LUDWIG-

33?‘\/‘2’:;‘?2‘3 INSTITUT FUR STATISTIK
A RCHE SONDERFORSCHUNGSBEREICH 386

Heumann, Fieger, Kastner:

C++ Ufilities zur Implementierung statistischer
Verfahren unter Berucksichtigung fehlender Werte

Sonderforschungsbereich 386, Paper 109 (1998)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

ZA

MAX-FLANCK-CESELLECHAFT

http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

C++ Utilities zur Implementierung statistischer Verfahren
unter Beriicksichtigung fehlender Werte

C. Heumann, A. Fieger, C. Kastner

Institut fiir Statistik
Akademiestr. 1
0799 Miinchen

April 1998

Abstract

Die hier vorgestellten Erweiterungen der bereits bestehenden generischen Bibliothek zur
linearen Algebra (Fieger, Heumann, Kastner und Watzka, 1997) stellen Funktionen bereit,
die bei der Implementierung statistischer Verfahren bendtigt wird. Besondere Beachtung
findet der Umgang mit fehlenden Daten.

Inhaltsverzeichnis

1 Einleitung 2
2 Statistische Funktionen fiir Matrizen 3
3 Listen 7
4 Zufallszahlen 8
5 Verteilungen etc.o Lo 9
5.1 Verteilungsfunktionen L oo 9
5.2 Funktionen fiir p-values o0 10
6 Weitere Utilities 11
6.1 Binomialkoeffizient 11
6.2 Kombinatorik 12
6.3 Sortieren L 12
7 Beispiele o 13

1 Einleitung

In diesem Bericht werden die Datentypen und Templatefunktionen beschrieben, die auf den
in Fieger, Heumann, Kastner und Watzka (1997) vorgestellten Datentypen basieren und diese
erweitern. Diese Erweiterungen sollen zur einfachen Implementierung statistischer Verfahren
beitragen, wobei dem Aspekt fehlender Werte besondere Aufmerksamkeit geschenkt wird.

arraytyp.h definiert einige oft benétigte Datentypen fiir Matrizen, Arrays und Listen.

typedef Datalatrix matrix;

typedef PreMatrix<int> intMatrix;
typedef PreMatrix<unsigned> unsignedMatrix;
typedef Array<real> realArray;
typedef Array<int> intArray;
typedef Array<unsigned> unsignedArray;
typedef Array<matrix> matrixdrray;
typedef Array<intMatrix> intMatArray;
typedef Array<unsignedArray> Array0fUnsignedArray;
typedef Array2D<real> realArray2D;
typedef Array2D<int> intArray2D;
typedef Array2D<unsigned> unsignedArray2D;
typedef Array2D<matrix> matrixArray2D;
typedef Array2D<intMatrix> intMatrixArray2D;

2 2 Statistische Funktionen fiir Matrizen — colstddevs ()

typedef Array<unsignedArray2D> unsignedArrayOfArray2D;

typedef LinkedList<real> reallList;

typedef LinkedList<int> intList;

typedef LinkedList<unsigned> unsignedList;
typedef LinkedList<matrix> matrixList;
typedef LinkedList<intMatrix> intMatrixList;
typedef LongList<real> realLongList;
typedef LongList<int> intLongList;
typedef LongList<unsigned> unsignedLongList;
typedef LongList<matrix> matrixLongList;
typedef LongList<intMatrix> intMatrixLongList;

utils.h liest alle in diesem Bericht beschriebenen Header-Dateien ein. Dadurch steht mittels
Einbinden von utils.h auf einfache Weise die gesamte hier beschriebene Funktionalitdt zur
Verfiigung. Das Programmprojekt wird dadurch natiirlich nicht gerade kleiner, so daf} es sich
fiir kleine Projekte anbietet, nur die benétigten Definitionen explizit einzubinden (siehe Quelltext
von utils.h fiir Beispiele und Dokumentation).

bool.h.hide Die Headerdatei bool.h wird z. B. vom GNU C++ Compiler nicht benétigt (darum
.hide), fiir andere Compiler, die den Typ bool nicht kennen wird diese bendtigt, d. h. sie ist in
bool.h umzubenennen.

2 Statistische Funktionen fur Matrizen

In datamat.h werden einfache (real) Matrizen auf Datenmatrizen erweitert. Die Erweiterun-
gen bestehen im wesentlichen aus zwei Teilen, der Moglichkeit mit fehlenden Daten umgehen
zu kénnen und der Einfilhrung elementarer statistischer Funktionen wie Mittelwerte oder Stan-
dardabweichungen. Mit den Definitionen in arraytyp.h kann dann anstelle von DataMatrix
kurz matrix verwendet werden.

Bei den Riickgabewerten der statistischen Funktionen ist zu beachten, dafl der Ergebnisvektor
stets ein Spaltenvektor ist!

NAME colmeans () — Spaltenweise Mittelwerte
SYNOPSIS

DataMatrix DataMatrix::colmeans();

BESCHREIBUNG colmeans () berechnet spaltenweise Mittelwerte bei Datenmatrizen

NAME colmeans () — Spaltenweise Mittelwerte
SYNOPSIS

DataMatrix DataMatrix: :colmeans(const real miss);

BESCHREIBUNG colmeans () berechnet spaltenweise Mittelwerte bei Datenmatrizen mit fehlenden
Werten
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN Falls alle Werte in einer Spalte fehlen, ist das jeweilige Ergebnis NaN

NAME colmeans () — Spaltenweise Mittelwerte
SYNOPSIS

DataMatrix DataMatrix: :colmeans(const realMatrix& R);

BESCHREIBUNG colmeans () berechnet spaltenweise Mittelwerte bei Datenmatrizen mit fehlenden
Werten
R Indikatormatrix fiir fehlende Werte

BEMERKUNGEN Falls alle Werte in einer Spalte fehlen, ist das jeweilige Ergebnis NaN

NAME colstddevs() — Spaltenweise Standardabweichungen
SYNOPSIS
DataMatrix DataMatrix::colstddevs();

BESCHREIBUNG colstddevs() berechnet spaltenweise Standardabweichungen bei Datenmatrizen
BEMERKUNGEN Teilung durch n — 1.

NAME colstddevs() — Spaltenweise Standardabweichungen
SYNOPSIS

colstddevs() — rowmeans () 3

DataMatrix DataMatrix::colstddevs(const real miss);

BESCHREIBUNG colstdddevs () berechnet spaltenweise Standardabweichungen bei Datenmatrizen
mit fehlenden Werten
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN Teilung durch n — 1. Falls alle Werte in einer Spalte fehlen, ist das jeweilige Ergebnis
NaN

NAME colstddevs() — Spaltenweise Standardabweichungen
SYNOPSIS

DataMatrix DataMatrix::colmeans (const realMatrix& R);

BESCHREIBUNG colstdddevs () berechnet spaltenweise Standardabweichungen bei Datenmatrizen
mit fehlenden Werten
R Indikatormatrix fiir fehlende Werte

BEMERKUNGEN Teilung durch n — 1. Falls alle Werte in einer Spalte fehlen, ist das jeweilige Ergebnis
NaN

NAME colsums () — Spaltensummen
SYNOPSIS

DataMatrix DataMatrix::colsums() ;

BESCHREIBUNG colsums () berechnet Spaltensummen bei Datenmatrizen

NAME colsums () — Spaltensummen
SYNOPSIS

DataMatrix DataMatrix::colsums(const real miss);

BESCHREIBUNG colsums () berechnet Spaltensummen bei Datenmatrizen mit fehlenden Werten
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN Falls alle Werte in einer Spalte fehlen, ist das jeweilige Ergebnis 0

NAME colsums () — Spaltensummen

SYNOPSIS

DataMatrix DataMatrix::colsums(const realMatrix& R);

BESCHREIBUNG colsums () berechnet Spaltensummen bei Datenmatrizen
R Indikatormatrix fiir fehlende Werte

BEMERKUNGEN Falls alle Werte in einer Spalte fehlen, ist das jeweilige Ergebnis 0

NAME RIndMat () — Indikatormatrix fir fehlende Werte
SYNOPSIS

DataMatrix DataMatrix::RIndMat (const real miss);

BESCHREIBUNG RIndMat () liefert eine Indikatormatrix fiir fehlende Werte
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN R;; =1 falls X;; beobachtet, d. h. nicht gleich miss ist, 0 sonst

NAME rowmeans() — Zeilenweise Mittelwerte

SYNOPSIS

DataMatrix DataMatrix::rowmeans();

BESCHREIBUNG rowmeans () berechnet zeilenweise Mittelwerte bel Datenmatrizen

BEMERKUNGEN Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis NaN (not a number)

NAME rowmeans() — Zeilenweise Mittelwerte

SYNOPSIS

DataMatrix DataMatrix::rowmeans (const real miss);

BESCHREIBUNG rowmeans () berechnet zeilenweise Mittelwerte bei Datenmatrizen mit fehlenden
Werten
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis NaN

NAME rowmeans() — Zeilenweise Mittelwerte

SYNOPSIS

DataMatrix DataMatrix::rowmeans (const realMatrix& R);

4 rowstddevs () — numCompleteCases ()

BESCHREIBUNG rowmeans () berechnet zeilenweise Mittelwerte bei Datenmatrizen mit fehlenden
Werten
R Indikatormatrix fiir fehlende Werte

BEMERKUNGEN Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis NaN

NAME rowstddevs() — Zeilenwesie Standardabweichungen
SYNOPSIS

DataMatrix DataMatrix: :rowstddevs();

BESCHREIBUNG rowstddevs() berechnet zeilenweise Standardabweichungen bei Datenmatrizen
BEMERKUNGEN Teilung durch n — 1

NAME rowstddevs() — Zeilenweise Standardabweichungen
SYNOPSIS

DataMatrix DataMatrix: :rowstddevs(const real miss);

BESCHREIBUNG rowstddevs() berechnet zeilenweise Standardabweichungen bei Datenmatrizen mit
fehlenden Werten
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN Teilung durch n — 1. Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis
NaN

NAME rowstddevs() — Zeilenweise Standardabweichungen
SYNOPSIS

DataMatrix DataMatrix: :rowstddevs(const realMatrix& R);

BESCHREIBUNG rowstddevs() berechnet zeilenweise Standardabweichungen bei Datenmatrizen mit
fehlenden Werten
R Indikatormatrix fiir fehlende Werte

BEMERKUNGEN Teilung durch n — 1. Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis
NaN

NAME rowsums () — Zeilensummen

SYNOPSIS

DataMatrix DataMatrix: :rowsums();

BESCHREIBUNG rowsums () berechnet Zeilensummen bel Datenmatrizen

NAME rowsums () — Zeilensummen

SYNOPSIS

DataMatrix DataMatrix: :rowsums (const real miss);

BESCHREIBUNG rowsums () berechnet Zeilensummen bel Datenmatrizen
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

BEMERKUNGEN Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis 0O

NAME rowsums () — Zeilensummen

SYNOPSIS

DataMatrix DataMatrix: :rowsums (const realMatrix& R);

BESCHREIBUNG rowsums () berechnet Zeilensummen bel Datenmatrizen
R Indikatormatrix fiir fehlende Werte

BEMERKUNGEN Falls alle Werte in einer Zeile fehlen, ist das jeweilige Ergebnis 0O

NAME numCompleteCases () — Vollstandige Félle zdhlen
SYNOPSIS

unsigned DataMatrix::rowsums (const real miss);

BESCHREIBUNG numCompleteCases () bestimmt die Anzahl der vollstandig beobachteten Fille,
d.h. die Anzahl der Zeilen ohne Werte gleich miss
miss beliebiger Wert, der als Indikator fiir fehlende Werte dient

NAME numCompleteCases () — Vollstandige Félle zdhlen
SYNOPSIS

unsigned DataMatrix: :rowsums (const realMatrix& R);

3 Listen 5

BESCHREIBUNG numCompleteCases() bestimmt die Anzahl der vollstdndig beobachteten Falle
R Indikatormatrix fiir fehlende Werte

3 Listen

In der Headerdatei tlonglst.h wird eine einfache verkettete Liste definiert. Eine komplexere
Implementierung einer Liste, die hier aber nicht besprochen werden soll, kann in tlinklst.h
gefunden werden. Das Arbeiten mit einer LongList besteht immer aus zwei Teilen. Der Liste
selbst und einem ‘zur Liste gehorigen’ LongListIterator (die Verkniipfung ist allerdings ge-
nau in umgekehrter Richtung). Elemente werden in die Liste eingefiigt und iiber den Tterator
angesprochen.

NAME insert () — Einfiigen in die Liste
SYNOPSIS

int LongList::insert(const T& v);

BESCHREIBUNG insert () fiigt ein neues Element in die Liste ein. Der Riickgabewert ist 1, falls das
FElement erfolgreich eingefiigt werden konnte. Tritt ein Fehler auf ist der Riickgabewert 0.

WARNUNGEN Das Element mufl einen Copy-Konstruktor besitzen

NAME size() — Lange einer Liste
SYNOPSIS

unsigned LongList::size();

BESCHREIBUNG size() liefert die Lange einer Liste zuriick
BEMERKUNGEN len() liefert das gleiche Ergebnis

NAME LongListIterator() — Konstruktor
SYNOPSIS
LongListIterator::LongListIterator(LongList<T> &list);

BEscHREIBUNG () Konstruktor, der die Verbindung des lterators zu einer Liste herstellt
list Liste mit der der Iterator verkniipft werden soll

NaAME () — Zugriffsoperator
SYNOPSIS

T LongListIterator::operator() (void);

BESCHREIBUNG () getattet den lesenden und schreibenden Zugriff auf das aktuelle Element der mit
dem Iterator verkniipften Liste

NAME ++ — Inkrementoperator
SYNOPSIS

void LongListIterator::operator++(void);

BESCHREIBUNG ++ Setzt den Iterator auf das nichste Element der Liste, mit der er verknipft ist

NAME reset () — Zugriffsoperator
SYNOPSIS

void LongListIterator::reset();

BESCHREIBUNG reset () Setzt den Iterator auf das erste Element der Liste mit der er verkniipft ist

4 Zufallszahlen

In der Headerdatei agrandom.h werden zwei Zufallszahlengenerator definiert. Die Initialisierung
von ag_Time_RNG basiert auf der Systemzeit, die automatisch ermittelt wird. Der Generator
ag_Seed_RNG mufl vom Benutzer selbst mit einem Startwert (Seed) initialisiert werden. Durch
die Explizite Angabe des Startwerts besteht die Moglichkeit mehrere Wiederholungen der selben
Folge von Zufallszahlen zu erhalten.

6 5 Verteilungen etc. — p_value_binomial ()

Die einzelnen Zufallszahlentypen sind in Fieger, Heumann, Kastner und Watzka (1997) be-
schrieben (siehe Abschnitt 4, Erzeugen von Zufallszahlen).

5 Verteilungen etc.

In diesem Abschnitt werden einige Funktionen zur Berechnung von Verteilungen und ‘p-values’
vorgestellt. Hier ist bei weitem keine volle Funktionalitdt vorhanden, die kommentierten Quell-
texte (distribs.cc) sollten jedoch als Basis fiir einfache eigene Erweiterungen dienen kénnen.
Die zugrundeliegende Basis sind die Funktionen in c¢dflib.h (cdflib von Barry W. Brown und
James Lovato, siehe StatLib Server http://www.stat.cmu.edu/gereral/cdflib).

5.1 Verteilungsfunktionen

In der Headerdatei normvert.h werden die Verteilungsfunktion und die inverse Verteilungs-
funktion der Standardnormalverteilung bereitgestellt. Andere Verteilungsfunktionen werden
hier nicht bereitgestellt. Sie konnen, wie oben erwdhnt, auf cdflib.h basierend selbst leicht
implementiert werden.

NAME invphi() — Inverse Normalverteilungsfunktion

SYNOPSIS

real invphi(real x);

BESCHREIBUNG invphi() Inverse der Verteilungsfunktion der Standardnormalverteilung.
X Stelle, an der ausgewertet werden soll

BEMERKUNGEN invphi(x) = ®7'(x)

NAME phi() — Normalverteilungsfunktion
SYNOPSIS

real phi(real x);

BESCHREIBUNG phi() Verteilungsfunktion der Standardnormalverteilung.
X Stelle, an der ausgewertet werden soll

BEMERKUNGEN phi(x) = ®(z)

5.2 Funktionen fiir p-values

In der Headerdatei distribs.h werden Funktionen fiir einseitige p-values bestimmter Vertei-
lungen definiert. Diese Verteilungen sind die Beta-Verteilung, die Binomial-Verteilung, die x2-
Verteilung, die F-Verteilung, die Standardnormal-Verteilung, die Poisson-Verteilung und die
t-Verteilung.

Die Funktion p_value xx({Parameter fir zz), TG) liefert den Wert o geméif

P(X>TG)=«,

Mit xx ist die jeweilige Funktion (beta, binomial, ...) zu bezeichnen, deren Parameter an der
Stelle (Parameter fir zz) angegeben werden.

NAME p_value beta() — Beta-Verteilung
SYNOPSIS

‘real p_value_beta(const real a, const real b, const real TG);

BESCHREIBUNG p_value beta() liefert den p-value einer betaverteilten Zufallsgrofie

a erster Parameter der Beta(a, b)-Verteilung
b zweiter Parameter der Beta(a, b)-Verteilung
TG Testgrofie

NAME p_value binomial () — Binomialverteilung
SYNOPSIS

real p_value_binomial(const unsigned N,
const real Prob, const unsigned TG);

BESCHREIBUNG p_value binomial () liefert den p-value einer binomialverteilten Zufallsgrofie

p-value chisquare () — NoverK()

N Stichprobenumfang
Prob Wahrscheinlichkeit fiir Erfolg bei jedem Bernoulli-Experiment
TG Testgrofie

NAME p_value_chisquare () — y?-Verteilung
SYNOPSIS

real p_value_chisquare(const unsigned df, const real TG)

BESCHREIBUNG real p_value_chisquare() liefert den p-value einer y?-verteilten ZufallsgroBe
af Freiheitsgrade
TG Testgrofie

NAME p_value f () — F-Verteilung
SYNOPSIS

real p_value_f(const unsigned dfn,

const unsigned dfd, const real TG);

BESCHREIBUNG p_value_f () liefert den p-value einer F-verteilten Zufallsgrofie

dfn Freiheitsgrade Zahler (nominator)
dfd Freiheitsgrade Nenner (denominator)
TG Testgrofie

NAME p_value standardnormal () — Standardnormalverteilung

SYNOPSIS

real p_value_standardnormal(const real TG);

BESCHREIBUNG p_value_standardnormal () liefert den p-value einer standardnormalverteilten
Zufallsgrofie
TG Testgrofie

BEMERKUNGEN Die Funktion invphi(TG) liefert das gleiche Resultat

NAME p_value poisson() — Poisson-Verteilung
SYNOPSIS

real p_value_poisson(const real lambda, const unsigned TG)

BESCHREIBUNG p_value poisson() liefert den p-value einer poissonverteilten Zufallsgrofie
lambda Parameter der Poissonverteilung
TG Testgrofie

NAME p_value_t() — Students t-Verteilung
SYNOPSIS

real p_value_t(const unsigned df, const real TG)

BESCHREIBUNG p_value_t () liefert den p-value einer t-verteilten Zufallsgrofie
af Freiheitsgrade
TG Testgrofie

6 Weitere Utilities

6.1 Binomialkoeffizient

In der Headerdatel bincoeff.h wird eine Funktion fiir den Binomialkoeffizienten (Z) definiert.

NAME NoverK() — Binomialkoeflizient
SYNOPSIS

unsigned NoverK(unsigned n, unsigned k) ;

BESCHREIBUNG NoverK () Binomialkoeffizient (:)
n natiirliche Zahl
k natiirliche Zahl

8 7 Beispiele

6.2 Kombinatorik

In der Headerdatel combinat.h werden Funktionen zur Kombinatorik bereitgestellt.

NAME Enumerate NoverK Set() — Auflistung von Teilmengen
SYNOPSIS

unsignedArray2D Enumerate_NoverK_Set
(const unsigned N, const unsigned K, const bool AddOne);

BESCHREIBUNG Enumerate NoverK Set () Auflistung von Teilmengen. N-faches Ziehen ohne
Zuricklegen aus einer Urne mit K verschiedenen Kugeln.
N Anzahl der Ziehngen
K Anzahl der Kategorien, bezeichnet mit 0,..., K — 1
AddOne Falls true, Bezeichnug der Kategorien mit 1,..., K

BEMERKUNGEN Beachte N < K

NAME Enumerate Set_Combinations() — Auflistung von Teilmengen
SYNOPSIS

unsignedArray2D Enumerate_Set_Combinations
(const unsignedArray &SetSizes, const bool AddOne);

BESCHREIBUNG Enumerate Set _Combinations () Auflistung von Teilmengen. Ziehen aus
verschiedenen Urnen verschiedener Umfénge n; (jeweils ein Mal je Urne 1)
SetSizes Array mit den Umfangen n; der einzelnen Urnen

AddOne Falls true, Bezeichnug der Kategorien mit 1,..., K;

6.3 Sortieren

In der Headerdatei gsort.h wird ein Quick-Sort Algorithmus fiir Arrays (Array<T>) definiert.

NAME quicksort () — Quicksort
SYNOPSIS

void quicksort(Array<T>& vector);

BESCHREIBUNG quicksort () sortiert einen Array in aufsteigender Ordnung

7 Beispiele
Anwendung von statistischen Funktionen; die Riickgabe erfolgt in einem Spaltenvektor:

/* spaltenweise Mittelwerte einer bereits
bestehenden Matrix X berechnen */
matrix bar_X = X.colmeans();

/* Mittelwerte ausgeben */

for (int i=0; i<X.rows(); i++) {
cout << bar_X.get(i,0) << endl;

}

Erzeugen eines Storvektors € ~ N (0, 1) mit Zufallszahlen:

const unsigned int n = 100;
matrix epsilon(n,1);
ag_Time_RNG<real> epstime;

for (int i=0; i<m; i++) {
epsilon.put(i,0, epstime.normal(0,1));

}

// selbes mit definiertem Startwert,
// d.h. wiederholbar
epsseed = ag_seed_RNG<real>(12345);

for (int i=0; i<m; i++) {
epsilon.put(i,0, epsseed.normal(0,1));

Literaturverzeichnis 9

}

// noch einmal ...
epsseed = ag_seed_RNG<real>(12345);
// usw.

Testen von Hypothesen; Verwenden von p-values:

const real Niveau = 0.05;
const unsigned int Freiheitsgrade = 99;

/* vergleichen einer bereits berechneten
TestgroBe TG mit zugehdrigem p-value */

if (real p_value_t(Freiheitsgrade, TG) < Niveau) {
cout << "H_O ablehnen'" << endl;

} else {
cout << "H_O nicht ablehnen'" << endl;

}

Literaturverzeichnis

Brown, B. W. und Lovato, J. (1993). CDFLIB, library of fortran routines for cumulative dis-
tribution functions, inverses, and other parameters, http://www.stat.cmu.edu/general/
cdflib. (StatLib).

Fieger, A., Heumann, C., Kastner, C. und Watzka, K. (1997). Generische Bibliothek zur Linearen
Algebra und zur Simulation in C++, SFB386 — Discussion Paper 63, Ludwig-Maximilians-
Universitdt Miinchen.

