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Abstract

An interesting epidemiological problem is the analysis of geographical variation in rates

of disease incidence or mortality� One goal of such an analysis is to detect clusters of

elevated �or lowered� risk in order to identify unknown risk factors regarding the disease�

We propose a nonparametric Bayesian approach for the detection of such clusters based

on Green�s ����	� reversible jump MCMC methodology� The prior model assumes that

geographical regions can be combined in clusters with constant relative risk within a

cluster� The number of clusters
 the location of the clusters and the risk within each

cluster is unknown� This speci�cation can be seen as a change�point problem of variable

dimension in irregular
 discrete space� We illustrate our method through an analysis

of oral cavity cancer mortality rates in Germany and compare the results with those

obtained by the commonly used Bayesian disease mapping method of Besag
 York and

Molli
e �������

Key words� Cancer atlas� Clustering� Disease mapping� Oral cavity cancer� Relative risk�

Reversible jump MCMC�

� Introduction

Statistical methods for analyzing data on disease incidence or mortality over a set of con�

tiguous geographical regions have gained increasing interest in the last decade� It is still

very common in disease mapping to display the standard mortality ratio �SMR�� the ratio

of observed cases y over expected cases e� for each region either on a relative or an absolute

scale� However� these maps can be seriously misleading because the SMR�s tend to be far

more extreme in less populated regions� especially for rare diseases� Hence� regions with the

least reliable data will typically draw the main visual attention� For a thorough discussion

of this issue see Clayton and Bernardinelli ��		
��
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As an example consider Figure �� which displays the geographical variation of the stan�

dard mortality ratios for males and oral cavity cancer� �	��
�		�� in all ��� districts of

Germany� This dataset will be analyzed later in Section �� The SMR�s vary between ����

and 
��� with a standard deviation of the log SMR�s of ������ However� the variation of the

SMR�s is reduced if we only consider highly populated regions� For example� a subsample of

regions with more than �� expected cases has a minimal SMR of ���� and a maximal SMR

of ���	� The standard deviation of the log SMR�s is now ��
��� indicating that the SMR�s

tend to be more extreme in less populated regions� but this conclusion is drawn under the

assumption of constant risk in the whole of Germany�

Indeed� an unknown part of the variation of the SMR�s may be caused by geographically

varying unobserved risk factors� For example� in Figure � there seem to be areas of higher

risk in the north
east and in some parts of the south� especially towards the west� but a

naive visual inspection can be seriously misleading and no general conclusion can be drawn

from such a map� Therefore� so
called disease mapping methods have been developed to

give more reliable estimates of the geographical variation of disease risk� The general goal

is to identify the extra
sample variation due to unobserved heterogeneity by �ltering the

Poisson sample variation�

A well�known method is the empirical Bayes approach of Clayton and Kaldor ��	����

Roughly speaking� this method shrinks the SMR�s towards a local or a global mean where

the amount of shrinkage is determined by the reliability of the data of that particular region�

The two smoothing options �local� or �global� seem to be appropriate if unobserved risk

factors do or do not have a spatial structure� respectively� However� one of the major goals of

disease maps is to identify unobserved risk factors through the geographical variation of the

disease so the spatial distribution of those unobserved factors is not known in advance� This

led Besag� York and Molli�e ��		�� to generalize the Clayton and Kaldor method allowing






for both spatially structured and unstructured heterogeneity in one model� which was later

called the convolution model by Molli�e ��		���

The detection of clusters in diseases is� at �rst sight� a separate problem� Here the

goal is to identify clusters of geographically contiguous regions with elevated �or lowered�

risk� Disease clusters may occur not only for infectious diseases� but also for non�infectious

diseases� where risk factors do have a spatial structure� In addition one might also be

interested in detecting discontinuities in the map� i�e� suspicious di�erences in relative risk

between adjacent regions� However� results from the convolution model are often used to

visually identify disease clusters� if the estimated risks exhibit a spatial pattern �e�g� Besag�

York and Molli�e� �		�� Molli�e� �		��� In these cases� the Markov random �eld �MRF�

term� which represents spatially structured heterogeneity� is dominating and the SMR�s are

essentially spatially smoothed� For that reason� Clayton and Bernardinelli ��		
� denote the

MRF term the �clustering component��

This paper describes a new approach for the detection of clusters in disease maps� Tech�

nically� the method is based on reversible jump MCMC methodology �Green� �		�� and is

related to the segmentation of a spatial signal� already tackled in Green� His work has been

re�ned by Arjas and Heikkinen ��		�� and Heikkinen and Arjas ��		�� who use piecewise

constant step functions de�ned through marked point processes in continuous space� How�

ever� in our application space is discrete and irregular� which calls for several changes of the

model and the methodology� Basically our prior model assumes that the area considered

can be divided into several clusters� i�e� sets of contiguous regions� where each cluster has

constant relative risk� The number� the size and the location of the clusters� as well as the

risk within each cluster� are unknown� Risks in di�erent clusters are assumed to be indepen�

dent of each other� The model is therefore able to detect spatial discontinuities� Clusters

of size one are not excluded from our model which implies that the model does necessarily
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smooth the SMR�s� In practice it will always do so� at least to some extend� since there will

always be some uncertainty whether a region forms a cluster by itself� However� the sizes of

the clusters� which imply the local degree of smoothing� are variable and determined by the

data� hence the smoothing is adaptive� This is in sharp contrast to MRF priors� where the

corresponding smoothing parameter is constant and smoothing is non�adaptive�

The method is related to that of Schlattmann and B�ohning ��		��� who use mixture

models within an empirical Bayes framework where each region is assigned to a component

of the mixture distribution with constant relative risk� The location of the regions is� however�

ignored so that members of a mixture component may be spread over the whole area� In our

approach� regions are assigned to clusters with constant risk� too� but all regions in a cluster

must be linked� To include location in the model we propose a construction where some

regions are marked as so
called cluster centers� each of them de�ning a cluster� Each of the

remaining regions is assigned to the cluster whose cluster center has minimal distance to the

region� The distance between two regions is de�ned as the minimal number of boundaries

that have to be crossed to move from one to the other� The construction can be seen as

a modi�cation of Voronoi tessellations �see Green� �		�� in discrete� irregular space and

ensures that all regions within a cluster are linked�

The output of the algorithm is very rich and can be used for Bayesian inference in several

ways� First� the point estimates �mean or median� of the risk of each region incorporate all

the posterior uncertainty about the number� the location and the risk level of the clusters�

Since all these are variable� the posterior mean estimate will be an average over a large

number of piecewise constant step functions and can be seen as essentially nonparametric

�Arjas� �		�� Heikkinen and Arjas� �		��� A similar argument holds for all other functionals

of the posterior as well� for example for the posterior median� Second� the method provides

a large amount of additional probabilistic information� For example� we can calculate the
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probability that two or more regions belong to the same cluster� This is especially inter�

esting for two adjacent regions where it gives an intuitive quanti�cation for the location of

discontinuities as will be illustrated in our application�

The paper is organized as follows� Section 
 describes our model and gives some features

of the implementation by reversible jump MCMC� More details of the sampler are given in

the Appendix� Section � presents results from an analysis of oral cavity cancer mortality

rates of males in Germany� shown in Figure �� We investigate the location of the clusters and

discontinuities which have been identi�ed by our method� We also compare our estimates

with those obtained by the method of Besag et al� ��		��� We close with several comments

on alternative model speci�cations and possible extensions in Section ��

� The model

Suppose that data are available in the form of pairs in each of a set of n regions i � �� � � � � n

giving the number of cases yi of the disease and the number of expected cases ei� usually

calculated by internal or external standardization with respect to confounding variables�

The general idea is that the relative risk is constant over a set of one or more contiguous

regions� This de�nes a cluster Cj � f�� � � � � ng� a set of contiguous regions with constant
relative risk hj� The number of clusters k is treated as unknown with k � f�� � � � � ng� Our
cluster de�nition implies that the clusters C�� � � � � Ck cover the whole area and that they

do not overlap� so C� � � � � � Ck � f�� � � � � ng� Note that in the limiting case k � � there
is constant relative risk over the whole area whereas for k � n not even two �contiguous�

regions have the same relative risk�

We postulate the usual Poisson observation model �e�g� Clayton and Bernardinelli� �		
��

where yi has Poisson distribution with mean eihj and hj is the unknown relative risk in cluster
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j with i � Cj� Responses yi� i � �� � � � � n� are assumed to be conditionally independent given

Hk � �h�� � � � � hk� so the likelihood function of responses y � �y�� � � � � yn� can be written as

L�yjHk� �
kY

j��

Y
i�Cj

�eihj�
yi

yi�
exp��eihj��

��� A prior model for clustering

As a �rst step in the de�nition of the clustering model� we mark k regions g�� � � � � gk as cluster

centers� Each cluster center gj � f�� � � � � ng de�nes a cluster Cj with gj � Cj� The vector

of all cluster centers Gk � �g�� � � � � gk� de�nes a cluster con�guration� i�e� an assignment

of all regions to one and only one of the clusters� For that purpose� we de�ne a measure

of distance d�i�� i�� between two regions i� and i� as the minimal number of boundaries

that have to be crossed for moving from i� to i�� This distance measure can be computed

from the information if any two regions are adjacent or not� which is usually given in a so


called adjacency matrix� The measure of distance d is used to assign each of the remaining

n � k regions to one of the clusters� Region i �� Gk will be assigned to cluster Cj if it has

minimal distance to the corresponding cluster center gj� i�e� d�i� gj� � d�i� gl� for all l �
f�� � � � � kg� l �� j� However� this de�nition is not yet unique� because some regions may

have the same distance to two or more cluster centers� To ensure uniqueness we assign

those regions to the cluster with the smallest index position of the corresponding cluster

center in Gk among all cluster centers with minimal distance to region i� We therefore keep

Gk non
ordered� otherwise clusters de�ned by cluster centers gi with gi small would tend

to be larger in size than those with gi large� For example� in our formulation a cluster

con�guration de�ned by a cluster center vector G� � ��� 
� will in general be di�erent from

another one de�ned by �G� � �
� ��� Note� that the cluster centers only serve to specify a

cluster con�guration� they do not have any direct in�uence on the estimates of the relative

risks�
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To illustrate the �exibility of the clustering model� Figure 
 gives a cluster con�guration

of the ��� districts of Germany with k � 
�� The cluster centers are marked with numbers

� to 
�� the corresponding index positions in Gk� Note that the clusters di�er considerably

in size and shape� Furthermore it can be seen that� indeed� all regions within each cluster

are linked� It is� however� not immediately obvious that this is true in general� Now suppose

there is a cluster Cj which breaks down into two or more parts� which are not linked together�

Then there must be a region i� � Cj with some distance m to the cluster center gj and a

neighbor i� of i� with i� � Ck� k �� j� and distance m� � to gj� Otherwise all regions within
Cj must be connected� Because i� is a neighbor of i� it follows� however� that i� must be in

Ck and not in Cj which is contradictory to the assumption above and proves our claim�

We now specify a prior distribution for the number of clusters k� the vector of cluster

centers Gk and for the vector of relative risks Hk� We assume that the prior for the number of

clusters Pr�k�� k � �� � � � � n� is proportional to ���c�k with a �xed parameter c � ��� ��� The
limiting case c � � gives a uniform distribution on f�� � � � � ng� whereas c � � corresponds to a
truncated geometric distribution� This choice implies that the prior ratio Pr�k����Pr�k� �

��� c�� which penalizes jumps from k to k � �� is constant for all k� We typically use small

values for c so as to make the prior Pr�k� close to �uninformative�� Other choices might be

more appropriate but� as Richardson and Green ��		�� have noted� results with any prior for

k can be converted to those corresponding to other priors without rerunning the algorithm�

For a given number of clusters k we assume that each vector of cluster centers Gk �

�g�� � � � � gk� has equal probability

Pr�Gkjk� � �n� k��

n�
� ���

One could also introduce weights that take account of speci�c features so as to support

con�gurations with homogeneous cluster sizes or boundary lengths� for example�
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We have made extensive simulations from the prior distribution Pr�Gkjk� � Pr�k� de�
scribed above� For example� for each region� we have calculated the average size of the

cluster the region is assigned to� Figure � shows the results for c � ���
� grouping the

regions according to the number of adjacent regions� The in�uence of the number of adja�

cent regions on the average size of the cluster appears to be minimal� Hence� the degree of

smoothing is approximately the same for all regions� a priori� This is in contrast to MRF

priors� where there is dependence of the smoothing parameter �the marginal variance� on

the number of adjacent areas� see Bernardinelli� Clayton and Montomoli ��		�a�� We have

also calculated the prior probability for each region to form a cluster by itself as well as

the probability for being together with a neighbor� These probabilities have some varia�

tion� depending mainly on the number of neighbors� In Section �� we therefore report the

corresponding posterior probabilities together with the prior probabilities�

As a prior guess for the relative risks Hk � �h�� � � � � hk� it seems natural to assume

that they are symmetrically distributed on the log scale� We therefore adopt a normal

distribution for log�hj�� j � �� � � � � k� with unknown hyperparameters � and ��� For �� we

assume a di�use prior �uniform on the whole real line� and for �� a highly dispersed but

proper inverse gamma distribution IG�a� b� with �xed parameters a and b� Independence of

components of Hk yields

p�Hkjk� �� ��� �
�

�p

��

�k �� kY
j��

�

hj

�
A exp

�
�� �


��

kX
j��

flog�hj�� �g�
	

 � �
�

Conditional independence of Hk and Gk given k de�nes the prior for the unknown pa�

rameters k� Gk� Hk� � and �� as the product of the prior for k times ��� times �
� times the

hyperpriors p��� and p�����

�



��� Implementing reversible jump MCMC

This section gives an informal description of some features of our reversible jump MCMC im�

plementation for sampling from the posterior distribution� In each iteration of the algorithm

one of the following six moves is proposed�

Birth� The number of clusters is increased by introducing an additional cluster center�

Death� The number of clusters is decreased by deleting one of the cluster centers�

Shift� One of the cluster centers is moved�

Switch� The positions of two cluster centers in Gk are switched�

Height� The relative risks hj� j � �� � � � � k� are changed�

Hyper� The values of the hyperparameters � and �� are changed�

For a given value of k� each move is proposed with a certain probability� For some values of k

certain moves are not possible� for example a death move for k � �� Each move is accepted as

the new state of the Markov chain with probability determined by the Metropolis
Hastings


Green ratio �Green� �		��� Below we describe some features of our implementation of these

six elementary moves� More details are given in the Appendix� The main reason for choosing

those moves was that they appeared to be straightforward to implement� each of them

maintaining reversibility� We have included the shift and the switch move in the hope of

improved mixing performance� although they seem to be not necessary� In fact� some other

MCMC sampler with di�erent proposals or di�erent moves might be more e cient in terms

of convergence� mixing or computing time but� in our experience� our algorithm gives reliable

results for acceptable run lengths�

Suppose that in the current con�guration k regions are marked as cluster centers� In a

birth move one of the remaining n � k regions is chosen randomly as a new cluster center�

	



The new cluster center g� is placed randomly among all possible k � � positions in the new

vector of cluster centers G�

k��� A value h
� for the relative risk within the new cluster is

inserted at the corresponding position in H�

k��� In a death move from k�� to k� a randomly

selected element of Gk�� is deleted� A sequence of a death and a birth move �or vice versa�

is therefore able to restore the original con�guration� In a shift move� �rst one of the cluster

centers� whose neighbors are not all cluster centers by itself� is picked randomly� This cluster

center gj� say� is then shifted randomly to one of the neighbors that are not already cluster

centers� The order in Gk is not changed� Note that the neighbors do not have to be members

of the original cluster Cj which would in fact destroy the reversibility of the shift move� A

switch move picks out two elements in Gk randomly and switches their position in Gk which

will give a slightly di�erent cluster con�guration if there are distance ties� A height move

proposes new values h�j for all elements hj of Hk� each of them being accepted or rejected

separately� Finally� in a hyper move� values of the hyperparameters � and �� are updated

by samples from the corresponding full conditional distributions�

The performance of the algorithm depends on a number of implementation issues� First�

the several moves should be designed to have acceptance rates not too low� For moves that

involve new values h�� we therefore use a proposal distribution that approximates the corre�

sponding ��xed�dimension� �full conditional� �the prior for h times the relevant likelihood

times a normalizing constant�� This device results generally in very good acceptance rates

for these moves �height� birth and � indirectly � death�� Furthermore� the algorithm is now

automatic� as tuning parameters are not involved� Similar proposals might be useful in

many other applications of reversible jump MCMC� The shift move will have low acceptance

rates� if there is very strong local information in the likelihood� Note� however� that this

move is not necessary for convergence of the algorithm and could� in principle� be omitted

completely�
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A second problem occurs if the posterior is multimodal� This potential problem is inherent

in any more complex MCMC application but seems to be of particular concern for reversible

jump MCMC if only small dimension changing moves are made� If the simulated chain is

trapped in one of the modes� it might be di cult for it to move to some other posterior mode�

located somewhere di�erent and clearly separated by an area of low posterior mass� This

problem might be even more severe for �xed k� since the birth and death moves are known to

improve mixing �Heikkinen and Arjas� �		��� We routinely start several chains with di�erent

starting con�gurations and compare the results� Carefully designed mode jumping moves

might also be useful here but require knowledge of the location of the posterior modes�

� Applications

��� Simulations

To see� how well our method works� we have analyzed several arti�cial datasets� In particular�

we have looked how well our method reconstructs a given risk surface� how sensitive our

results are to the choices for Pr�k� and p����� and how reliable our algorithm works� The

results are generally encouraging and can be found in a supplement paper �Knorr�Held and

Rasser� �			�� Based on these results� we recommend to use small� but positive values for c�

Sensitivity with respect to p���� was found to be small and we recommend to use a � � and

b � ���� as default� Of course� sensitivity to the prior should always be studied�

��� Results for oral cavity cancer mortality in Germany

We now present results from an analysis of oral cavity cancer of males in Germany� The

database records the population size and the number of deaths from oral cavity cancer�
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strati�ed by �� age bands and ��� districts for the period �	��
�		�� The total number

of cases is ������ ranging between � and ��� cases with a median number of �	 cases per

district� The overall mortality rate is ���	 cases per ������� males� We have internally

standardized the raw data with respect to all �� age bands by maximum likelihood and have

calculated the corresponding standard mortality ratios which are shown in Figure ��

To examine sensitivity with respect to Pr�k� and p���� we have used c � ���� ����

and ���
 and �a� b� � ���
�� �����
��� ��� ����� and ��� ���
�� in several combinations� For

�a� b� � ��� ������ for example� there was some sensitivity for k with respect to Pr�k� with

a posterior median of �� �c������ �� �c������ and �� �c����
� compared to a prior median

of 
�
� �	 and ��� respectively� However� di�erences in the log relative risk estimates were

found to be small� Results have been even more stable for di�erent choices for p���� with c

�xed�

In the analysis presented here� we have set a � �� b � ���� and c � ���
� A plot of the

prior and the posterior for k is given in Figure �� The results are based on samples of ������

realizations� collected by saving the current state after every ������th basic update move after

a burn
in period of ���������� We have calculated autocorrelations for the corresponding

relative risk samples in each region� Mixing was good with a median autocorrelation of only

���
 for lag � and a maximum value of ����� For lag � and more all values have been around

zero� The samples of k are shown in Figure �� The acceptance rates were around �
! for

both the birth and the death move� 
�! for a shift� ��! for a switch and 	�! for a change

of height�

The posterior median estimates of the relative risk vary between ���� and ���	� Figure

� displays those estimates on the same scale as in Figure �� Most striking are two large

clusters of elevated relative risk� one in the north
east in Mecklenburg
West Pomerania

with estimates above ��
� the other one in the south
west with estimates above ���� covering
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most parts of Saarland and southern Rhineland
Palatinate along the border to France� In

fact� most parts of southern Germany� excluding southern Bavaria� have an elevated relative

risk above ����

The most important risk factors for oropharyngeal cancers are tobacco smoking and

alcohol abuse �Blot et al�� �		��� The Mecklenburg
West Pomerania cluster is consistent with

this� because this state has the highest per capita alcohol consumption of whole Germany

�Becker and Wahrendorf� �		��� Interestingly� Blot et al� ��		�� note that the east
central

part of France �Bas�Rhin� along the German border has the highest oral and pharyngeal

incidence rate in whole Europe ��	��
�	���� The south
west cluster is exactly adjoining

this area and might therefore continue on the other side of the border�

There are several single regions with conspicuously high risk estimates� compared to their

neighbors� West Berlin �estimated relative risk of ������ Kiel in the very north ������� and

Krefeld in the west ������ all have elevated relative risks� We have calculated the probability

that each of them forms a cluster by itself� The probabilities are ���� for West Berlin� ����

for Kiel and ���� for Krefeld� For comparison� the median probability of all ��� regions is

only ������ The prior probabilities of being alone for these regions are ������ ���� and ���
�

respectively� compared to a median prior probability of ������ This indicates the existence of

unobserved risk factors for these regions� possibly related to a higher degree of urbanization�

An interesting feature of Figure � is that the map strongly retains the border between

former East and West Germany� especially in the south but also for West Berlin� We have

therefore calculated the probability that two regions belong to the same cluster for all �����

pairs of adjacent regions� Figure � compares the distribution of these probabilities for the

former east
west border with all remaining ones by boxplots� To avoid a �state border� bias

we have strati�ed the latter group in two subgroups where adjacent regions do or do not

belong to the same state� respectively� Figure � gives also the corresponding plot for the
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prior probabilities� Di�erences between these subgroups are minimal a priori� however� the

posterior probabilities are lower for the former east�west border� This indicates substantial

di�erences between East and West Germany� either in exposure to relevant risk factors or

simply in data quality� There are several hints that the latter is an important factor �Becker

and Wahrendorf� �		��� One reason for the apparent di�erences might be a lack of quality

control measures in the former Democratic Republic of Germany in the process of identifying

underlying diseases� For example� it might be possible that there is an underreporting of oral

cavity cancer due to a relatively high rate of nonidenti�ed cancers �of other and unspeci�ed

sites�� However� it seems that noncompliance with WHO rules for the identi�cation of

underlying disease is not able to explain the di�erences alone� Other possible reasons are

discussed in detail in Becker and Wahrendorf ��		�� with relevant references�

Figure � displays the estimated median relative risks of this dataset by the method of

Besag et al� ��		�� with a Gaussian intrinsic prior for the spatial component� The estimates

show slightly more variation with values between ���� and ����� The similarities between

Figure � and Figure � are noticeable and relieving� although there are some apparent dif�

ferences� In particular� Figure � seems to be noisier� This becomes evident from Figure 	�

which displays the absolute di�erence in estimated log relative risk between adjacent regions�

Overall� the median absolute di�erence using the Besag et al� model ������� is nearly three

times as high as with our method ����
��� It seems that the risk variability in some parts

of the map induces a considerable overall variability� because smoothing in the convolution

model is non�adaptive� Our method� however� is adaptive and therefore the distribution of

the absolute di�erences is much more skewed� An even more pronounced di�erence can be

seen in Figure 	 for absolute di�erences between regions� where one of the regions has only

one or two neighbors� Since the prior marginal variance of the MRF term is considerably

larger� smoothing is much less pronounced here and the di�erences are very large� This can
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also be seen from Figure �� where regions with only one or two neighbors are often in a

di�erent risk category than their neighbors� In contrast� our method� where the amount of

smoothing is approximately the same for all regions a priori �see Figure ��� does not see much

evidence for such large absolute di�erences� apart from the Kiel cluster� We have also tried

a median�based prior instead of the Gaussian in the Besag et al� model� The di�erences in

log relative risk have now increased even more to rather unrealistic values for regions with

only a few neighbors�

� Concluding remarks

We have described a novel approach to disease mapping with particular emphasis on the

detection of clusters and discontinuities in disease maps� We close now with a few comments

on alternative model speci�cations and possible extensions�

Initially� we have considered a more general cluster model� where every possible partition

into k clusters has equal probability a priori� as long as all regions within each cluster are

linked� However� if k is treated as unknown� we need to know the number of all possible

partitions� say nk� because this number determines the prior probability ��nk of a speci�c

partition� These probabilities enter in the prior ratio for any birth or death move� It was

and still is far from obvious to us how to calculate the nk�s in irregular space� We have

therefore decided to reduce the complexity of the problem by introducing cluster centers� Of

course� our model has now the slightly odd feature that� for a given partition� it is di cult

to derive its prior probability� But even if this probability is zero� the partition can well be

approximated by an average over a set of di�erent con�gurations� that are supported by our

model�

Suppose now that we de�ne a cluster con�guration by selecting a few cluster centers and

��



assigning each of the other regions to one of the clusters based on some distance measure� just

as we did� One might argue that other measures of distance as the one we propose might be

more appropriate� Indeed� initially� we thought of assigning a speci�c point to any region� for

example the centroid of the region or the location of that region�s largest place� The distance

between regions could then be de�ned as the Euclidean distance between the corresponding

points� However� such a de�nition turned out to be not very useful� because clusters will

not necessarily be connected� It is in fact rather easy to construct counterexamples� where

regions� belonging to a speci�c cluster� are separated by regions which belong to other

clusters� We therefore prefer our distance measure which ensures that clusters are connected

and which does fully acknowledge the discrete nature of space�

More generally� our method might be useful for other statistical problems in discrete

space� Furthermore� it can be viewed as a module in Bayesian inference for more com�

plex data� For example� in the current context it might be desirable to include covariate

information more explicitly in the model� For categorical covariates� one could introduce

an additional partition model of unknown dimension �Green� �		�� for the e�ects of the

covariate levels�

Our approach might also be useful in modelling disease risk data in time and space� Such

data have been analyzed recently by Bernardinelli et al� ��		�b�� Waller et al� ��		�� and

Knorr
Held and Besag ��		��� Suppose� that data �yit� eit� are available for n regions �� � � � � n

and T time points t � �� � � � � T � say years� The obvious extension of our approach would be

to de�ne the neighbors of pixel �i� t� as the neighbors in space �all pixels �j� t� where region

j is a neighbor of region i� and the neighbors in time �pixels �i� t � �� and �i� t � �� with
obvious modi�cations for the endpoints t � � and t � T �� Clusters of constant risk would

then be de�ned over time and space� In particular� such a speci�cation would be able to

capture space
time interactions�

��
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Appendix� Details of the sampler

Suppose a cluster con�guration with k clusters is de�ned by a vector of cluster centers

Gk � �g�� � � � � gk� and a vector of relative risks Hk � �h�� � � � � hk�� In each step of the

��



algorithm one of the six moves birth� death� shift� switch� height and hyper is proposed with

probability rB�k�� rD�k�� rSh�k�� rSw�k�� rHe�k� and rHy�k�� respectively� These probabilities

have been chosen as rB�k� � rD�k� � ��� and rSh�k� � rSw�k� � rHe�k� � rHy�k� � ���� for

k � f
� � � � � n� �g with appropriate changes for the endpoint cases�
The six moves are now implemented as follows�

�� Birth� A uniformly distributed random variable on all n � k regions� which are not

cluster centers� determines the new cluster center g�� A second uniformly distributed

random variable j on f�� � � � � k � �g determines the position of g� in G�

k��� A value

h� is generated and inserted into H�

k�� at the corresponding position� The proposal

h� � h�j is drawn from a gamma distribution

h�j � G
�
yj �

���

���
� ej �

��

���

�
� ���

where ej �
P

i�C�

j
ei� yj �

P
i�C�

j
yi� �� � exp�� � ����

�� and ��� � exp���� � �exp�����
�� � exp�
��� This proposal distribution is an approximation of the �normalized� �full
conditional�

Q
i�C�

j
L�yijhj� � p�hj�� where the lognormal prior p�hj� is replaced by a

gamma distribution G��������� ������� with the same mean and variance� The birth step

is accepted with probability 	 � min f��A � P � L � J g� where A � Pr�k � ���Pr�k� �
p�h����n � k� is the prior ratio� P � rD�k � ���rB�k� � �n � k��q�h�� is the proposal

ratio� L is the likelihood ratio and J � � is the Jacobian� Here q�h�� denotes the

density of the proposal distribution ���� evaluated at h��


� Death� For a death move from k�� to k a uniformly distributed random variable j on

f�� � � � � k� �g is generated which determines the cluster center gj and the correspond�
ing relative risk hj which are then removed from Gk�� and Hk�� respectively� The

acceptance probability for the death move has the same form as for the corresponding

birth move with all ratio terms inverted�

�	



�� Shift� Among the k current cluster centers there are n�Gk� cluster centers which do

not only have cluster centers as neighbors� An uniformly distributed random variable

j on f�� � � � � n�Gk�g determines a cluster center gj with m�gj� �free� neighbors� A

second uniformly distributed random variable on f�� � � � � m�gj�g determines the new
cluster center g�j which replaces gj in Gk� The shift step is accepted with probability

	 � min
n
��L � n�Gk��n�G

�

k� �m�gj��m�g�j �
o
�

�� Switch� For a switch move two random variables i and j� uniformly distributed on

f�� � � � � kg with i �� j� are generated� The positions i and j of the corresponding

cluster centers gi and gj in Gk are now switched� Only the likelihood ratio L enters in
the acceptance probability for the switch move�

�� Height� For each cluster j � f�� � � � � kg a new value h�j is proposed from ��� and

eventually accepted or rejected separately� The acceptance probability is

	 � min
n
��L � p�h�j��p�hj� � q�hj��q�h�j�

o
�

�� Hyper� To change the values for � and �� we use two subsequent Gibbs steps �hence

	 � ��� drawing random variables from the corresponding full conditionals

�j� � N

�
��
k

kX
j��

log�hj��
�

k
��

�
A and ��j� � IG

�
�a� k



� b �

�




kX
j��

flog�hj�� �g�
�
A �

Note that for moves ���� the likelihood ratio L has to be evaluated only for those regions�
where the relative risk has changed in the proposal� For example� in a birth move� L has to
be evaluated only for the regions in the new cluster and in a death move only those regions

enter in the likelihood ratio that are part of the cluster� which is supposed to be removed�
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Figure �� Standard mortality ratios for oral cavity cancer of males in Germany�
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Figure �� The average size of the cluster the region is assigned to a priori� Grouping is done with

respect to the number of neighbors�
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Figure �� Estimated median relative risks for oral cavity cancer of males in Germany using our

reversible jump MCMC algorithm� 
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within the same cluster for �� former east�west border
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observations�
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Figure �� Estimated median relative risks for oral cavity cancer of males in Germany with the

method of Besag et al
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Figure 	� Boxplots of the absolute di�erence in log relative risk between adjacent districts� Left

panel� Our method� Right panel� Method of Besag et al
 The minimum of the number of neighbors

of the two adjacent districts is used for grouping ��
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