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SUMMARY

In the framework of graphical models the graphical representation of the association
structure is used in manifold respects. One is the conclusion from a decomposition of the
graph to a possible decomposition of the ML estimation. Results are well-known under
the assumption of the Conditional Gaussian distribution. Here, graphical models with a
family of distributions are considered which is introduced by Koehler and Symanowski
(1995). This approach extends the existing theory of graphical models in two respects.
The family of distributions we discuss forms an alternative to the usually applied
multivariate normal distribution. Furthermore, the focus lies on covariance graphs rather
than on concentration graphs. For these models the decomposability of ML estimation

is examined.

1 Introduction

In the literature, graphical models are mainly defined on so—called concentration graphs
and the family of Conditional Gaussian (CG) distributions which allow to have simulta-
neously continuous and discrete variables under investigation (see for example Lauritzen,
1996, Lauritzen and Wermuth, 1989, Wermuth and Lauritzen, 1990). The family of CG
distributions includes the multivariate normal and the multinomial distributions as special
cases and satisfies the equivalence of the Markovian properties for concentration graphs.
The equivalence of pairwise, local, and global Markovian properties is required when con-
cluding from properties of the graph, like separation of two sets of vertices A and B by a
third set C', to those of the joint distribution, like the conditional independence of X 4 and
Xp given X briefly written as A L B | C. That means, missing edges in the underlying
graph can be correctly interpreted as conditional independencies. Another aspect of using

the graphical representation of the association structure among the variables concerns the



possible simplification of ML estimation. It has been shown that under certain conditions
the decomposition of the graph results in the decomposition of the estimation problem
into smaller ones each having a reduced number of parameters to be estimated and be-
longing to graphical models based on subgraphs of the original graph. The conditions
for marginalization, collapsibility, and decomposition of the ML estimation for graphical
models with CG distribution can be found in Frydenberg (1990) and Frydenberg and
Lauritzen (1989).

For so—called covariance graphs which represent marginal independencies instead of con-
ditional ones appropriate independence properties, also called Markovian properties, have
been proposed (Cox and Wermuth, 1993, Kauermann, 1996, Caputo, 1998b). For such
graphs, the equivalence holds under restrictive assumptions which are only fulfilled in spe-
cial cases. Further properties, like marginalization and collapsibility, are merely shown
for the multivariate normal distribution (Kauermann, 1996) and the family of Koehler
Symanowski (KS) distributions (Caputo, 1998b) which represents an alternative to the
usually applied distribution family, namely the family of multivariate normal distributions.
The family of KS distributions allows to model on the one hand complex associations be-
tween arbitrary subsets of the variable set and on the other hand pairwise independencies
in the margins. These distributions can be constructed for almost any given univariate
marginal distributions by adding interaction terms and can be viewed as a generalization
of the generalized Burr—Pareto—logistic distributions.

The following section gives a brief introduction to the family of KS distributions and its
properties. Section 3 is devoted to the basic terminology of graph theory and the theory of
graphical models including Markov properties for covariance graphs. In Section 4 the idea
of decomposing estimation problems in graphical models is discussed in general. Section
5 deals with the estimation problem in case of graphical models with KS distributions.

The paper ends with a discussion of the results.

2 The family of KS distributions

Let V = {1,...,p} be an index set and V the set of all subsets of V. Let X = Xy, =
(X1,...,X,)T denote a vector of random variables with marginal cumulative density func-
tions (cdf’s) Fj(-), ¢ € V. Then, we define the joint distribution of X similarly to Koehler
and Symanowski (1995) via the cdf given by

F(z1,...,2p) = [[ Fiz:) [] er(z) (2.1)

eV IeT

and call it KS distribution with parameters a;, I € V. For all sets I € Z = {I €
V with [I| > 2} let IR 5 oy > 0 and for alli € V' let IR 5 a; > 0 with iy = Y1y e a1 <
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oo. The factors ¢;(z) in Equation (2.1) are for all I € Z given by

er(w) = 3 {]] wila;)} = (11 = 1) JJ wilw:)

i€l gel icl
with wu;(z;) = Fz(xz)ﬁ (1 € V). The parameters oy with I € Z are called association
parameters. In the following, we assume that marginal density functions f;(-) exist for
all i € V. Then, as shown in Koehler and Symanowski (1995), the joint density function,
denoted by f(-), exists, too. However, in contrast to the cdf the functional representation
of the density function is rather complicated. Besides the product of the marginal densities
there are more complex factors with additive components which come into play due to
the first derivation of the cdf.

The family of KS distributions has a lot of interesting properties which are discussed
in detail in Caputo (1998a). For instance, KS distributions are closed under marginal-
ization whereas conditional distributions are in general not again of KS type (Koehler
and Symanowski, 1995). In the following, the conditions for marginal and conditional
independence are summarized (Capuo, 1998a). Consider a vector X = Xy, with joint KS
distribution and a partition of V' into the sets A, B, and C. It can be shown that X 4 and
Xp are marginally and conditionally independent whenever for all ¢ € A and j € B the
condition a; = 0 for all I € Z with ¢ € I and j € [ is fulfilled. In addition, let X4 and
Xp be marginally or conditionally independent and assume each X; for 2 € V' to be not
degenerated, i.e. there exists at least one T; € IR for which the corresponding cdf takes a
value F;(Z;) = y; with 0 < y; < 1. Then, for all i € A and j € B it holds that ay = 0
whenever ¢ € [ and j € I. This proposition indicates that first independence between
subvectors is derived by setting parameters to zero and second conditional and marginal

independence are equivalent.

3 Graph theory and Markov properties

A graph G = (V| E) is given by a set of vertices V' representing the variables and a set of
edges E C V x V with (i,i) € E for all i € V reflecting associations among the variables.
We identify the set of vertices with the index set of the vector Xy. The set E consists
of ordered pairs (i,7), i,j € V. We only consider so—called undirected graphs where
(i,j) € E = (j,i) € E holds, i.e. only symmetric associations are dealt with. For A C V,
we define a subgraph G4 as G4 = (A, E N (A x A)). Vertices i,j € V with (i,j) € E are
called neighbours. The boundary of a vertice i € V' is given by bd(i) = {j € V' | (i,7) € E}
and for any A C V we define the boundary of A as bd(A) = {j|j € bd(i),i € A} \ A.

A path from i to j is given by a sequence i = ig, iy, ..., 0, = j With (iy,, ime1) € E for



m =20,...,n — 1. For disjoint subsets A, B,C of V we say C separates A and B if every
path from a vertice ¢ € A to j € B includes at least one vertice k£ € C. The subset A C V
is called complete if (i,j) € F for all i,j € A with i # j.

In the following, the Markov properties for covariance graphs are defined. A family P of

distributions on a covariance graph G = (V, E) satisfies the

(i) pairwise Markov property according to G if {i} L {j} holds for all (¢, j) ¢ E with
i F 7,
(ii) local Markov property according to G if {i} L V'\ ({i} U bd(7)) holds for all i € V,

(iii) global Markov property according to G if A L B | C holds for all disjoint subsets
A, B,C of V whenever A and B are separated by the set D =V \ (AU BUC),

(iv) total Markov property according to G if A L B | C holds for all C C V' \ (AU B)
whenever the disjoint subsets A, B of V' are separated by D =V \ (AU B).

Caputo (1998b) shows that the above four Markovian properties for covariance graphs are
equivalent for the family of KS distributions. Thus, a family P of KS distributions on Xy
is called G—Markov whenever it satisfies one of the Markov properties. A graphical model
can now be defined on a covariance graph G = (V, E) with KS distribution, denoted
by KS8(G), as the family of all G-Markov KS distributions. The model K£S(G) is not
Markov perfect with respect to the definition given for example in Kauermann (1996) but
is Markov perfect referring to the additional total Markovian property: if A L B | C for
each P € KS(G) and any disjoint sets A, B,C' C Vit follows that A and B are separated
by the set D =V \ (AU B) (Caputo, 1998b).

Another property discussed for graphical models is the so—called collapsibility onto a
subset A C V. Here, two aspects have to be taken into account. First the distribution
family under investigation has to be closed under marginalization. The second point is
that the resulting family of marginal distributions can be identified with the graphical
model corresponding to the subgraph G4. For A C V', we write KS(G)a = {fa(:) | () €
KS(G)} for the family of marginal distributions derived from KS(G). It can be found in
Caputo (1998b) that KS(G)a = KS(Ga) for any A C V, i.e. graphical models with KS

distribution are collapsible onto arbitrary subsets A C V.

4 ML Estimation in graphical models

As mentioned above, a graphical model has the property that independence statements
can be read off the graph. Another benefit of the graphical representation of the asso-

ciation structure concerns the possible simplification of the ML estimation. For special
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cases it has been shown that an appropriate decomposition of the graph results in a de-
composition of the estimation problem into smaller ones each having a reduced number of
parameters to be estimated and belonging to graphical models based on subgraphs of the
original graph. A detailed discussion of these problems in case of CG distribution can be
found in Frydenberg and Lauritzen (1989), Frydenberg (1990) and Lauritzen (1996, pp.
175).

The decomposition of the ML estimation is possible whenever the likelihood function
factorizes into functions that are distinct with respect to the unknown parameter vector,
say w. Thus, the maximization reduces to the separate maximization of each factor. This
procedure is justified by a general concept proposed by Barndorff-Nielsen (1978). The
idea is to show that the investigated family of distributions P can be written as a product
space Pr x PT for a statistic T = T(X), where Py denotes the set of distributions of T
and PT the set of conditional distributions of X given 7". This implies on the one hand

that any density p € P factorizes into the product
p(a;w) = pr(T(x);w) p' (25 we|T(X) = T(x)) (4.2)

for pr € Pr and p” € PT. On the other hand, it holds that any product (4.2) for arbitrary
elements pp € Pr and p’ € PT is an element of P. This defines the statistic 7" as a cut
in P (Barndorff-Nielsen, 1978, p. 50). This argument is applied to a general graphical
model M(G), i.e. M(G) is the set of all distributions P of a family of distributions P
fulfilling the Markov property of a given graph G = (V, E). In the following, we identify
elements P € M(G) with their density and their cdf, respectively, i.e., f(-) € M(G) and
F(-) € M(G) refer to the same element of M(G).

For a graph G = (V, E) and A C V we define the set of marginal distributions as M(G)4 =
{fa() | f(:) € M(G)} and the set of conditional distributions of M(G) given X, as
M(G)* = {finaa(-]") | F(-) € M(G)}. These notations are also used to denote sets like
(M(G) o) = {faic(-]") | F(-) € M(G)puc} for disjoint subsets B,C of V. Note that
this differs from M(Gpuc)® = {fic(-]") | () € M(Gpuc)}, insofar as M(Gpuc) denotes
a graphical model corresponding to the graph Gp,c whereas M(G)pyc is the family of
marginal distributions of a graphical model corresponding to the graph G. This difference
is essential for the following argumentation. Within the scope of graphical models, the
idea of a cut is used in a slightly modified way. For a partition A, B, and C of V the
statistic T'(z) = zauc is said to be a cut in M(G) if the following three conditions hold:

(i) M(Q)AUC - M(QAUC);
(ii) M(G)" = M(Gpuc)®,

(iii) M(G) = M(Gauc) X M(Gpuc)©.



This definition of a cut is more restrictive than the one of Barndorff-Nielsen described
above as two closure properties are called for besides the factorization criterion which
shows up again in condition (iii). These additional properties (i) and (ii) guarantee
that the factors of the product space are related to graphical models corresponding to
subgraphs. For instance, condition (i) equals the so—called collapsibility of graphical
models onto the set AU C (cf. Frydenberg and Lauritzen, 1989) and describes that the
family of marginal distributions M (G)auc of a graphical model M(G) coincides with the
graphical model M(G4uc) related with the subgraph Gayc of G.

Under the assumption A L B | C, the inclusion M(G) € M(Gauc) X M(Gpuc)® which
is part of condition (iii) follows directly from the well-known factorization of the joint

density combined with (i) and (ii):
M(G) € M(G)aue x M(G)" = M(Gaue) x M(Gnuc)®. (4.3)

The opposite direction, i.e.

M(Gaue) X M(Gpuc)® € M(G). (4.4)

is in general more difficult to prove. For this purpose, it has to be shown that for ar-
bitrary density functions gauc(-) € M(Gaue) and hpe() € M(Gpuc)© the product
gavc(xa, vc)hpc(vplre) is in M(G). In contrast to the above inclusion, this crucially
depends on the properties of the underlying multivariate distribution especially on its
factorization properties with respect to the parameter vector. That means, it must be
checked whether the density of the assumed distribution fulfills the stated Condition (4.4)
or not.

For a vector X = Xy of random variables let zi,,... 2% be an independent sample
and P a family of distributions P on Xy with density functions f(-). Then, denote
L(f) =TI}, f(al,) for all f(-) € P the likelihood function of f(-) and f the ML estimation
in the set P based on the sample zl,, ..., 2% if L(f) > L(f) for all f(-) € P.

Let xi,,..., 2% with = (2))iey = (x{,,xi,) for j = 1,...,n be an independent
sample of Xy. For A C V this yields the sample z!,... 2% of X4 with 2/, = (2])ica.
Then

e f denotes the ML estimation in M(G) based on the sample z{,, ..., z},

e f4 denotes the ML estimation in M(G)4 based on 2, ..., 2%,
. f[A] denotes the ML estimation in M(G,) based on z!,,... 2.
In addition, let B and C be disjoint subsets of V and x} ¢, ..., 2% ¢ the corresponding

sample of X g ¢, then



e fisjc) denotes the ML estimation in M(Gpue )€ based on the sample z s - . ., T ¢,

e fpic denotes the ML estimation in (M(G)puc)C based on the sample
Thucs - Thuc-

Using the concept of a cut we derive the following general result for ML estimation in
graphical models. The idea goes back to Frydenberg and Lauritzen (1989) for the case
of graphical models with CG distribution. This can, however, be extended by a slight
modification to more general situations.

Let G = (V, E) be a graph and A, B, and C' a partition of V. Assume further that z ¢
is a cut in M(G) and z¢ is a cut in M(Gpuc). According to Barndorff-Nielsen (1978,
p. 50) the ML estimation factorizes as f = fAUCfB|AuC, whenever the corresponding
distribution families satisfy the relation M(G) = M(G)auc X M(G)AYC. This is proven
by inserting conditions (i) and (ii) of the above definition of a cut into (iii). Additionally,
assumption (i) yields fAUC = f[AUC and from (ii) we get fB\AUC = f[B\C It follows that
f f AUC f[B|C] holds which implies that f exists whenever the factors f Auc) and f [B|C]
exist. Analogously, we get fBUC f[ ]f[B|C] applying the same arguments to the statistic

c. Thus, the final result reads as

fo f[AUCJ [BUC] (4.5)

and we conclude that f exists whenever f[Auc], f[BUC}, and f[c] exist.

Summarizing, the above results allow the following interpretation. The maximization
of the likelihood for the entire model M(G) can be reduced to the maximization of the
likelihood functions of the models M(Gpuc)” and M(Gauc). The latter is, as far as
M(G) is collapsible onto A U C' a graphical model corresponding to a subgraph of G.
Now it still remains to find conditions for z4,c and z¢ to be cuts in M(G) and in
M(Gpuc), respectively. As mentioned above, these strongly depend on the type of the
underlying distribution family. The solution to this problem can be found into Frydenberg
and Lauritzen (1989) for the case of CG distribution. In the next section, this problem is
discussed for the family of KS distributions.

The investigation of properties of graphical models with CG or multivariate normal distri-
butions is often driven by exploiting the properties of the exponential family. The concept
of a cut can be applied in this framework in a natural way because of the analytic struc-
ture of the density of these distributions. The family of KS distributions does not belong
to the exponential family and is characterized by a multiplicative and clear structure of
the cdf but not of the density. From this, two conclusions have to be drawn: A general
solution to the above problem is not available because of the connection of the associa-

tion parameters involved, i.e. a solution can only be found in special cases. The second
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point is that the proof of a possible decomposition will need other arguments than that
which are applied in Frydenberg and Lauritzen (1989). It will be shown that in analogy
to the well-known factorization of the joint density into a marginal and a conditional
density which is used in the proof mentioned above a factorization of the cdf holds for KS

distributions.

5 ML estimation in graphical models with KS distri-

bution

In the original definition of the family of KS distributions the cdf is given by the parameters
ar (I € I) and oy (i € V) with a;1 = Yjeperr < 0o. Therefore, it is also possible
to define the distribution via the parameters a; and ;1. We now restrict ourselves to a
subfamily of the family of KS distributions (KS), denoted by KS* distributions, given by
the restriction that the values o, are fixed for alli € V: KS D KST ={P € K8 | oy =
k; for all i € V}. Correspondingly, we write XS (G) for the graphical model with KS*
distribution. It is easily seen that the above properties, especially the collapsibility onto
a subset A C V| hold for these submodels. Again XST(G)4 = {fa(-) | f(-) € KST(G)}
denotes the family of marginal distributions of a graphical model KS™(G) and KST(G)* =
{finaa]) | f(-) € K§*(G)} the family of conditional distributions of XS¥(G) given X 4.
As mentioned above, the density of a KS distribution is not easy to handle and there-
fore, the analysis of factorization properties fails in the simplest cases using only density
functions. Here, a factorization formula for the cdf is shown which can be used to derive
the conditions for a decomposition of the ML estimatiom indirectly via cdf’s instead of
densities.

In the following, some properties of the cdf of a KS distribution including the factorization
property are introduced. Then, the conditions for the decomposition of the ML estimation
is discussed for the special case of KS(2)" distributions. These distributions are given by
the restriction that all parameters «; equal zero for |I| > 2 (Caputo, 1998a). Subsequently,

the results are generalized to the case of KS* distributions.

5.1 Factorization properties
For a partition A, B, and C of V with A L B | C the general factorization of the density

f(x) = faubuc(a, 2B, 2¢) = favc(Ta,2c) fBlavc(TBlTa, 20) (5.6)
may be written as

f(@) = favc(@a, zc) foic(plc) = fauc(wa,70)fpuc(s, 7c) (5.7)
fe(ze)




for all z € IR? with fo(xc) # 0. In the theory of graphical models, this formula is basically
needed to show a possible decomposition of the ML estimation provided the assumption
A 1 B| C is fulfilled. From Theorem 2.16 (Caputo, 1998a) it can be directly concluded

that
Fauc(xa, xc)Fpuc(p, ©c)

Fe(xc)
holds for the cdf of a KS distribution in the special case of conditional independence. In

(5.8)

F(z) = Faupuc(ra, 28, 2¢) =

addition to the factorization of the joint cdf into marginal cdf’s, it is possible to show that
the joint cdf decomposes into a product of marginal and conditional cdf’s analogously to
the well-known result for density functions. To derive this result, the following proposition

is needed.

Proposition 5.1 Let X = Xy be a vector of random variables and assume that A 1 B |
C' holds for a partition A, B, and C of V.. Then we have for all x € IRP with Fo(x¢) # 0:

{%FAUC(QTAa 330)} fe(ze) _ {%FBUC(mB; JEC)} fe(ze)

fac@a o) Fo(we)  feoclmao)Folze) - (5.9)

Proof:
From A 1 B | C' it follows that (5.7) holds and with Equation (5.8) the joint density f(x)
can be written as

83
= —  F
f(z) fauBuc(za,zB,2c) = 901005000 wuBuc(Ta, 2B, TC)
_ o3 Fauc(za,zc)Fpuc(zp, zc)
8$A8$Ba$c Fo(ze)

0
F2($C 8:1:A8:1:B< Ozc

Fauc fEAafEC)FBUC(xBafEC)} Fo(zc)

—FAUC(:L' :Ec)FBuc(wB,fEC)fc(wc)>

0
F2 (:1:0 836A8:EB ({axc

+Fauc(za,zc) {

Fauc IEA,IEC)} Fpuc(zp,zc)Fo(zc)

0

%FBUC@B#EC)} Fo(zo)

—Fauc(za,zc)Fpuc (2B, fEc)fc(fEc))

1 0 0 0
— F —F F
F2(wc) o <{8xc AUC($A7$C)} {8:53 BuC(ﬂJB,ﬂEc)} c(zc)

+Fauc(za,zc) fBuc(zr, zc)Fo(ze)

—Fauc(za,zc) { %FBUC(xBa wc)} fc(xc)>

0
= FZ(zc) (fAUC(fEA,iUC) {%FBUC(xB,IIIC)}FC(xc)



+ {%FAUC(%% 330)} fBuc(zB,zc)Fo(zc)

- {%FAUC($A7$0)} {%FBUC($37$C)} fC(ﬂﬂC))

favc(za,zc) fBuc(zB, xc)
fe(zc)
{amBFBUC($B7$C)} fe(ze) {%FAuc(ﬂﬂA,ﬂﬂc)}fc(ﬂEc)
( feuc(xB,xc)Fo(oc) " fave(@a,zc)Fo(zc)

{amAFAUC :EA,wc)} FBUC xB,xc)}f%(xc)>

fauvc(za, fEc)fBu (zB,zc)FE(zc)

Using the abbreviations

_ {awAFAUC(l'A;.’L'C)} fo(ze) - {%FBUC(QUB,JUC)} fo(ze)

fave(@a, ze)Fe(ze) fouc(zp, zc)Fo(ze)

it follows that a +b —ab = 1 or that (1 — a)(1 — b) = 0 which is fulfilled for a = 1 or
b = 1. Since the two factors ¢ and b have an identical structure it can be concluded that
a=b=1. O

From Equation (5.9) it is easily seen that

feuc(xm, v0) o %FBUC(«TB; Tc)
fe(ze) Fe(ze)

fB\C($B|$C)

Therefore, we have

B

TB )
5o Fuc(u, z¢) Fpuc(rp, xc)
F -/ du= [ 2 du = ~BUCE 2C)
molesire) = | melule)du= | g ey ™= T Folwo)

Together with Equation (5.8), this result leads immediatly to a factorization formula
which is dual to Equation (5.6) for the case that A L B | C holds:

F(l‘) = FAUC(l‘A;mC)FB\C(mB|$C)- (510)

5.2 The case of KS(2) distributions

The following lemma formulates a proposition similar to Equation 5.8. But here, the cdf’s
involved need not fit together in the sense that they need not stem from the same joint
cdf.

Lemma 5.2 Let G = (V, E) be a graph and A, B C V such that C = V'\ (AUB) separates
A and B. Let further be Gauc(-) € KS(2)T(Gaue) with parameters a;; fori,j € AUC
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and Hp,o(r) € KS(2)T(Gpuc) with parameters Py for k,l € B U C arbitrarily chosen.
Denote with Hc(-) the marginal cdf of the distribution of X¢ derived from the joint cdf
Hpuo(+). Then, it holds that

Gase()Hpocl)
He(')

i.e. F(-) is the cdf of a KS(2)" distribution which fulfills the Markov properties of G.

F() € K§(2)7(9),

Proof:

Let V ={1,...,p}such that A={1,...,m},C ={m+1,...,n},and B = {n+1,...,p}.
From the definition of the KS distribution and the structure of the marginal cdf (Caputo,
1998a) it follows that

i1 Fi() Tz, H?:i-i—l Cij (z) Hg:m—i—l F(z) Hg:m-l—l Hf:kﬂ Ckl(f)fﬁkl

F(x) =
(@) izt Fr(2r) Mz g cra(@) P

p n p p p

— H J"Z H H CZ] —Qij H H Ckl(l‘)_ﬂkl H H CTS(:L‘)_BTS
=1 i=1j5=1+1 k=m+1Il=n-+1 r=n+1 s=r+1
p

= 11 i(fﬂz‘)H H cij ()™
i=1 i=1 j=i+1

With’%j:Oéij (i,jGAUC,?;<j),7ij:0(i€A,jEB),’yij:ﬁij (iEC,jEB),
and v;; = Bi; (i,j € B,i < j). Therefore, F(-) is the cdf of a KS(2)* distribution with
Al B]|C. O

With this lemma one of the main propositions of this paper can be proved which is

formulated in the following theorem.

Theorem 5.3 For a graph G = (V, E) and disjoint subsets A and B of V which are
separated by the set C =V \ (AU B) it holds that

(i) K8(2)*(G)avc = K8(2)*(Gauc),

(ii) KS(2)*(G)" = KS(2)*(Fpue)®,
(iii) KS(2)*(G) = KS(2)*(Gaue) x KS(2)*(Gpuc)®,
i.e. wavc is a cut in KS(2)*(G).

Proof:

Statement (i) is a direct consequence from the collapsibility of graphical models with KS
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distribution (Caputo, 1998b). Since the property (i) is also valid if A is replaced by B it
holds that

KS@)H(G)" = {fpavc(]) [ F() € KS(2)7(9)}
= {fpcCl) [ () € KS(2)T(9)puct
= {focC) | f() € KS(2)(Gpuc)} = KS(2)" (Gruc)”

which yields (ii).
As described in Section 4 the assumption A L B | C leads directly to £S(2)"(G) C
KS(2)T(Gaue) x KS(2)T(Gpuc)® whereas the opposite direction, i.e. KS(2)T(Gaue) X
KS(2)*(Gpue)® € KS(2)1(G) is the more difficult part. It has to be shown that for
arbitrary density functions gauc(-) € KS(2)*(Gaue) and hgc(-) € KS(2)T(Gpuc)C the
product gauc (24, zc)hpjc(vp|re) is an element of KS(2)*(G) which depends on the fac-
torization properties of the underlying multivariate distribution. Let Gayc(+) denote the
cdf of gauc(+) and for
hpuc(zp, zc)

he(ze)
with hpuc(-) € M(Gpuc) and marginal density he(-) € M(Gpuc)e, let Hpuo(+) and
Hc(-) denote the corresponding cdf’s. The general idea is to show that

hB\c($B|$C) =

Gauc(za,zc)Hpuo(vp, x0)
Hc(mc)

is the cdf of gauc (24, zc)hpjc(xp|2c), i.e. that f(-) € M(G) is equivalent to F'(-) € M(G).
Therefore, define H*(z) as

= Gauvc(za, v0)Hpjo(rp|70) = F(2)

H*(x) = Hpue(xpuc) [ Fi(w:)

i€ A
with corresponding density function h*(-). Then, it trivially holds that H*(-) € M(G).
Since A L B | C is assumed to hold for all elements of M(G), Lemma 5.1 yields

{%HEUC(JUB,JUC)} he(zc) B {%HBUC(*TB;*TC)} he(ze)

1= =
hpoc(xp,vo)He(ze) hpue(zp, xc)He(zc)

In analogy to the proof of Lemma 5.1, the density f(-) of F'(-) can be derived as

EF(@ _ 9’ Gavc(a, vo)Hpue (v, 10)
ox 835A8x36xc Hc(l‘c)
gavc(za, ze)hpuc(Tp, x¢)
he(ze)
{LHBUC(Z'B wc)}hc(wc) {LGAUC(CUA xc)}hc(ﬂcc)
< oxrp ’ + ox A ’
hBuc(flfB;ﬂUc)Hc(fEc) gAuc(JUA,JUc)HC(fEC)
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{%HBUC(.IB, xc)} he(zc) {%GAUc(l‘A, xc)} hc(xc)>
hBuc(flfB;ﬂUc)Hc(fEc) gAuc(JUA,JCC)HC(JUc)
Ta,xc)h rg,T
_ gAUC( A C) BUC( B C) :gAUC(:L‘Aa*rC)hB|C(:L‘B|xC) :f(l')
he(zc)
This implies that the condition f(z) = gauc(-)hpic(-]-) € M(G) is equivalent to F(-) =
Gauc(-)Hpe(:|") € M(G) and it follows that

KS(2)*(Gave) x KS(2)"(Grue)® € KS(2)7(9). O

As described in Section 4 the decomposition of the ML estimation is carried out in two

steps. This is done applying Theorem 5.3 twice.

Theorem 5.4 Let G = (V, E) be a graph and A, B subsets of V which are separated by
the set C =V \ (AU B). Then, it holds that x¢ is a cut in KS(2)"(Gpuc).

Proof:
In the subgraph Gpuc the set C separates () and B. Thus, Theorem 5.3 can be applied
and it follows that x¢ is a cut in KS(2)"(Gpue)- O

Next, the above results are illustrated by a simple example before discussing the case of

general KS™ distributions.

5.3 A simple example

Consider a graphical model with KS(2) distribution given by the graph G = (V, F) with
V ={1,2,3} and E ={(1,2),(2,1),(2,3),(3,2) }:

*----&----®
1 2 3

Here, the sets of vertices A = {1} and B = {3} are separated by C = {2}. Thus,
for the corresponding vector X = (X7, Xo, X3) of random variables with marginal cdf’s
Fi(+), F5(+), and F3(-) it holds that X; L X3 and X; L X3 | Xy, i.e. X; and X3 are
marginally independent and conditionally independent given X5. The KS distribution of
X is characterized by the fact that a;3 = 0. The graphical model £S(2)(G) is then given
by the family of KS distributions with the five parameters «y, as, a3, aqs, and g3 — or

using the alternative parameterization by o, sy, a3y, aqo, and ass.
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For fixed values oy, an 1, and a3y we get the graphical model KS(2)*(G) with parameters
a9 and ags. From Theorem 5.3 it can be concluded that z 4,0 = (21, xQ)T is a cut in this
model which yields that

fo f[AUC}A' BUC] _ f[{1,2}1 ey (5.11)
fiel fie2n

The graphical models KS(2)"(Gy1,91) and KS(2)"(Gya,3)) are families of KS(2)* distribu-
tions with one parameter oy, and s, respectively. The family K£S(2)*(Gyz)) consists of
one single element: the marginal distribution F5(-) of X5. That means that the estimation
of the parameters a and g3 in the original model S(2)*(G) reduces to the estimation

of ayz in the model KS(2)(Gy1,93) and a3 in K£S(2)*(Gro31).
The corresponding graphs of these models are given by the following subgraphs of G:

1 2 2 3 2
- -——-o - -——-o °
G1,2) G(2.3) G2}

5.4 Generalization to KS distributions

The inspection of the procedure which solves the decomposition problem for the case of
KS(2)* distributions shows that only at one point the restriction to KS(2)" distributions
is required: when Lemma 5.2 is called for. Thus, the search for the conditions for the
decomposition of the ML estimation for the more general case of KST distributions should
focus on a proposition generalizing this lemma. In the proof it is taken advantage of
the fact that all factors which appear in Ho(+) also appear in Hpyc(-) and thus, can
be cancelled down. This property follows from the special structure of marginal KS
distributions (Caputo, 1998a). For general KS* distributions factors can occur in the
marginal cdf which have not been there in the joint cdf. This phenomenon strongly
depends on the association structure of the components of the vector Xpyc, i.e. on the
edges within vertices in BUC'. In the following it will be discussed for which constellations

of edges in Gp,¢ the spurious factors do not occur.

Definition 5.5 Consider a graph G = (V, E) and disjoint subsets B, C of V.. The set
J(B,C)={JC(bdB)nC)u (d(C)NB) | JNB#0,JNC # 0}

1s called border of B and C.

Example 5.6 For the graph G = (V, E):
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consider the disjoint sets A = {1}, B = {4,5}, and C = {2,3}. Thus, bd(B) = {2,3}

and bd(C) = {1,4,5}. The border of B and C is then given as

J(B,C) = {JC({2,3}n{2,31)U({1,4,5}n{4,5}) | JN{4,5} #0BAJTN{2,3} # 0}
= {JC({2,3,4,5} | Jn{4,5} ADATN{2,3} £ 0}
= {{2,4},{2,5},{3,4},{3,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{2,3,4,5} }.

By means of that term the decomposition of a graph can be defined.

Definition 5.7 Let G = (V, E) be a graph and A, B, and C a partition of V.. Whenever
(i) C separates A and B and
(i1) all sets J € J(B,C) with |JNC|>1 and |J| > 2 are not complete,

the sets A, B, and C are called KS™ decomposition of G.

Note, that the sets A and B play a different role in the above definition. In the following,

an example and a counter—example is given.

Example 5.8 Recall Example 5.6. The sets A, B, and C do not build a KST decompo-
sition of G. The set {2,3,4} € J(B,C) is complete and it holds that |{2,3,4} N C| =
{2,3}| =2>1 and |{2,3,4}| =3 > 2.

Consider in contrast the graph

2 4

» o

| |

| |

~ | |
| |
L 3 ®

3 5)

Here, A= {1}, B={4,5}, and C = {2,3} are a KS* decomposition of V.
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Now, we are almost ready to formulate the following lemma in analogy to Lemma 5.2 and
the final theorem which is proven by replacing Lemma 5.2 by Lemma 5.9 in the proofs
of Theorem 5.3 and Theorem 5.4. But first, we have to introduce some more notations.
For disjoint proper subsets A, B, and C of V let A, B, and C denote the corresponding
powersets. We define Z4, =7 = {I € V with |I| > 2} and the sets Zp, and Z; analogously.
In addition, let AB = {I C (AUB)|INA# 0 and INB # 0} and define in the same way
AC, BC and ABC. To each of these sets Zy4, ..., Zanc and Zap,,, -- -, Lapc  are built as

above.

Lemma 5.9 Let G = (V, E) be a graph and A, B, and C a KS* decomposition of V. Let
further be

Gauc(r) € KS8T(Gaue) with parameters «; for 1€ I4UZeUZLye
and  Hpuc(r) € KS8T(Gpuc) with parameters By for J &€ IgUZeUIpe.

Denote He(+) the marginal cdf derived from Hpyc(-). Then, it holds that

G aue(-)Hpuc(+)

o =) €KSHG)

Proof:
A, B, and C are a KST decomposition. Thus, 8; = 0 for all J € Zgc with |J| > 2. From
Theorem 2.2 in Caputo (1998a) it can be concluded that

He(we) = [ Filw) [ es(x)™
jec JELe
which yields that F(-) is the cdf of a KS™ distribution with parameters v; = «a; for
I e T4UZ ULy, Yr = B[ for I € Ip UZgc, and vr =0 for I € Tas UL anc. The condition
A 1 B | C is obviously fulfilled which leads to F(-) € KST(G). O

Theorem 5.10 Let now G = (V, E) be a graph and A, B,C a KS™ decomposition of G.
Then, xauc is a cut in KST(G) and x¢ is a cut in KST(Gpuce).

5.5 Discussion

The investigations have shown that the connection between graph theory and the family
of KS distributions can be useful in different ways. As discussed in Caputo (1998b) the
introduction of graphical models with KS distribution allow a visualization and inter-
pretation of the dependence structure of the variables involved and therefore, a better

understanding of the association structure. In addition, the interplay can be exploited
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to conclude from a separation in the graph to a possible simplification of the estima-
tion problem which playes an important role whenever a larger number of variables is
considered and a complex association structure between them is supposed.

One remaining question is how restrictive the assumptions are which have to be made to
obtain the decomposition. The restriction to KS* distributions is of course heavy. On
the other hand, the family of KS distributions is huge and perhaps a subfamily such as
the KS* distributions may be sufficient for some practical problems.

Another aspect is the possible use of the decomposition within the scope of a two—stage
estimation algorithm where in one step the parameters o;, are plugged in as fixed values.
This idea was implemented and tested with simulated data for some simple cases which
showed that the decomposition reduces the computing time remarkably.

By comparison with the results derived for the case of CG distributions (Frydenberg and
Lauritzen, 1989) it has to be stated that although the outcome for CG distributions appear
to be more elegant and useful the restrictions are also rather restrictive. In conclusion
it has been shown that the main properties known for the multivariate normal case or
for the CG distributions similarly hold for graphical models with KS distribution. Thus,

further research on this subject seems sensible and rewarding.
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