 14 = a1, and Bay = oy which implies that 1 = aq+aqs

and Py = ao + aos.

For a KS(2) distributed vector Xy and a set A C V' the association parameters 3, for
J e Jy = {J € J with |J| = 2} of the marginal distribution of the subvector X4
coincide with the association parameters «; for I € J5 of the distribution of X,. Just
the parameters 3; for j € A have to be modified in accordance with Corollary 2.4.

The explicit requirement that «; > 0 for all ¢ € V, i.e. the imperative inclusion of
these parameters into the model guarantees that the distribution family is closed under
marginalization. Koehler and Symanowski consider the simpler case o; = 0 for all ¢ € V.
Hence, this subfamily is no longer closed under marginalization which can be seen by
means of the above corollary. In this case, parameters §; > 0 for j € A occur.

Formulae for certain conditional probabilities can be derived using the result of the func-
tional representation of the marginal cdf. In the special case of KS(2) distributions these
probabilities are given by simple expressions. The following corollary can be directly

obtained from Theorem 2.2.

Corollary 2.6 Let X = Xy = (Xi,...,X,)T be KS distributed and for A C V define
B =V \ A. Then for all x € IRP with Fg(xg) # 0 it holds

P(Xa <za|Xp <2zp)

-nen T {oodibah

1€Th,, crna(z)ernp

{207 ] aw

1€1p , - INE (@) Ielp

Proof:

The definition of conditional probabilities yields

P(Xy<z4,Xp<ap)  F(z)
P(XBS«TB) FB(.TB).

P(X4 <zalXp<uwzp)=

Using the above notations and the abbreviations A = I N A and IB = I N B the last

ratio can be rewritten as



F(x) . HieA Fi(x;) Hz'eB Fi(z;) HIeZA Cl(m)ioq HIeZB Cl(m)ioq HIeZD Cl(m)ioq

Fp(wp)  lep Filei) Hrez, @) ez, , 8@ ez, , cisl@) ™™

Wiezn,, cr(@)”™ iz, cr(w) ™™ ez, , cr(@)™ " eg, cr(@)™

HIGIDAB cra(z) ™ Hlezv,,, cra(z) ™ HIGZDAB crp(z)”™ HIGID_B c15(2)

pieo 11 (o} I {297 T {22} 1 e

I€Ip \ g I€lp .

FA(.Z'A)

—ar

O

Example 2.7 Let X = (X1, Xy, X3, Xy)T be KS distributed with parameters oy for I € V.
Take A={1,2} CV and B=V \ A= {3,4}. Then, we get

Ip = {{1,3},{1,4},{2,3},{2,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4} }

with the partition

Ip,s = {{1,2,3,4}},
Ip, = {{1,2,3},{1,2,4}},
In, = {{1,3,4},{2,3,4}}
and Ip = {{1,3},{1,4},{2,3},{2,4}}.
Thus, the two—dimensional conditional probability reads as

P(X) <1, X9 < 29| X3 <23, Xy < 24)

= Fia(w1,72) {%}amu {0123(!13) }a”‘"’ {0124(95) }am

c12(w)ezq( c12() c12(7)
ci3a(z) | [ coza(x) T —ais “au —aig —a24
{ Con () } { ) } ci3(x) ci4(x) ca3() c24() .

Corollary 2.8 Let X = Xy be KS(2) distributed and A C 'V, then it holds
P(Xa < walXv\a Savia) = Falea) [T T eila) ™.
i€AjeV\A
Proof:

The set Zp from Corollary 2.6 is here seen to be
Ip=TIp ={Ie€IplInA={i},i€ A, and IN(V\A) ={j},jeV\A}
which implies the above assumption. O

Example 2.9 For a KS(2) distributed vector X = (X1, Xa, X3, X4)T and A = {1,2} as
i FExample 2.7 we get

P(X; <z, Xo < 29| X3 <23, X4 <z4)

)_0413 )_0623 024(x)_024'

= Fiao(z1,22)c13(z c14(z) "M coz(z



2.2

Marginal and conditional independence

Multivariate distributions do often not allow for association structures where pairs of com-

ponents or subsets of the vector X are marginally or conditionally independent. In this

subsection this problem is discussed for KS distributions. Combinations of the paramet-

ers and restrictions on them are considered which allow to model independences among

components and subvectors of X.

Theorem 2.10 Let X = Xy = (Xi,...,X,)" be a KS distributed vector with parameters
ar, ey

(i) The variables X, ..., X, are marginally independent whenever ay = 0 holds for all

Iel.

(i1) Let the variables X, ..., X, be marginally independent and assume each X; (i € V)

to be not degenerated, i.e. there exists at least one x; € IR for which the corresponding
distribution function takes a value Fi(Z;) = y; with 0 < y; < 1, then it holds that
ar =0 forall I € T.

Proof:

(i)

—ag

For ay = 0 VI € Z, all association terms ¢;(z) ' regarded as functions of x equal

the function ¢(z) = 1. Therefore, the distribution function is the product of the

marginal distribution functions. As a result, the variables X, ..., X, are marginally
independent.
Consider vice versa, Xi,..., X, as marginally independent. Then the joint distri-

bution function turns out to be the product of the marginal distribution functions.
This is the case if all association terms for all values of z € IRP with F(x) # 0 equal

one.

Due to condition
0<ay = Z ap < 00
Iey
i€l

as part of the definition of the KS distribution in Section 1 the functions

cr(®) = er((@)ier) = 2 [Lwi(@) = (1= 1) [ wil@),

el i<l iel
J 1

do not equal 1 for arbitrary sets I € Z. Thus, ¢;(z)”"* =1 for all z € IR? if and
only if ay = 0. O



Here, the restriction o < oo is crucial. If it is dropped, for instance in the case of a KS(2)

distribution, a pairwise association between X; and X vanishes for a;; = o1 = oc.

Lemma 2.11 Let X = Xy be KS distributed with parameters oy for I € V and A and B
a partition of V.

(i) The vectors X, and Xp are marginally independent whenever for all i € A and all
Jj € B the condition

ar=0 forall 1 €Z with i€landjel,
15 fulfilled.

(7i) Let the vectors X 4 and Xpg be marginally independent and assume each X; fori €V
to be not degenerated. Then, for alli € A and j € B the condition oy = 0 is satisfied
whenever i € I and j € 1.

The proof of this lemma is given in the Appendix.

Example 2.12 For a vector X = (X1, Xy, X3)T with joint KS distribution and para-
meters aq, o, a3 > 0 and aig, aq3, oz, 03 > 0 the subvectors (Xl,Xg)T and X3 are

marginally independent if a3 = a3 = a3 = 0. The joint cdf of X is then given as
F(x1, 9, 13) = Fy(x1) Fo(22) F3(x3)c12(x) ™",
where the cdf of the marginal distribution of (X, Xo)T is
Fio(x1, ) = Fy(z1) Fa(w2)cia(x) ™.
Obviously, this leads to F(x1,xq,x3) = Fio(x1, x2) F3(x3).

Theorem 2.13 Consider a vector X = Xy with joint KS distribution and a partition of
V into the sets A, B and C'.

(i) The vectors X, and Xp are marginally independent whenever for all i € A and
Jj € B the condition

ar=0 forall T€Z with i€landjel
18 fulfilled.

(ii) Let X4 and Xp be marginally independent and assume each X; fori € V to be not
degenerated. Then, for all i € A and j € B it holds that ay = 0 whenever i € I and
jel.



Proof:

From Theorem 2.2 it can be concluded that (X%, X2)T = (X});caup follows a KS distri-
bution. For J = {J C (AU B) with |J| > 2} the corresponding association parameters
By, J € J, are given by

(x) Bs= >, ar foralJeJ.

I€T
IN(AUB)=J

Let for all s € A, 7 € B ay = 0 whenever i, j € I. Then, for each J € J all terms of the
sum in (%) equal zero and thus, [ itself equals zero. From Lemma 2.11 it can be seen
that X4 and Xp are marginally independent which provides the proof of part (i) of the
theorem.

Now, suppose that X, and Xp are independent and consider the parameters of the
corresponding marginal distribution of (X4, X%5)”. Then, for alli € A and j € B it holds

according to Lemma 2.11 that
B;=0 forall JeJwith i4,j5€.J
Using (x) it directly follows for all I € Z, IN (AU B) = J that a; = 0. O

Remark 2.14 In particular, the components X; and Xj;, 7,7 € V and ¢ # j, of a KS
distributed vector Xy are marginally independent if a; = 0 for all I € Z with ¢ € I and
jel.

As a direct implication of Theorem 2.13 we have the following corollary.

Corollary 2.15 Let X = Xy be KS(2) distributed and let A, B be disjoint sets with
AuBCV.

(i) The subvectors X4 and Xp are marginally independent whenever a;; = 0 for all
1€ Aandj € B.

(ii) Let X4 and Xp be marginally independent and assume each X; fori € V to be not
degenerated. Then, for all1 € A and j € B it holds that o;; = 0.

Theorem 2.16 Let X = Xy = (Xy,...,X,)" be KS distributed and let the sets A, B,

and C' be a partition of V.

°)

(i) Xa and Xp are conditionally independent given X¢ whenever for all i € A and
Jj € B the condition
ar=0 forall T€Z with i€landjel
15 fulfilled.
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(ii) Let X4 and Xp be conditionally independent given X¢ and assume each X; for
1t € V to be not degenerated. Then, it holds that for alli € A and j € B ay =0
whenever v € I and j € 1.

The proof is given in the Appendix.
The above theorem directly leads to Corollary 2.17.

Corollary 2.17 Let X = Xy be KS(2) distributed and let the sets A, B, and C be a
partition of V.

(i) The subvectors X 4 and Xp are conditionally independent given X¢ whenever a;; = 0
foralli e A and j € B.

(ii) Let X4 and Xp be conditionally independent given X¢ and assume each X; for
i € V to be not degenerated. Then, it holds for all i € A and j € B that oy; = 0.

As summarizing result of Theorems 2.13 and 2.16 we get

Theorem 2.18 For a KS distributed vector X = X, with not degenerated marginal
distributions and a partition of V' into the sets A, B, and C' the vectors X4 and Xp are

conditionally independent given X¢ iof and only if X4 and Xp are marginally independent.

3 Simulation Study

The above results show that the absence of specific association parameters implies the
marginal or conditional independence of components of the vector of random variables
under consideration. In the case of a KS(2) distribution the incorporation of the parameter
a;; > 0 (4,7 € V)i # j) indicates that X; and X; are marginally dependent. But there is
nothing known about a general functional relation between this parameter and common
measures like Kendall’s 7;; which quantify the strength of the correlation between X; and
X;. Merely, for the generalized Burr-Pareto-logistic distribution with p = 2 the relation
between « and Kendall’s 7 is derived by Oakes (1982). Thus, a simulation study has
been performed on a SUN Sparc—station 10 to interpret the association parameters. In
the following, the results are presented for KS(2) distributions with p = 3. According
to the instructions given in Koehler and Symanowski (1995) samples are taken from a
three—dimensional KS(2) distribution for different values for ay, as, a3, aqs, a3, and ams.
For each sample the correlation coefficient as a measure for the linear and Kendall’s 7
as a measure for the monotone relation is calculated for all pairs of variables. As in
a comparable study in Koehler and Symanowski (1995) the marginal distributions are

Weibull with different parameter constellations.
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Table 3.1 shows the results for a sample of size n = 30000 where the same parameter values
are chosen as in Koehler and Symanowski (1995), i.e. the parameters of the marginal
distributions are 3; = 5.75, B, = 4.24, and (53 = 3.16. However, the authors consider in

their simulations only the special case that a; = as = a3 = 0.

Table 3.1: Correlation coefficients and Kendall’s 7 for oy = ay = a3 = 0 and 5 =
575, ﬁg = 424, ﬂg == 3]_6

association Kendall’s 7 correlation
parameter coefficient
12 Q13 Q23 T12 T13 T23 P12 P13 P23

0.01 0.01 0.01 0.326 0.327 0.330 0.393 0.400 0.413
0.10 0.10 0.01 0.388 0.400 0.048 0.513 0.535 0.068
0.50 0.01 0.01 0.479 0.020 0.022 0.684 0.040 0.042
0.10 0.02 0.001 0.690 0.156 0.010 0.822 0.250 0.016
0.50 0.50 0.50 0.147 0.146 0.146 0.223 0.220 0.217
1.00 0.10 0.10 0.276 0.061 0.062 0.434 0.095 0.094
1.60 0.50 0.50 0.140 0.073 0.076 0.230 0.115 0.117
5.00 0.10 0.01 0.098 0.018 0.001 0.164 0.032 0.001
5.00 5.00 5.00 0.027 0.023 0.027 0.041 0.035 0.041

Strikingly, the results differ slightly from those in Koehler and Symanowski. On the one
hand this can be caused by the use of different random generators and on the other hand
to the inversion of the cdf of the gamma distribution which can be carried out in various
ways. A comparison of the first, fifth, and last row of Table 3.1 shows that the values of
the correlation coefficients decrease for increasing parameter values. But if the first and
third row are looked at where ay3 = g3 = 0.01 the correlation between X; and X, is
smaller for a5 = 0.01 than for a;5 = 0.50. Here, the correlation increases for increasing
association parameter. Thus, the results depend on the constellation of all parameters
involved which can also be seen comparing the third and fifth row. In both cases «a; is
set to be 0.50. The combination with a3 = ass = 0.01 yields 79 = 0.479 whereas the
numbers a3 = apg = 0.50 result in 79 = 0.147. In addition, high values of the correlation
measures only seldom arise.

The definition of the KS distribution induces that the choice of the parameters of the
marginal distributions and even the type of the marginal distributions do not affect the
strength of the association. This fact is illustrated by the results for 3, = 3, = 3 = 5 and

the same combinations for the parameters of the KS(2) distribution as above which are
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shown in Table 3.2. Koehler and Symanowski restrict their simulations to the case that

Table 3.2: Correlation coefficient and Kendall’s 7 for oy = ao = a3 = 0 and 6, = 3y =

Bz =5

association Kendall’s 7 correlation
parameter coefficient
Q2 a3 Q23 T12 T13 T23 P12 P13 P23

0.01 0.01 0.01 0.326 0.327 0.327 0.393 0.390 0.391
0.10 0.10 0.01 0.398 0.399 0.049 0.519 0.525 0.067
0.50 0.01 0.01 0.481 0.019 0.019 0.689 0.028 0.029
0.10 0.02 0.001 0.688 0.158 0.008 0.818 0.229 0.009
0.50 0.50 0.50 0.146 0.146 0.147 0.222 0.222 0.225
1.00 0.10 0.10 0.273 0.067 0.060 0.433 0.099 0.090
1.60 0.50 0.50 0.138 0.082 0.077 0.228 0.125 0.120
5.00 0.10 0.01 0.081 0.014 0.003 0.140 0.025 0.005
5.00 5.00 5.00 0.022 0.021 0.022 0.041 0.036 0.041

a; = 0 for © € V. Here, the focus lies on models where pairs of variables are marginally
independent. Under the assumption a; > 0 for ¢« € V' this variables X; and X, with
i,j € V and i # j are marginally independent if and only if a;; = 0. Therefore in the
following, situations are investigated in which a;, s, and a3 are strictly positive. To reveal
the effect of the parameters o, ag, and a3 on the strength of the pairwise correlations the
three parameters of the marginal distributions and the association parameters are chosen
to be equal. In Table 3.3 some typical results for different situations with a; = as = a3
are given. It can be seen that the correlation coefficients decrease for increasing values
for a, a9, 3. Thus, small values for ay, as, a3 seem to be more sensible to discriminate
pairwise dependence from pairwise independence. Table 3.4 shows the outcomes for the
case that X; and X3 are marginally independent, i.e. it holds that ay3 = 0. The results
point out that the interpretation of the parameters with respect to the strength of the
pairwise correlations is difficult. At first, the correlation coefficient and Kendall’s 7 get
larger for increasing o = ans but then get again smaller. The same effect can be observed
for different values for a5 and as3: The constellation a9 = 0.01 and a3 = 0.20 in the
eighth row leads to a pairwise correlation of po3 = 0.778 whereas in the last row po3 = 0.633
results for a5 = 0.01 and as3 = 0.50. Altogether, it can be determined that though KS
distributions enable a wide range of pairwise correlations, the connection between the

association parameters on the one and the correlation measures on the other hand is
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Table 3.3: Correlation coefficient and Kendall’s 7 for 61 = o = 3 =5

a1 = (g = O3 =0.01

association Kendall’s 7 correlation
parameter coefficient
12 13 Q23 T12 T13 T23 P12 P13 P23

0.01 0.01 0.01 0.189 0.196 0.189 0.245 0.252 0.250
0.05 0.05 0.05 0.264 0.266 0.266 0.350 0.348 0.351
0.10 0.10 0.10 0.252 0.246 0.252 0.344 0.331 0.343

a1 = (g = Q3 =0.05

Ql2 Q13 Qa3 T12 T13 T23 P12 P13 P23

0.01 0.01 0.01 0.077 0.077 0.078 0.108 0.105 0.109
0.05 0.05 0.05 0.170 0.173 0.175 0.231 0.233 0.236
0.10 0.10 0.10 0.201 0.200 0.198 0.277 0.273 0.271

CM1:O!2:CY3:0.1

Ql2 Q13 Qa3 T12 T13 T23 P12 P13 P23

0.01 0.01 0.01 0.051 0.038 0.041 0.069 0.050 0.057
0.05 0.05 0.05 0.117 0.116 0.120 0.159 0.156 0.167
0.10 0.10 0.10 0.155 0.153 0.160 0.216 0.213 0.224

complex and not easy to interpret. The magnitude of the association parameters does
not permit a direct conclusion on the strength of a possible linear or monotone relation
among the variables. Thus, the association parameters describe other than linear and
monotone associations. Up to know, an interpretation of the parameters is only possible

via simulation studies.

4 Discussion

Our investigations have shown that the family of KS distributions offers possibilities which
are not given by a wide range of other multivariate distributions. On the one hand KS
distributions are able to model other than linear relations between the variables. Koehler
and Symanowski (1995) discuss the shape of two-dimensional KS distributions. They

compare, for instance, two—dimensional normal distributions with two—dimensional KS
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Table 3.4: Correlation coefficient and Kendall’s 7 for a; = a9 = a3 = 0.01 and a3 = 0

association Kendall’s 7 correlation
parameter coefficient

Q1a Qo3 T12 T13 T23 P12 P13 P23
0.01 0.01 0.239 0.000 0.243 0.302 0.001 0.306
0.05 0.05 0.378 0.003 0.382 0.488 0.004 0.490
0.10 0.10 0.370 0.002 0.378 0.493 0.002 0.496
0.15 0.15 0.358 0.003 0.358 0.485 0.004 0.483
0.20 0.20 0.339 0.003 0.339 0.470 0.005 0.469
0.50 0.50 0.246 0.002 0.247 0.365 0.004 0.366
0.01 0.10 0.077 0.000 0.637 0.115 0.003 0.767
0.01 0.20 0.041 0.000 0.611 0.069 0.002 0.778
0.01 0.50 0.014 0.002 0.477 0.026 0.003 0.683

distributions having normally distributed margins likewise. By means of contour line plots
of the density function they illustrate how manifold forms of appearence are obtained for
different association parameters. The potentiality of modeling pairwise independencies
is on the other hand a request which is not fulfilled for many multivariate distributions
defined in the literature.

Nevertheless, the approach contains problems which reduce the scale of applications. It
is questionable whether the flexibility concerning possible association structures is useful
while there is no knowledge about type or strength of for example pairwise associations.
In addition, it has to be checked what consequences have to be drawn from the equivalence
of conditional and marginal independence. Another open question concerns the discussion
of estimating and testing properties. The familiy of KS distributions is no exponential
family which means that common results cannot be applied (Barndorff-Nielsen, 1978,
Frydenberg and Lauritzen, 1987). Exponential families are characterized by a special
structure of the density whereas the family of KS distributions is featured by the cdf.
The corresponding density is given by a complicated formula which is not easy to treat
analytically. Eventually, the discussion of a generalized form with uniform margins as it
can be found for the generalized Burr-Pareto-logistic distributions in Johnson (1987) will
be more easy and therefore sensible.

Summarizing, this distribution family seems to be worth being discussed in the framework
of graphical models. Admittedly, attention has to be paid to the observed equivalence

of marginal and conditional independence. Perhaps terms derived from the theory of
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graphical models will be helpful to interpret this property. In a next step it has to be
examined whether the so—called Markov properties (Frydenberg, 1990) hold which make
it possible to represent the association structure in a graph in such a way that missing
edges can be interpreted as conditional or marginal independences which is investigated

in a forthcoming paper.
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Appendix
Proof of Lemma 2.11:

The joint distribution function of (X%, X%)” can be written as

F(za,zp) = [ Fi(x) [ er(x)™™

i€V €Ty
= [ Fi(z) I] Fi(z) ] er(e)™ I er(@)™ ] er(z) ™.
i€ A i€B €T, I€Is I€Tp

The marginal distribution functions of X4 and Xp are of the form

Fa(wa) = [l Fi(ay) II esla)™

j€A JET L
- HFj(xj) H CJ(J;)iZI€Zv,IﬁA:JaI
j€A JET L
= HFj(«Tj) H Cj(x)_O‘J H CJ(m)*Zzezv,mAqJ#al
jGA JeT JETA
= I Fi(xy) IT es(@)™ I es(@)™
JGA JEIA IGI,D
INA=J€ET 4
ieB J€Is IeZp
INB=J€eIp

The vectors X, and Xp are marginally independent if the joint distribution function of
(XT, XI)T is the product of the marginal distribution functions of X, and Xp. This is

the case if for all z = (27, 2%)" € IRP the following equation holds

Hcl(x)_oqz H cy(z)™ H cg(z) ™. (4.3)

I€Tp IeIp IeIp
INA=J€ET 4 INB=J€Iy

Let oy = 0 for all Zp in (4.3). As a result, both sides of the equation equal 1, and part

(i) of the lemma is proven.
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To show (ii) the partition of the set Zp given in Remark 2.1 is used. Thus, the terms of

Equation (4.3) can be written as

Il (@)™ = II e ™ II e ™ II ele) ™ II alz) ™,

IEI’D IEIDAB IGI’DA_ IEI’D_B IGIfD__

I @™ = I cral@)™™ ] crna(z

and I c@ ™ = I ers@ ™ I crnsl@) .
IeZp IEIDAB IEID_B
INB=JeIg

It can be seen that for all x € IRP with ¢;(x) # 0 for I € Ip (4.3) is equivalent to

L= [ —2D (1.4)

IeTp,, crna(x)ermnp(x)

H{C[()}QIH{ )}QIHCI az‘

rezp, ©In rezp , €INB (z) I€Tp

Now, we will show that (4.4) is fulfilled if and only if a; = 0 for I € Zp. In other words,
the right hand side looked at as a function of x equals 1 only in this special case. For this
purpose, the right hand side of the function is evaluated at suitably chosen numbers, as for
instance, Z; where F;(Z;) = y; is assumed to properly lie between zero and one. If for two
components j4 and jp, such numbers 7;, and 7;, are taken, the function ¢;,;,(Z;,, %;,)
also lies inside the interval (0;1).
For j, € A and jg € B the limit of the above equation is analysed for x; — oo for
all i € V\ {ja,jp} and z;, = %,,, v;, = &, which yields that the limits of all terms
cina(z) and ¢jnp(x) of (4.4) equal 1. For the functions ¢;(x) the limit of all terms with
{ja,jB} & I equal 1 as well. For the remaining terms, i.e. for all ¢;(z) with I € Zp and
ja,js € I it holds that
Jim e (2) = ¢5s (T, Tjs)-
i€n\{ia.ip}
As a result, the limit of the right hand side of (4.4) turns out to be
H Cjajn (i‘jA’ Tjp )7a1'

I€1p
jadB€El

As assumed, 0 < F;(Z;) = y; < 1 is satisfied which gives
0 < aju(Tjar Tjs) < 1.
Summarizing, (4.4) holds if and only if «; = 0 for all [ € Zp with j4 € I and jp € I.
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To complete the proof it remains to show that the above argumentation covers all sets
belonging to the index set in (4.4). Since the above arguments hold for any arbitrary pair
ja,jp and since in addition, the set D is defined as D = {I € VIINA # () and INB # 0}
the right hand side of (4.4) equals 1 only if oy = 0 for all I € Zp. O

Proof of Theorem 2.16
It can be shown that X, and Xpg are conditionally independent given X if for all x € IRP
with Fo(z¢) # 0 it holds that

P(Xy <4, Xp <ap|Xe <ac)=P(Xg <aalXe <ae)P(Xp < ap|Xe < 20).

According to the definition of conditional probabilities the above equation can be written
as

P(Xy<xa,Xp<zp,Xc<z0) P(Xy<za,Xe<L20)P(Xp <2z, Xe<20)
P(Xc < zc) B P(Xc < zc) P(Xc <zc)

which is equivalent to

Faupuc(a,vp,v0)Fo(xe) = Fave(za, xe)Fpuc(zs, 2¢),

and to
Fauc(za,zc)Fpuc(zp, xc) 1 (4.5)
Faupuc(a,vp,20)Fo(ze) ' '
The terms of this equation are given as
F(z) = [] Fi=) [] Fi:) [] Fi(z) (4.6)
icA i€B ieC
I er(e) ™ ] er(@)™ ] er(z)™
I€T 4 1€l I€eie
IT @™ I el@)™ I[ ez [ ez,
I€T A I€T 4c 1€Ipe I€T anc
Favc(za,ze) =[] Filwi) [] Filzi) I er()™ ] er(a)™ (4.7)
icA icC 1€T A IeTe
II a@™ I cna@™ JI ecnal@) ™
VSTV IEIABAB IEIABA_
II cinc@)™ I cncl@) ™
IEIBCBO IGIBC_O
I crncavey@™  TI  cnmoe @),
T€TaBcspc I€Tape, ¢
Fo(ze) = [ Fi(zi) ] er(z)™ (4.8)
ieC I€Te
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H cino(z)™ H cinc(z) ™

IGIACAO IGI.AC_C
II crnc@) ™ JI crncl@) ™
1€lBepe I€lpe ¢
I crc@™ ] cncl@)™™
1€laBe po 1€laBe, o
H cinc(z) H cine(z)
ITelase o Ielase o

and Fpuc(zp,xc) according to Fauc(za, x¢). Equation (4.5) then reads as

1= ]I {CmA(iE)CmB (z) }a’ IGIEIBA. {CmA(w) }al (4.9)

IeTan,, cr(x) cr(x)

n{er ek

IEIAB_B

H { CIn(AuC) (ﬁU)Cm(BUC) (z) }al H { CIn(AuC) (z) }al
I€TaBcy )

1Ly c1(z)erne(z) cr(@)ernc (@

cinsucy (@) | 1 -
H {cl(w)cmc(x) } H ' {CI(JJ)CmC(l")}

I€Zape po I€Tape ¢

11 {Clzx) }_0‘"

I€Tapc. .

It is known that

ABUABC = {I€Z|INA#0,INB# 0}
= {IeZ|dic A jeBwithiel and j € I}.

As a consequence, let in Equation (4.9) be a; = 0 for all I € ABU ABC. Then, the right
hand side equals 1 and part (i) of the theorem is shown.
For the other part of the theorem it has to be shown that the conditional independence
of X4 and Xp given X¢ implies oy =0 forall I € Z withi € [ and j € I foralli € A
and j € B.
X4 and Xp are conditionally independent given X if for all ¢ € RIX¢l with f(z¢) > 0
it holds that

Faupio(ra, zglzc) = Fajc(zalre) Fpio(zslze). (4.10)

The cdf of the conditional distribution of X 4 given X = x¢ is defined as

Fpco(zalze) = }ILI{‘% P(Xa<zalzec—h<Xe<uze)

I P(Xs<za,2¢—h<Xc<ae)
= lim
h\0 P(.’L‘(j—h<Xc S.TC)
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limpno P(Xa < 24,20 —h < Xo < x¢)
limy,\ o %P(xc —h<Z<ze)

T4 fave(t, xe)dt
felze) '

Note that Fgc and F,upjc can be written analogously. Since all involved limits exist we

get from Equation (4.10)

1 < — < 1 < — <
}ILI{‘%P(XA_:L‘A|$C h<XC_5L'C),£1{l%P(XB_$B|$C h<Xc_$(j)

= %i{‘%P(XA <za,Xp<zplzc—h<Xc <o)

which is equivalent to

limp o %P(XA <za,20—h< Xe<z0) limp o %P(XB <zp,zc —h < Xc <z0)
limh\o %P(]?C —h < Xc < J?(j) limh\o %P(IL‘C —h<Xc< :Ec)

limpng 3+ P(Xa <24, Xp <zp,2¢ —h < X¢ < 30)
limh\o %P(IL‘C —h<Xc < :Ec)

Simple algebraic transformations give

%i{‘r(l){P(XA <za,xc—h<Xe<zc)P(Xp <zp,2c—h<Xc <zc)

—P(XA <zup,Xp<zp,zc—h< X¢ §$C)P($C—h < X¢ §$C)} = 0.

If all terms of the type P(X4 < z4,2¢—h < X¢ < x¢) are replaced by P(X4 < 24, X¢ <
xc) — P(Xa < x4,Xc <xc — h) the known expressions for the cdf’s can be inserted.

Consider now the limit of the above equation for x; — oo for all i € V' \ {ja, jp} and
Zj, = Tj,, Tjp = Tj,. The same argumentation as in the proof of Lemma 2.11 yields that
Equation (4.10) is fulfilled for all # € IRP if and only if for all i € A and j € B it holds
that ay =0 for all / € Z with: € I and j € I. O
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