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SUMMARY

In this paper, a multivariate distribution family introduced by Koehler and Symanowski
(1995) is discussed as alternative assumption for graphical models which are typically
connected with Conditional-Gaussian distributions. For that purpose, certain require-
ments which have to be fulfilled when formulating graphical models are checked. This
leads to the introduction of graphical models with Koehler Symanowski distributions
which are then investigated regarding some basic properties known for Gaussian graphical

models.

1 Introduction

Graphical models are mainly defined on so—called concentration graphs and the family of
Conditional-Gaussian (CG) distributions which allow to have simultaneously continuous
and discrete variables under investigation (see for example Lauritzen, 1996, Lauritzen and
Wermuth, 1989, Wermuth and Lauritzen, 1990). The family of CG distributions includes
the multivariate normal and the multinomial distributions as special cases and satisfies
the equivalence of the Markov properties for concentration graphs. The equivalence of
pairwise, local, and global Markov properties is required when concluding from properties
of the graph, like separation of two sets of vertices A and B by a third set C', to those of
the joint distribution, like the conditional independence of X4 and Xp given X briefly
writtenas A Il B | C' (Dawid, 1979, 1980). That means, missing edges in the underlying
graph can be correctly interpreted as conditional independences. The conditions for mar-
ginalization, collapsibility, and decomposition of the ML estimation for graphical models
with CG distribution can be found in Frydenberg (1990) and Frydenberg and Lauritzen
(1989).

For so-called covariance graphs which represent marginal independences instead of con-

ditional ones appropriate independence properties, also called Markov properties, have
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been proposed (Cox and Wermuth, 1993, Kauermann, 1996). For such graphs, the above
mentioned equivalence holds under restrictive assumptions which are only fulfilled in spe-
cial cases. Further properties, like marginalization and collapsibility, are merely shown
for the multivariate normal distribution (Kauermann, 1996).

In this paper, graphical models on covariance graphs are defined using a joint distribution
that represents an alternative to the usually applied distribution family, namely the family
of multivariate normal distributions. Thus, the existing theory of graphical models is
extended in two respects. On the one hand, another multivariate distribution is looked
at. On the other hand, we focus on covariance graphs rather than on concentration graphs.
The aim of this approach is to broaden the applicability of graphical models to practical
problems where the multivariate normal or CG distributions are not adequate, as for
instance in multivariate event history analysis. The class of multivariate distribution
families introduced by Koehler and Symanowski (1995), here called KS distributions,
allows to model complex associations between arbitrary subsets of the variable set as
well as pairwise independences in the margins. These distributions can be constructed
based on almost any given univariate marginal distributions by adding interaction terms
and therefore promise a wide field of applications as, for instance, in the framework of
graphical modeling.

The paper is organized as follows: In Section 2 some basic notations and properties
concerning graphical models are given. The next section is devoted to the definition of the
class of KS distributions. In addition, some important properties concerning conditional
and marginal independence are established. Section 4 considers graphical models with
KS distributions. The paper ends with a discussion giving among others an outlook on

further research questions.

2 Graphical models

2.1 Basic terminology

A graph G = (V, E) is given by a set of vertices V' representing the variables and a set of
edges F C V x V with (i,i) € E for all i € V reflecting associations among the variables.
We identify the set of vertices with the index set of the vector Xy. The set E consists
of ordered pairs (i,7), i,j € V. We only consider so—called undirected graphs where
(i,j) € E = (j,i) € E holds, i.e. only symmetric associations are dealt with. For A C V,
we define a subgraph G4 as G4 = (A, E N (A x A)). Vertices i,j € V with (i,j) € E are
called neighbours. The boundary of a vertice i € V' is given by bd(i) = {j € V | (i,7) € E}
and for any A C V we define the boundary of A as bd(A) = {j|j € bd(i),i € A} \ A.

A path from i to j is given by a sequence i = ig, iy, ...,0, = j With (iy,, ime1) € E for



m =20,...,n — 1. For disjoint subsets A, B,C of V we say C separates A and B if every
path from a vertice ¢ € A to j € B includes at least one vertice k£ € C. The subset A C V
is called complete if (i,j) € F for all i,j € A with i # j.

2.2 Markov properties

The basic idea of graphical models is to use a graph to represent particular properties of
a family of multivariate distributions. A concentration graph reflects pairwise conditional
independences: A missing edge between two vertices implies that the two variables are
conditionally independent given all remainig variables, i.e. vertices in the graph. In a
covariance graph missing edges are interpreted as marginal independences between pairs of
variables. This property is called pairwise Markov property. Besides the pairwise Markov
property the graphical representation suggests additional independence statements. As
far as concentration graphs are concerned it seems to be sensible to say that a variable
X; is conditionally independent from all variables X; which are not connected with X
given the boundary of X; what is also known as local Markov property. A detailed
discussion of the Markov properties for concentration graphs can be found in Frydenberg
(1990) and Lauritzen (1996, pp. 32). The corresponding properties for covariance graphs
(Kauermann, 1996) are as follows:

A family P of distributions on a covariance graph G = (V, E') satisfies the

(i) pairwise Markov property according to G if {i} 1L {j} holds for all (i, j) ¢ E with
LF 7,
(i) local Markov property according to G if {i} 1L V'\ ({i} Ubd(i)) holds for all i € V,

(iii) global Markov property according to G if A 1L B | C holds for all disjoint subsets
A, B,C of V whenever A and B are separated by the set D =V \ (AU BUC).

The global Markov property is the strongest of the three Markov properties. The local and
the pairwise Markov property follow from the global. In addition, the local implies the
pairwise Markov property, i.e. (iii) = (ii) = (i). The implication (i) = (ii) = (iii) is not
given in general but is a minimum requirement for the correct interpretation of a graph
in the sense of a graphical model. This is fulfilled for concentration graphs under rather
weak assumptions (Frydenberg, 1990). For covariance graphs, however, the conditions

are more restrictive as can be seen from Proposition 2.1 (Kauermann, 1996).

Proposition 2.1 Let A, B, C be disjoint subsets of V. The three Markov properties for

covariance graphs are equivalent if for all P € P the implication

(A1 BandA 1 C)= A 1L (BUQ), (2.1)
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18 fulfilled.

Consider a covariance graph G and a family of distributions P for which (2.1) is fulfilled.
P is called G Markov or a graphical (G Markov) model and is denoted as M(G) whenever
‘P holds one of the above Markov properties. This provides the following interpretation.
An independence statement which can be read off the graph is valid for each element of
M(G). But M(G) usually contains distributions which fulfill more independences than
those represented by the graph. An important question is whether the graph represents
all independence statements which are fulfilled for each distribution in M(G).

Definition 2.2 A graphical G Markov model M(G) is called G Markov perfect if A 1L
B | C for all P € M(G) implies that the sets A and B are separated by D =V \ (AUBUC)

wn the covariance graph G.

3 Koehler Symanowski distributions

Let V ={1,...,p} be an index set and V the powerset of V. Let X = Xy = (X1,..., X,)7T
denote a vector of random variables with marginal camulative distribution functions (cdfs)
F;(+), i € V. The joint distribution of X is assumed to be given by the following cdf

F(x1,...,zp) = [[ Fi(z:) I] er(z)~. (3.2)
iev IeT
Forallsets I € Z={I € V with |[I| >2}let R> a; > 0andforalli€ Vet R> a; >0
with a; = Y jeyp ey ar < oo. For all I € T the factors ¢;(z) in (3.2) are defined as

cr(@) =D {1 uila;)} = (] = 1) [T wi(zs)

i€l et iel
with u;(x;) = Fz(xz)ﬁ for all i € V. The distribution of X will be called KS distribution
in the following. The definition given here slightly differs from that in Koehler and
Symanowski (1995), since the parameters «; are assumed to be strictly positive whereas
in the original definition the case a; = 0 is included. The consequences of this restriction
are described in Caputo (1998). The structure of the cdf is fairly easy. It factorizes into
the product of the marginal cdfs and a product of association terms. If we assume that
marginal density functions f;(-) exist for all i € V' it can easily be shown that the joint
density function also exists (Koehler and Symanowski, 1995). However, in contrast to the
cdf the functional representation of the density function is rather complicated. Besides the
product of the marginal densities there are more complex factors with additive components

which come into play due to the first derivation of F'.
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In the framework of graphical models, properties related to marginal and conditional in-
dependence are of interest as well as, for instance, the type of marginal and conditional
distributions. The former are important whenever Markov properties of the distribution
family are investigated. The family of KS distributions is closed under marginalization
(Caputo, 1998) whereas conditional distributions are in general not again of KS type
(Koehler and Symanowski, 1995). In the following the conditions for marginal and con-
ditional independence are summarized. For more details we refer to Caputo (1998). Con-
sider a vector X = Xy with joint KS distribution and a partition of V" into the sets A, B,
and C. It can be shown that X, and Xp are marginally and conditionally independent
whenever for all € A and 5 € B the condition oy =0 for all I € Z with: € [ and j € [
is fulfilled. In addition, let X4 and Xpg be marginally or conditionally independent and
assume each X; for 7 € V to be not degenerated, i.e. there exists at least one z; € IR for
which the corresponding cdf takes a value F;(Z;) = y; with 0 < y; < 1. Then, for alli € A
and ;7 € B it holds that a;y = 0 whenever ¢ € I and j € I. This proposition indicates
that first independence between subvectors is derived by setting parameters to zero and

second conditional and marginal independence cannot be distinguished.

4 Graphical models with KS distributions

4.1 Markov properties

In this section, it is discussed whether the family of KS distributions is a suitable assump-
tion for graphical models and thus, a possible alternative to the family of CG distributions.
As mentioned above the equivalence of the Markov properties is a basic requirement which
is formulated in Theorem 4.1. In the following, let P denote the family of KS distributions

with non degenerated marginal distributions.

Theorem 4.1 Assuming P, the pairwise, local, and global Markov property for covariance

graphs are equivalent.

Proof:
Let G = (W, E)) be a covariance graph, A, B, C arbitrary subsets of W and V = AUBUC.
Following Proposition 2.1 it has to be shown that for all P € P the implication

(AL BandA 1L C) = A 1 (BUC)

is fulfilled. Since the family of KS distributions is closed under marginalization the distri-
bution of Xy is again of KS type. For all 7 € V, the distribution of X; is assumed to be
not degenerated. Thus, A 1L B yields that oy = 0 for all I € Z with 7,5 € I and 7 € A,



j € B. Correspondingly, A 1l C implies oy = 0 for all I € 7 with 7,7 € [ and i € A,
j € C. This can also be written as ay =0 forall [ € Z with¢,j € T andi € A, j € BUC
which leads to A 1L (BUC). O

The equivalence of the Markov properties establishes a connection between a graph and
a distribution family P. If, for instance, G is a covariance graph the restrictions on the
association parameters of the corresponding family of KS distributions are obtained as
a;; = 0 for all (4, j) ¢ E. In addition, for all pairs (¢, j) with a;; = 0 it can be concluded
that oy =0 forall I € Z with ¢ € I and j € I. If vice versa a family P of KS distributions
is given the corresponding covariance graph is built up connecting the vertices in I for all
I €T, ={1 €V, |I| =2} with af # 0. The set of edges E reads as

E ={(i,j)| 3] € T with ay #0 and 7,5 € I}.
A set of vertices I € 7 with ay # 0 is complete in the corresponding graph G.

Example 4.2 Consider the covariance graph G = (V, E) with V = {1,2,3,4} and E =
{(1,2),(2,1),(2,3),(2,4),(3,2),(3,4),(4,2),(4,3)}. Note that edges are represented as

dashed lines following the conventions of covariance graphs (Cox and Wermuth, 1993).
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The family P of four—dimensional KS distributions with aq, as, as, ay > 0, association
parameters aug, Qigz, Qg 34, Q34 > 0, and a3 = aq = Qo3 = Qg = Q34 = Q931 = 0

18 G Markov. The Markov properties of P are given as

{1y 1L {3}, {1} 1L {4}, {1} 1L {3,4}, {1} 1L {3} [{4}, and {1} 1L {4} [{3}.

The next question addresses again whether the graph represents all independence prop-
erties which hold for each element of P. It is easy to see that a family of KS distributions
implies in general more marginal and conditional independences as it can be concluded

from the covariance graph by means of the three Markov properties.

Theorem 4.3 The family P is not G Markov perfect.



Proof:

Consider, for instance, the family P of KS distributions with a; > 0 for ¢ = 1,...,4,
association parameters aqs, (a3, (a3, Qog, i34, (o3, Qo34 > 0 and gy = Qo = 3y =
ai1934 = 0. Define the sets A = {1}, B = {4}, C = {3} and D = {2}. It holds that
A 1l B|C because oy =0 for all I € Z with 1 € I and 4 € I.

Suppose, P is G Markov perfect. Thus, the sets A and B have to be separated by the set
V\ (AU BUC) ={2} = D in the corresponding graph G which is, however, given as

and thus demonstrates that the sets A = {1} and B = {4} are not separated by the set
D = {2}. O

To cover all the independence properties which are fulfilled by the elements of a family P

it seems to be necessary to introduce an additional Markov property.

Definition 4.4 Let P be a family of distributions and G = (V, E) be a covariance graph.
P is called total G Markov, i.e. fulfills the total Markov property for covariance graphs if

Al B|C forall CCV\(AUB)

whenever the disjoint subsets A, B of V' are separated by D =V \ (AU B).

Before investigating whether the total Markov property suffices to gather all independ-
ences of the underlying distribution family it has to be checked if the equivalence of the

now four Markov properties is still given.

Theorem 4.5 For the family P the global and the total Markov property for covariance

graphs are equivalent.

Proof:

Let G = (V,E) be a graph where the disjoint sets A, B C V are separated by D C
V'\ (AU B). In the first step it is shown that the global Markov property follows from
the total Markov property.



Assume that P fulfills the total Markov property of G, i.e. for all C' C D it holds that
A 1L B | C. This conditional independence holds particularly for all subsets C' of D with
S = D\ C separates A and B and thus the global Markov property is fulfilled.

Now, it is shown that the total Markov property follows from the pairwise Markov prop-
erty. Suppose P to be pairwise Markov with regard to G. Theorem 4.1 then implies that
P is G Markov, i.e. the local and global Markov properties of G are fulfilled, too. The
assumption that the sets A and B are separated by D C V' \ (AU B) yields that there
exists no path from 7 € A to 5 € B which only contains vertices of A U B. In particular,
there exists no pair (i,j) € E with i € A and j € B. Thus, the pairwise Markov property
implies {i} 1L {j} for all i € A, j € B and therefore ay = 0 for all I € 7 with 4,j € I.
As described in Section 3 this condition leads to A 1L B | C for all C C D. O

Since the above four Markov properties for covariance graphs are equivalent for the fam-
ily of KS distributions P we call P G Markov whenever it satisfies one of the Markov

properties.

Definition 4.6 For a covariance graph G = (V, E) the set of all P € P which are G
Markov are called graphical G Markov model with KS distribution and is denoted with
KS(G).

We now come back to the discussion of the problem of Markov perfectness in the situation
of a ¢ Markov model with KS distribution starting with a more general definition of

Markov perfectness.

Definition 4.7 A graphical G Markov model with KS distribution KS(G) is said to be G
Markov perfect in the wider sense if the sets A and B are separated by D =V \ (AU B)
in G whenever for disjoint subsets A, B,C of V' the condition

AU B|C foralPeKS(G)
holds.

Theorem 4.8 A graphical G Markov model with KS distribution KS(G) is G Markov

perfect in the wider sense.

Proof:

Let A, B,C C V be disjoint sets. Assume for all P € P that A 1L B | C and in addition
that the sets A and B are not separated by D =V \ (AU B) in the corresponding graph
G = (V, E). Thus, there exists a pair (i,j) € F with i € A and j € B and it holds that
{i} A {j}. This leads to a;; # 0 which implies A L. B | C but disagrees with the above
assumption. O



A consequence of this property is that the separating set itself does not play an important
role. The fact that there is no direct path between the sets A and B suffices to determine
the Markov properties. Whenever there exists a set C C V \ (A U B) which is not
necessarily separating such that A 1L B | C it follows that there is no edge between a
vertice 7 of A and a vertice j of B. Thus, the sets A and B are automatically separated by
the set V'\ (AU B). This property will again be discussed later when the collapsibility of
a graphical model with KS distribution is investigated. Here, it is of interest whether for
a subset A of V' the family of marginal distributions of X4 fulfill the Markov properties of
the subgraph G,4. In general, this is not the case since it is possible that a set C separates

the sets A; and A, in the subgraph G4 but not in the original graph G.

Up to now the focus has been on Markov properties of covariance graphs. If concentration
graphs are considered in connection with KS distributions an interesting and striking

observation can be made.

Theorem 4.9 Let G = (V, E) be a graph. P fulfills the Markov properties of the covari-
ance graph G if and only if P fulfills the Markov properties for the concentration graph
g.

Proof:

First, it is shown that P fulfills the Markov properties of the concentration graph whenever
P fulfills the Markov properties for the covariance graph. For that purpose, assume that
the sets A and B are separated by C in the graph. Thus, the set V'\ (AU B) also separates
A and B. Obviously, it holds that C C V'\ (AUB), and the total Markov property implies
A 1L B | C which yields the global Markov property for concentration graphs.

Now, we assume that P holds the Markov properties for concentration graphs, i.e. P is
in particular pairwise G Markov with respect to a concentration graph G. This implies
for all (4,7) ¢ E that {i} 1L {j} | V \ {i,j} and, because of the equivalence of marginal
and conditional independence {i} 1L {j}. Thus, P is pairwise G Markov with respect to
the covariance graph G and following Theorem 4.1 G Markov. O

The above theorem shows that the family of KS distributions cannot capture situations in
which an observed marginal independence among subvectors does not imply a conditional
independence given the remaining components or vice versa. These phenomena are well—-
known as Simpson’s paradox which is described in detail in Simpson (1951), Dawid (1979),
and Blyth (1972). The paradox which is in fact not really paradox can not occur in
KS distributions. In other words, Simpson’s paradox cannot be modeled assuming this
distribution family.

Consider the subfamily of the KS distributions which arises if a priori all association

parameters «; with |I| > 2 equal zero. Strictly speaking, only second order associations
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are taken into account. This subfamily belongs to another distribution family described
in Marshall and Olkin (1988). All members of this family are so—called associated distri-
butions. A property of associated distributions is that all partial correlations are non—
negative (Barlow and Proschan, 1975). Thus, the extremer version of Simpson’s paradox
cannot occur: a change of the sign of the partial correlation coefficient when the set of
variables in the conditioning is changed. A similar situation is discussed in Cox and Wer-
muth (1994) for the family of quadratic exponential binary distributions. The authors
compare this phenomenon with properties of the so—called multivariate MTPy normal
distributions (Karlin and Rinott, 1980) which also share the occurence of non—negative
partial correlation coefficients with the above described distributions. In addition, it
should be noticed that the family of quadratic exponential binary distributions is one of

the rare distribution families fulfilling the Markov properties of covariance graphs.

In the following, the above described phenomenon is embedded in a more general context.

Definition 4.10 A distribution family P of X = Xy is said to be resistant against
Simpson’s paradoz if for disjoint subsets A, B, and C of V' the following holds:

(i) A 1L B implies A 1L B|C forallC CV\ (AU B),

(it) A 1L B | C for a set C C V' \ (AU B) implies A 1l B
for all P € P.
Thus, the above Theorem 4.9 can also be generalized.

Theorem 4.11 For a family of distributions P which is resistant against Simpson’s para-

doz the global Markov properties for concentration and covariance graphs are equivalent.

Proof:

Let A, B, C, and D be disjoint sets such that C' separates the sets A and B and that
D=V\(AuBUCQ).

Assume first P to be ¢ Markov with respect to a concentration graph, i.e. it holds that
A 1l B | C. Part (ii) of Definition 4.10 yields A 1 B. Thus, (i) leads to A 1L B | D
because D C V'\ (AU B) which gives that P fulfills the Markov properties for covariance
graphs.

Suppose now that P holds the Markov properties for covariance graphs, i.e. A 1L B| D.
Using again (ii) of Definition 4.10 yields A 1l B and thus with (i) A 1L B | C because
CcV\(AUB). O

Theorem 4.12 The family P is resistant against Simpson’s paradoz.

Proof:
The statement is a direct consequence of the equivalence of marginal and conditional

independence. O
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4.2 Marginalization of graphical models with KS distribution

Another property discussed for graphical models is the so—called collapsibility onto a
subset A C V. Here, two aspects have to be taken into account. First the distribution
family under investigation has to be closed under marginalization. The second point is
that the resulting family of marginal distributions can be identified with the graphical
model corresponding to the subgraph G4, i.e. with the set of distributions fulfilling the
Markov properties of G4. For A C V, we write XS(G)a = {fa(") | f(-) € KS(G)} for the
family of marginal distributions derived from KS(G). In general this holds only under
certain restrictions on the set B = V'\ A. A subgraph G4 is constructed from the original
graph G by deleting all vertices in B = V' \ A and all edges between vertices in B = V'\ A
and vertices in A. Thus, it is possible that separating sets arise in the subgraph which did
not exist in G and lead to other Markov properties. As mentioned above, the separating
set does not affect the Markov properties for families of distributions which are resistant

against Simpson’s paradox.

Theorem 4.13 Let G = (V, E) be a graph, A a subset of V, and P a G Markov family of
distributions which is resistant against Simpson’s paradox. Then, it holds that P, fulfills
the Markov properties of the subgraph G 4.

Proof:

It has to be shown that M(G) 4 holds the total G4 Markov property of G4. Let Ay, A, be
disjoint subsets of A which are separated by the set A\ (A4; U Ay). This implies that there
exists no path from vertices of A; to vertices of Ay consisting only of vertices of A; U A,.
The subgraph G, results from G by deleting the vertices B =V \ A and all edges within
B and between vertices of B and vertices of A. Edges within A and particularly edges
between vertices of A; and vertices of A, are preserved. Thus, it is not possible that there
exists a path between A; and A, which consists only of vertices of A; U Ay in the original
graph G. As a consequence, A; and A, are separated by the set V'\ (4; U Ay) in G. The
fact that P is G Markov yields

Al AL A2 | C for all C g Vv \ (A1 U AQ)
Since A is a subset of V' it holds that
Al AL A2 | D for all D g A\ (A1 U AQ)

Thus, P, fulfills the total G4 Markov property. O

For a special choice of P it has to be checked whether the distribution family is closed
under marginalization. For the family of KS distributions this is always the case. Thus,

the following theorem can be formulated.
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Theorem 4.14 For a subvector X 4 of Xy it holds that KS(G) 4 = KS(Ga)-

Proof:

The inclusion £S(G)4 € KS;(G4) is a direct consequence of Theorem 4.13 and the fact
that KS distributions are closed under marginalization. Let now P4 € KS,(G4) with cdf
G(z4). The distribution P with cdf

F(z) = G(za) H F(z;)

ieV\A

then belongs to KS;(G)4. Thus, KS.(G)a 2 KS(Ga). O

5 Discussion

As most important result we have shown the equivalence of the Markov properties for
covariance graphs for the family of KS distributions. Thus, a graph can be used to
represent the association structure of the components of a KS distributed random vector.
Missing edges in the graph can be interpreted as certain independences which can be
formulated in terms of Markov properties. A second remarkable outcome is that marginal
independence implies conditional independence and vice versa. A more detailed discussion
of the consequences as well as the background of this property will be an interesting topic
of further research. Another aspect of using the graphical representation concerns the
possible simplification of ML estimation. In case of the multivariate normal distribution
combined with a covariance graph (Kauermann, 1996) and the CG distribution combined
with a concentration graph (Frydenberg and Lauritzen, 1989) it has been shown that
a decomposition of the graph can be transferred to a decomposition of the estimation
problem in some situations. The highdimensional estimation problem belonging to the
original model, i.e. belonging to a graph G, can be split into smaller ones each having a
reduced number of parameters to be estimated and belonging to graphical models based
on subgraphs of the original graph. It should be checked whether similar results can be
obtained for KS distributions.
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