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Abstract

An interesting epidemiological problem is the analysis of geographical variation in rates
of disease incidence or mortality. One goal of such an analysis is to detect clusters of
elevated (or lowered) risk in order to identify unknown risk factors regarding the disease.
We propose a nonparametric Bayesian approach for the detection of such clusters based
on Green’s (1995) reversible jump MCMC methodology. The prior model assumes that
geographical regions can be combined in clusters with constant relative risk within a
cluster. The number of clusters, the location of the clusters and the risk within each
cluster is unknown. This specification can be seen as a change-point problem of variable
dimension in irregular, discrete space. We illustrate our method through an analysis
of oral cavity cancer mortality rates in Germany and compare the results with those
obtained by the commonly used Bayesian disease mapping method of Besag, York and

Mollié (1991).
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Reversible jump MCMC.

1 Introduction

Statistical methods for analyzing data on disease incidence or mortality over a set of con-
tiguous geographical regions have gained increasing interest in the last decade. It is still
very common in disease mapping to display the standard mortality ratio (SMR), the ratio
of observed cases y over expected cases e, for each region either on a relative or an absolute
scale. However, these maps can be seriously misleading because the SMR’s tend to be far
more extreme in less populated regions, especially for rare diseases. Hence, regions with the
least reliable data will typically draw the main visual attention. For a thorough discussion

of this issue see Clayton and Bernardinelli (1992).



As an example consider Figure 1, which displays the geographical variation of the stan-
dard mortality ratios for males and oral cavity cancer, 1986-1990, in all 544 districts of
Germany. This dataset will be analyzed later in Section 3. The SMR’s vary between 0.16
and 2.63 with a standard deviation of the log SMR’s of 0.386. However, the variation of the
SMR’s is reduced if we only consider highly populated regions. For example, a subsample of
regions with more than 50 expected cases has a minimal SMR of 0.58 and a maximal SMR,
of 1.89. The standard deviation of the log SMR’s is now 0.233, indicating that the SMR’s
tend to be more extreme in less populated regions, but this conclusion is drawn under the
assumption of constant risk in the whole of Germany.

Indeed, an unknown part of the variation of the SMR’s may be caused by geographically
varying unobserved risk factors. For example, in Figure 1 there seem to be areas of higher
risk in the north—east and in some parts of the south, especially towards the west, but a
naive visual inspection can be seriously misleading and no general conclusion can be drawn
from such a map. Therefore, so—called disease mapping methods have been developed to
give more reliable estimates of the geographical variation of disease risk. The general goal
is to identify the extra—sample variation due to unobserved heterogeneity by filtering the
Poisson sample variation.

A well-known method is the empirical Bayes approach of Clayton and Kaldor (1987).
Roughly speaking, this method shrinks the SMR’s towards a local or a global mean where
the amount of shrinkage is determined by the reliability of the data of that particular region.
The two smoothing options “local” or “global” seem to be appropriate if unobserved risk
factors do or do not have a spatial structure, respectively. However, one of the major goals of
disease maps is to identify unobserved risk factors through the geographical variation of the
disease so the spatial distribution of those unobserved factors is not known in advance. This

led Besag, York and Mollié (1991) to generalize the Clayton and Kaldor method allowing



for both spatially structured and unstructured heterogeneity in one model, which was later
called the convolution model by Mollié (1996).

The detection of clusters in diseases is, at first sight, a separate problem. Here the
goal is to identify clusters of geographically contiguous regions with elevated (or lowered)
risk. Disease clusters may occur not only for infectious diseases, but also for non-infectious
diseases, where risk factors do have a spatial structure. In addition one might also be
interested in detecting discontinuities in the map, i.e. suspicious differences in relative risk
between adjacent regions. However, results from the convolution model are often used to
visually identify disease clusters, if the estimated risks exhibit a spatial pattern (e.g. Besag,
York and Mollié, 1991, Mollié, 1996). In these cases, the Markov random field (MRF)
term, which represents spatially structured heterogeneity, is dominating and the SMR’s are
essentially spatially smoothed. For that reason, Clayton and Bernardinelli (1992) denote the
MRF term the “clustering component”.

This paper describes a new approach for the detection of clusters in disease maps. Tech-
nically, the method is based on reversible jump MCMC methodology (Green, 1995) and is
related to the segmentation of a spatial signal, already tackled in Green. His work has been
refined by Arjas and Heikkinen (1997) and Heikkinen and Arjas (1998) who use piecewise
constant step functions defined through marked point processes in continuous space. How-
ever, in our application space is discrete and irregular, which calls for several changes of the
model and the methodology. Basically our prior model assumes that the area considered
can be divided into several clusters, i.e. sets of contiguous regions, where each cluster has
constant relative risk. The number, the size and the location of the clusters, as well as the
risk within each cluster, are unknown. Risks in different clusters are assumed to be indepen-
dent of each other. The model is therefore able to detect spatial discontinuities. Clusters

of size one are not excluded from our model which implies that the model does necessarily



smooth the SMR’s. In practice it will always do so, at least to some extend, since there will
always be some uncertainty whether a region forms a cluster by itself. However, the sizes of
the clusters, which imply the local degree of smoothing, are variable and determined by the
data, hence the smoothing is adaptive. This is in sharp contrast to MRF priors, where the
corresponding smoothing parameter is constant and smoothing is non-adaptive.

The method is related to that of Schlattmann and Bohning (1993), who use mixture
models within an empirical Bayes framework where each region is assigned to a component
of the mixture distribution with constant relative risk. The location of the regions is, however,
ignored so that members of a mixture component may be spread over the whole area. In our
approach, regions are assigned to clusters with constant risk, too, but all regions in a cluster
must be linked. To include location in the model we propose a construction where some
regions are marked as so—called cluster centers, each of them defining a cluster. Each of the
remaining regions is assigned to the cluster whose cluster center has minimal distance to the
region. The distance between two regions is defined as the minimal number of boundaries
that have to be crossed to move from one to the other. The construction can be seen as
a modification of Voronoi tessellations (see Green, 1995) in discrete, irregular space and
ensures that all regions within a cluster are linked.

The output of the algorithm is very rich and can be used for Bayesian inference in several
ways. First, the point estimates (mean or median) of the risk of each region incorporate all
the posterior uncertainty about the number, the location and the risk level of the clusters.
Since all these are variable, the posterior mean estimate will be an average over a large
number of piecewise constant step functions and can be seen as essentially nonparametric
(Arjas, 1996, Heikkinen and Arjas, 1998). A similar argument holds for all other functionals
of the posterior as well, for example for the posterior median. Second, the method provides

a large amount of additional probabilistic information. For example, we can calculate the



probability that two or more regions belong to the same cluster. This is especially inter-
esting for two adjacent regions where it gives an intuitive quantification for the location of
discontinuities as will be illustrated in our application.

The paper is organized as follows. Section 2 describes our model and gives some features
of the implementation by reversible jump MCMC. More details of the sampler are given in
the Appendix. Section 3 presents results from an analysis of oral cavity cancer mortality
rates of males in Germany, shown in Figure 1. We investigate the location of the clusters and
discontinuities which have been identified by our method. We also compare our estimates
with those obtained by the method of Besag et al. (1991). We close with several comments

on alternative model specifications and possible extensions in Section 4.

2 The model

Suppose that data are available in the form of pairs in each of a set of n regions ¢ =1,...,n
giving the number of cases y; of the disease and the number of expected cases e;, usually
calculated by internal or external standardization with respect to confounding variables.

The general idea is that the relative risk is constant over a set of one or more contiguous
regions. This defines a cluster C; C {1,...,n}, a set of contiguous regions with constant
relative risk h;. The number of clusters k is treated as unknown with £ € {1,...,n}. Our
cluster definition implies that the clusters C4,...,C} cover the whole area and that they
do not overlap, so C; U...UCy = {1,...,n}. Note that in the limiting case k = 1 there
is constant relative risk over the whole area whereas for £ = n not even two (contiguous)
regions have the same relative risk.

We postulate the usual Poisson observation model (e.g. Clayton and Bernardinelli, 1992),

where y; has Poisson distribution with mean e;h; and h; is the unknown relative risk in cluster



J with ¢ € C;. Responses y;, 1 = 1,...,n, are assumed to be conditionally independent given

Hy = (hy, ..., hg) so the likelihood function of responses y = (yi, ..., y,) can be written as
ez
(y|Hy) = H I —— eXp( eih;).-
Jj=11ieC; Z

2.1 A prior model for clustering

As a first step in the definition of the clustering model, we mark & regions ¢1, ..., gx as cluster
centers. Each cluster center g; € {1,...,n} defines a cluster C; with g; € C;. The vector
of all cluster centers Gy = (g1,...,9%) defines a cluster configuration, i.e. an assignment
of all regions to one and only one of the clusters. For that purpose, we define a measure
of distance d(i1,i2) between two regions i; and i as the minimal number of boundaries
that have to be crossed for moving from 4; to i5. This distance measure can be computed
from the information if any two regions are adjacent or not, which is usually given in a so—
called adjacency matrix. The measure of distance d is used to assign each of the remaining
n — k regions to one of the clusters. Region i ¢ G will be assigned to cluster Cj if it has
minimal distance to the corresponding cluster center g;, i.e. d(i,g;) < d(i,g) for all | €
{1,...,k}, 1 # j. However, this definition is not yet unique, because some regions may
have the same distance to two or more cluster centers. To ensure uniqueness we assign
those regions to the cluster with the smallest index position of the corresponding cluster
center in GG among all cluster centers with minimal distance to region . We therefore keep
G;, non—ordered, otherwise clusters defined by cluster centers g; with ¢g; small would tend
to be larger in size than those with g¢; large. For example, in our formulation a cluster
configuration defined by a cluster center vector G = (1,2) will in general be different from
another one defined by Gy = (2,1). Note, that the cluster centers only serve to specify a
cluster configuration, they do not have any direct influence on the estimates of the relative

risks.



To illustrate the flexibility of the clustering model, Figure 2 gives a cluster configuration
of the 544 districts of Germany with £ = 20. The cluster centers are marked with numbers
1 to 20, the corresponding index positions in Gy. Note that the clusters differ considerably
in size and shape. Furthermore it can be seen that, indeed, all regions within each cluster
are linked. It is, however, not immediately obvious that this is true in general. Now suppose
there is a cluster C'; which breaks down into two or more parts, which are not linked together.
Then there must be a region ¢, € C; with some distance m to the cluster center g; and a
neighbor iy of 4; with iy € C, k # j, and distance m — 1 to g;. Otherwise all regions within
C; must be connected. Because 7; is a neighbor of i, it follows, however, that 7; must be in
C and not in C; which is contradictory to the assumption above and proves our claim.

We now specify a prior distribution for the number of clusters £, the vector of cluster
centers G and for the vector of relative risks Hy. We assume that the prior for the number of
clusters Pr(k), k =1,...,n, is proportional to (1 —c)* with a fixed parameter ¢ € [0,1). The
limiting case ¢ = 0 gives a uniform distribution on {1,...,n}, whereas ¢ > 0 corresponds to a
truncated geometric distribution. This choice implies that the prior ratio Pr(k+1)/Pr(k) =
(1 — ¢), which penalizes jumps from k to k + 1, is constant for all k. We typically use small
values for ¢ so as to make the prior Pr(k) close to “uninformative”. Other choices might be
more appropriate but, as Richardson and Green (1997) have noted, results with any prior for
k can be converted to those corresponding to other priors without rerunning the algorithm.

For a given number of clusters k£ we assume that each vector of cluster centers G =

(g1, .., gx) has equal probability

Pr(Gylk) = =8 (1)

One could also introduce weights that take account of specific features so as to support

configurations with homogeneous cluster sizes or boundary lengths, for example.



We have made extensive simulations from the prior distribution Pr(Gy|k) - Pr(k) de-
scribed above. For example, for each region, we have calculated the average size of the
cluster the region is assigned to. Figure 3 shows the results for ¢ = 0.02, grouping the
regions according to the number of adjacent regions. The influence of the number of adja-
cent regions on the average size of the cluster appears to be minimal. Hence, the degree of
smoothing is approximately the same for all regions, a priori. This is in contrast to MRF
priors, where there is dependence of the smoothing parameter (the marginal variance) on
the number of adjacent areas, see Bernardinelli, Clayton and Montomoli (1995a). We have
also calculated the prior probability for each region to form a cluster by itself as well as
the probability for being together with a neighbor. These probabilities have some varia-
tion, depending mainly on the number of neighbors. In Section 3, we therefore report the
corresponding posterior probabilities together with the prior probabilities.

As a prior guess for the relative risks Hy, = (hy,...,hy) it seems natural to assume
that they are symmetrically distributed on the log scale. We therefore adopt a normal
distribution for log(h;), j = 1,...,k, with unknown hyperparameters p and o?. For yu, we

2 a highly dispersed but

assume a diffuse prior (uniform on the whole real line) and for o
proper inverse gamma distribution IG(a, b) with fixed parameters a and b. Independence of

components of Hj, yields

R (H hi) exp [—%Zl{log(hj)—u}? G

2o =1
Conditional independence of Hy and Gy given k defines the prior for the unknown pa-
rameters k, Gy, Hg, u and o2 as the product of the prior for k times (1) times (2) times the

hyperpriors p(p) and p(c?).



2.2 Implementing reversible jump MCMC

This section gives an informal description of some features of our reversible jump MCMC im-
plementation for sampling from the posterior distribution. In each iteration of the algorithm

one of the following six moves is proposed:

Birth: The number of clusters is increased by introducing an additional cluster center.
Death: The number of clusters is decreased by deleting one of the cluster centers.
Shift: One of the cluster centers is moved.

Switch: The positions of two cluster centers in GG are switched.

Height: The relative risks h;, 7 = 1,...,k, are changed.

Hyper: The values of the hyperparameters 1 and o2 are changed.

For a given value of k, each move is proposed with a certain probability. For some values of k&
certain moves are not possible, for example a death move for £ = 1. Each move is accepted as
the new state of the Markov chain with probability determined by the Metropolis—Hastings—
Green ratio (Green, 1995). Below we describe some features of our implementation of these
six elementary moves. More details are given in the Appendix. The main reason for choosing
those moves was that they appeared to be straightforward to implement, each of them
maintaining reversibility. We have included the shift and the switch move in the hope of
improved mixing performance, although they seem to be not necessary. In fact, some other
MCMC sampler with different proposals or different moves might be more efficient in terms
of convergence, mixing or computing time but, in our experience, our algorithm gives reliable
results for acceptable run lengths.

Suppose that in the current configuration k£ regions are marked as cluster centers. In a

birth move one of the remaining n — k regions is chosen randomly as a new cluster center.



The new cluster center ¢g* is placed randomly among all possible k£ + 1 positions in the new
vector of cluster centers G, ,. A value h* for the relative risk within the new cluster is
inserted at the corresponding position in H ;. In a death move from k+1 to £, a randomly
selected element of Gy is deleted. A sequence of a death and a birth move (or vice versa)
is therefore able to restore the original configuration. In a shift move, first one of the cluster
centers, whose neighbors are not all cluster centers by itself, is picked randomly. This cluster
center g;, say, is then shifted randomly to one of the neighbors that are not already cluster
centers. The order in G, is not changed. Note that the neighbors do not have to be members
of the original cluster C; which would in fact destroy the reversibility of the shift move. A
switch move picks out two elements in G randomly and switches their position in G} which
will give a slightly different cluster configuration if there are distance ties. A height move
proposes new values h} for all elements h; of Hy, each of them being accepted or rejected

2 are updated

separately. Finally, in a hyper move, values of the hyperparameters p and o
by samples from the corresponding full conditional distributions.

The performance of the algorithm depends on a number of implementation issues. First,
the several moves should be designed to have acceptance rates not too low. For moves that
involve new values h*, we therefore use a proposal distribution that approximates the corre-
sponding (fixed-dimension) “full conditional” (the prior for A times the relevant likelihood
times a normalizing constant). This device results generally in very good acceptance rates
for these moves (height, birth and - indirectly - death). Furthermore, the algorithm is now
automatic, as tuning parameters are not involved. Similar proposals might be useful in
many other applications of reversible jump MCMC. The shift move will have low acceptance
rates, if there is very strong local information in the likelihood. Note, however, that this

move is not necessary for convergence of the algorithm and could, in principle, be omitted

completely.
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A second problem occurs if the posterior is multimodal. This potential problem is inherent
in any more complex MCMC application but seems to be of particular concern for reversible
jump MCMC if only small dimension changing moves are made. If the simulated chain is
trapped in one of the modes, it might be difficult for it to move to some other posterior mode,
located somewhere different and clearly separated by an area of low posterior mass. This
problem might be even more severe for fixed k, since the birth and death moves are known to
improve mixing (Heikkinen and Arjas, 1998). We routinely start several chains with different
starting configurations and compare the results. Carefully designed mode jumping moves

might also be useful here but require knowledge of the location of the posterior modes.

3 Applications

3.1 Simulations

To see, how well our method works, we have analyzed several artificial datasets. In particular,
we have looked how well our method reconstructs a given risk surface, how sensitive our
results are to the choices for Pr(k) and p(c?), and how reliable our algorithm works. The
results are generally encouraging and can be found in a supplement paper (Knorr-Held and
Rasser, 1999). Based on these results, we recommend to use small, but positive values for c.
Sensitivity with respect to p(c?) was found to be small and we recommend to use a = 1 and

b = 0.01 as default. Of course, sensitivity to the prior should always be studied.

3.2 Results for oral cavity cancer mortality in Germany

We now present results from an analysis of oral cavity cancer of males in Germany. The

database records the population size and the number of deaths from oral cavity cancer,
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stratified by 16 age bands and 544 districts for the period 1986-1990. The total number
of cases is 15,466 ranging between 1 and 501 cases with a median number of 19 cases per
district. The overall mortality rate is 40.9 cases per 100,000 males. We have internally
standardized the raw data with respect to all 16 age bands by maximum likelihood and have
calculated the corresponding standard mortality ratios which are shown in Figure 1.

To examine sensitivity with respect to Pr(k) and p(c?) we have used ¢ = 0.0,0.01
and 0.02 and (a,b) = (0.25,0.00025), (1,0.01) and (5,0.125) in several combinations. For
(a,b) = (1,0.01), for example, there was some sensitivity for k& with respect to Pr(k) with
a posterior median of 86 (¢=0.0), 75 (¢=0.01) and 64 (¢=0.02) compared to a prior median
of 272, 69 and 35, respectively. However, differences in the log relative risk estimates were
found to be small. Results have been even more stable for different choices for p(c?) with ¢
fixed.

In the analysis presented here, we have set ¢« = 1, b = 0.01 and ¢ = 0.02. A plot of the
prior and the posterior for k is given in Figure 5. The results are based on samples of 10,000
realizations, collected by saving the current state after every 10,000th basic update move after
a burn—in period of 1,000,000. We have calculated autocorrelations for the corresponding
relative risk samples in each region. Mixing was good with a median autocorrelation of only
0.02 for lag 1 and a maximum value of 0.35. For lag 5 and more all values have been around
zero. The samples of k are shown in Figure 6. The acceptance rates were around 32% for
both the birth and the death move, 26% for a shift, 46% for a switch and 95% for a change
of height.

The posterior median estimates of the relative risk vary between 0.71 and 1.59. Figure
4 displays those estimates on the same scale as in Figure 1. Most striking are two large
clusters of elevated relative risk, one in the north—east in Mecklenburg-West Pomerania

with estimates above 1.2, the other one in the south-west with estimates above 1.5, covering
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most parts of Saarland and southern Rhineland-Palatinate along the border to France. In
fact, most parts of southern Germany, excluding southern Bavaria, have an elevated relative
risk above 1.0.

The most important risk factors for oropharyngeal cancers are tobacco smoking and
alcohol abuse (Blot et al., 1994). The Mecklenburg—West Pomerania cluster is consistent with
this, because this state has the highest per capita alcohol consumption of whole Germany
(Becker and Wahrendorf, 1997). Interestingly, Blot et al. (1994) note that the east—central
part of France (Bas-Rhin) along the German border has the highest oral and pharyngeal
incidence rate in whole Europe (1983-1987). The south-west cluster is exactly adjoining
this area and might therefore continue on the other side of the border.

There are several single regions with conspicuously high risk estimates, compared to their
neighbors. West Berlin (estimated relative risk of 1.36), Kiel in the very north (1.30), and
Krefeld in the west (1.18) all have elevated relative risks. We have calculated the probability
that each of them forms a cluster by itself. The probabilities are 0.16 for West Berlin, 0.70
for Kiel and 0.67 for Krefeld. For comparison, the median probability of all 544 regions is
only 0.007. The prior probabilities of being alone for these regions are 0.006, 0.03 and 0.02,
respectively, compared to a median prior probability of 0.014. This indicates the existence of
unobserved risk factors for these regions, possibly related to a higher degree of urbanization.

An interesting feature of Figure 4 is that the map strongly retains the border between
former East and West Germany, especially in the south but also for West Berlin. We have
therefore calculated the probability that two regions belong to the same cluster for all 1,416
pairs of adjacent regions. Figure 7 compares the distribution of these probabilities for the
former east—west border with all remaining ones by boxplots. To avoid a “state border” bias
we have stratified the latter group in two subgroups where adjacent regions do or do not

belong to the same state, respectively. Figure 7 gives also the corresponding plot for the
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prior probabilities. Differences between these subgroups are minimal a priori, however, the
posterior probabilities are lower for the former east-west border. This indicates substantial
differences between East and West Germany, either in exposure to relevant risk factors or
simply in data quality. There are several hints that the latter is an important factor (Becker
and Wahrendorf, 1997). One reason for the apparent differences might be a lack of quality
control measures in the former Democratic Republic of Germany in the process of identifying
underlying diseases. For example, it might be possible that there is an underreporting of oral
cavity cancer due to a relatively high rate of nonidentified cancers “of other and unspecified
sites”. However, it seems that noncompliance with WHO rules for the identification of
underlying disease is not able to explain the differences alone. Other possible reasons are
discussed in detail in Becker and Wahrendorf (1997) with relevant references.

Figure 8 displays the estimated median relative risks of this dataset by the method of
Besag et al. (1991) with a Gaussian intrinsic prior for the spatial component. The estimates
show slightly more variation with values between 0.61 and 1.71. The similarities between
Figure 4 and Figure 8 are noticeable and relieving, although there are some apparent dif-
ferences. In particular, Figure 8 seems to be noisier. This becomes evident from Figure 9,
which displays the absolute difference in estimated log relative risk between adjacent regions.
Overall, the median absolute difference using the Besag et al. model (0.076) is nearly three
times as high as with our method (0.027). It seems that the risk variability in some parts
of the map induces a considerable overall variability, because smoothing in the convolution
model is non-adaptive. Our method, however, is adaptive and therefore the distribution of
the absolute differences is much more skewed. An even more pronounced difference can be
seen in Figure 9 for absolute differences between regions, where one of the regions has only
one or two neighbors. Since the prior marginal variance of the MRF term is considerably

larger, smoothing is much less pronounced here and the differences are very large. This can
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also be seen from Figure 8, where regions with only one or two neighbors are often in a
different risk category than their neighbors. In contrast, our method, where the amount of
smoothing is approximately the same for all regions a priori (see Figure 3), does not see much
evidence for such large absolute differences, apart from the Kiel cluster. We have also tried
a median-based prior instead of the Gaussian in the Besag et al. model. The differences in
log relative risk have now increased even more to rather unrealistic values for regions with

only a few neighbors.

4 Concluding remarks

We have described a novel approach to disease mapping with particular emphasis on the
detection of clusters and discontinuities in disease maps. We close now with a few comments
on alternative model specifications and possible extensions.

Initially, we have considered a more general cluster model, where every possible partition
into k clusters has equal probability a priori, as long as all regions within each cluster are
linked. However, if k is treated as unknown, we need to know the number of all possible
partitions, say ng, because this number determines the prior probability 1/ny of a specific
partition. These probabilities enter in the prior ratio for any birth or death move. It was
and still is far from obvious to us how to calculate the n;’s in irregular space. We have
therefore decided to reduce the complexity of the problem by introducing cluster centers. Of
course, our model has now the slightly odd feature that, for a given partition, it is difficult
to derive its prior probability. But even if this probability is zero, the partition can well be
approximated by an average over a set of different configurations, that are supported by our
model.

Suppose now that we define a cluster configuration by selecting a few cluster centers and

15



assigning each of the other regions to one of the clusters based on some distance measure, just
as we did. One might argue that other measures of distance as the one we propose might be
more appropriate. Indeed, initially, we thought of assigning a specific point to any region, for
example the centroid of the region or the location of that region’s largest place. The distance
between regions could then be defined as the Euclidean distance between the corresponding
points. However, such a definition turned out to be not very useful, because clusters will
not necessarily be connected. It is in fact rather easy to construct counterexamples, where
regions, belonging to a specific cluster, are separated by regions which belong to other
clusters. We therefore prefer our distance measure which ensures that clusters are connected
and which does fully acknowledge the discrete nature of space.

More generally, our method might be useful for other statistical problems in discrete
space. Furthermore, it can be viewed as a module in Bayesian inference for more com-
plex data. For example, in the current context it might be desirable to include covariate
information more explicitly in the model. For categorical covariates, one could introduce
an additional partition model of unknown dimension (Green, 1995) for the effects of the
covariate levels.

Our approach might also be useful in modelling disease risk data in time and space. Such
data have been analyzed recently by Bernardinelli et al. (1995b), Waller et al. (1997) and
Knorr-Held and Besag (1998). Suppose, that data (y;;, €;;) are available for n regions 1,...,n
and 7" time points t = 1,...,T, say years. The obvious extension of our approach would be
to define the neighbors of pixel (i,¢) as the neighbors in space (all pixels (j,t) where region
jJ is a neighbor of region i) and the neighbors in time (pixels (i, — 1) and (¢, + 1) with
obvious modifications for the endpoints ¢ = 1 and ¢t = 7). Clusters of constant risk would
then be defined over time and space. In particular, such a specification would be able to

capture space—time interactions.
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Appendix: Details of the sampler

Suppose a cluster configuration with k& clusters is defined by a vector of cluster centers

Gr = (g1,---,9x) and a vector of relative risks Hy = (hy,...,hs). In each step of the
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algorithm one of the six moves birth, death, shift, switch, height and hyper is proposed with
probability rg(k), 7p(k), rsn(k), rsw(k), rue(k) and rgy,(k), respectively. These probabilities
have been chosen as rg(k) = rp(k) = 0.4 and rg,(k) = rsw(k) = rge(k) = rgy(k) = 0.05 for
k€ {2,...,n— 1} with appropriate changes for the endpoint cases.

The six moves are now implemented as follows:

1. Birth: A uniformly distributed random variable on all n — k regions, which are not
cluster centers, determines the new cluster center ¢g*. A second uniformly distributed
random variable j on {1,...,k + 1} determines the position of ¢* in G},,. A value
h* is generated and inserted into Hj , at the corresponding position. The proposal
h* = hj is drawn from a gamma distribution

i fi

hj.NG(ijrg,ejJr?), (3)
where e; = Yicc: €i, Y5 = Yiccr Yir i = exp(u + 0.50?) and 6% = exp(o?) - (exp(c?) —
1) - exp(2p). This proposal distribution is an approximation of the (normalized) “full
conditional” [T;ecs L(y;|h;) - p(h;), where the lognormal prior p(h;) is replaced by a
gamma distribution G(f?/5?, fi/5?) with the same mean and variance. The birth step
is accepted with probability « = min {1, 4-P - L - J}, where A = Pr(k+1)/Pr(k) -
p(h*)/(n — k) is the prior ratio, P = rp(k + 1)/rg(k) - (n — k)/q(h*) is the proposal
ratio, £ is the likelihood ratio and J = 1 is the Jacobian. Here ¢(h*) denotes the

density of the proposal distribution (3), evaluated at h*.

2. Death: For a death move from k£ +1 to £ a uniformly distributed random variable j on
{1,...,k+ 1} is generated which determines the cluster center g; and the correspond-
ing relative risk h; which are then removed from Gy, and Hj,, respectively. The
acceptance probability for the death move has the same form as for the corresponding

birth move with all ratio terms inverted.
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3. Shift: Among the &k current cluster centers there are n(Gy) cluster centers which do
not only have cluster centers as neighbors. An uniformly distributed random variable
jon {1,...,n(Gy)} determines a cluster center g; with m(g;) “free” neighbors. A
second uniformly distributed random variable on {1,...,m(g;)} determines the new

cluster center g; which replaces g; in G. The shift step is accepted with probability

o =min {1, £ -n(Gy)/n(G}) - m(g;)/m(g}) }-

4. Switch: For a switch move two random variables ¢ and j, uniformly distributed on
{1,...,k} with ¢ # j, are generated. The positions 7 and j of the corresponding
cluster centers g; and g; in G, are now switched. Only the likelihood ratio £ enters in

the acceptance probability for the switch move.

5. Height: For each cluster j = {1,...,k} a new value A} is proposed from (3) and

eventually accepted or rejected separately. The acceptance probability is

o =min {1, £ p(h})/p(hy) - a(hy)/a(k)}.

6. Hyper: To change the values for g and 0® we use two subsequent Gibbs steps (hence

a = 1), drawing random variables from the corresponding full conditionals
1 & 1, ) k R )
pl. ~ N EZIOg(hJ)’ R4 and o°. ~ IG |a+ 3 b+ §Z{log(hj) —pu}l.
j=1 j=1

Note that for moves 1-5, the likelihood ratio £ has to be evaluated only for those regions,
where the relative risk has changed in the proposal. For example, in a birth move, £ has to
be evaluated only for the regions in the new cluster and in a death move only those regions

enter in the likelihood ratio that are part of the cluster, which is supposed to be removed.
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Figure 1: Standard mortality ratios for oral cavity cancer of males in Germany.
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Figure 3: The average size of the cluster the region is assigned to a priori. Grouping is done with

respect to the number of neighbors.
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Figure 4: Estimated median relative risks for oral cavity cancer of males in Germany using our

reversible jump MCMC algorithm. 24
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Figure 5: Prior and posterior distribution for the number of clusters k.
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Figure 6: Chain for k versus iteration number.
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Figure 7: Boxplots of the prior (left) and posterior (right) probabilities that adjacent districts are
within the same cluster for 0: former east—west border, 1: all other boundaries between different
states, 2: boundaries within states. The width of the boxes is proportional to the number of

observations.
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Figure 8: Estimated median relative risks for oral cavity cancer of males in Germany with the

method of Besag et al. 27
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Figure 9: Boxplots of the absolute difference in log relative risk between adjacent districts. Left
panel: Our method. Right panel: Method of Besag et al. The minimum of the number of neighbors

of the two adjacent districts is used for grouping (1, 2, > 2).
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