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Summary

Maximum likelihood estimation of regression parameters with incomplete covariate

information usually requires a distributional assumption about the concerned

covariates which implies a source of misspeci�cation� Semiparametric procedures

avoid such assumptions at the expense of e�ciency� A simulation study is

carried out to get an idea of the performance of the maximum likelihood estima�

tor under misspeci�cation and to compare the semiparametric procedures with

the maximum likelihood estimator when the latter is based on a correct assumptions�

KEY WORDS� Logistic regression� Maximum likelihood� EM algorithm� Missing

covariates� Missing data� Semiparametric e�cient�

�� Introduction

The problem of coping with incomplete information in the covariates when estimat�

ing a regression parameter is common in applied work� A simple solution is given by

the complete case analysis where all incomplete cases are discarded� The resulting

complete case estimator� however� is obviously ine�cient and not generally consis�

tent under the missing at random assumption 	MAR
� which excludes dependence

of the observability of a covariate on its unobserved value 	Rubin� ��
�
� Within the

more sophisticated methods two main approaches can be distinguished and will be

compared in this paper� These are the parametric one which consists in specifying

�



the covariate distribution and thus allows for likelihood inference and the semipara�

metric one which avoids any distributional assumption about the covariates� only

the original regression model is speci�ed�

Full parametric procedures have been proposed for instance by Little 	����
� Black�

hurst and Schluchter 	����
� Ibrahim 	����
� and Ibrahim and Weisberg 	����
�

Usually the distributional assumption concerns the conditional distribution of the

incomplete covariate given a subset of or all the other covariates and the response

variable� The resulting maximum likelihood estimator is asymptotically e�cient if

the speci�cation of this conditional covariate distribution is correct� Misspeci�ca�

tion is likely to occur when restrictive assumptions are inevitable as for example

when one of the involved variables is continuous� Little 	����
 and Ibrahim and

Weisberg 	����
 assume in this situation a Gaussian covariate distribution� There

is no apparent reason why this standard assumption should be correct and nothing

is known so far about its �robustness� against misspeci�cation� In our simulation

study we investigate the behaviour of a maximum likelihood estimator which as�

sumes a Gaussian covariate distribution while the true distribution is Student or ��

representing serious violations of the standard assumption�

Semiparametric procedures have been intensively investigated in the last years� For

the situation of two�stage case�control studies Breslow and Cain 	����
 propose

a pseudoconditional likelihood approach yielding a consistent estimator under the

MAR assumption� It has been shown 	Cain and Breslow� ����� Vach and Illi� ���



that in the situation of a logistic regression model this turns out to be a simple mod�

i�cation of the complete case estimator� Another approach is to use the empirical

distribution or nonparametric kernel estimates to estimate the unknown distribu�

tion� This has been proposed by Pepe and Flemming 	����
 and Carroll and Wand

	����
 in the context of mismeasured covariates but the resulting estimators for the

regression parameter are only consistent if the missing mechanism is MAR and does

not depend on the response variable� Reilly and Pepe 	����
 apply the same idea

in order to estimate the score function for incomplete observations� Their so�called

mean score estimator is consistent under MAR� Robins et al� 	����
 and Robins et

al� 	����
 address the performance of such semiparametric estimators by considering

�



the lower variance bound of any regular semiparametric estimator� The estimator

that attains this variance bound� however� usually depends on the unknown covari�

ate distribution� For rather general cases they describe adaptive semiparametric

e�cient estimators which are feasible without this knowledge� The simulation study

conducted here gives an idea of the gain in e�ciency of this estimator compared

with the mean score and the pseudoconditional likelihood methods� In addition� it

allows to assess the performance of the semiparametric e�cient estimator compared

to the maximum likelihood estimator with correct assumption about the covariate

distribution for �nite sample size�

The outline of the paper is as follows� We restrict ourselves to the situation of a lo�

gistic regression model which is mostly used in practice when the response is binary�

In Section � we describe this model and the missing situation to which we apply

the di�erent estimators which in turn are presented in Section �� The considered

estimators are the complete case� the Breslow�and�Cain� the mean score� the semi�

parametric e�cient� and the maximum likelihood estimator� The simulation designs

are given in Section �� the results of the simulation study in Section �� Finally� we

discuss the obtained results�

�� The Model

We compare the di�erent approaches to estimate a regression parameter along the

special case of a logistic regression� Let Y denote a binary response variable� X� a

completely observed binary covariate and X� an incompletely observed continuous

covariate� The logistic regression model is given by the assumption that

Pr	Y � �jX� � x�� X� � x�� �
 �
expf�� � ��x� � ��x�g

� � expf�� � ��x� � ��x�g
� 	�


where � � 	��� ��� ��

� is the parameter vector to be estimated� For ease of notation

we also write Pr	yjx�� x�� �
 instead of Pr	Y � yjX� � x�� X� � x�� �
�

The considered missing situation can be described as follows� LetM be an indicator

variable indicating if X� is observable 	M � �
 or not 	M � �
� The missing mech�

anism is assumed to satisfy the MAR assumption� that is Pr	M � �jy� x�� x�
 �

Pr	M � �jy� x�
 � q	y� x�
� These conditional probabilities for complete observa�

tions are assumed to be bounded away from zero� The MAR assumption allows us

�



to assume that unobserved values of X� have the same conditional distribution as

the observed values� Let now 	Y i� X i
�� X

i
��M

i
� i � �� � � � � N� be an independent

sample from 	Y�X�� X��M
� With V � fijmi � �g the observed data is given by

f	yi� xi�� x
i
�� m

i
ji � Vg and f	yi� xi�� m
i
ji � f�� � � � � NgnVg� The likelihood generat�

ing 	Y�X�� X��M
 is

L	�� �
 � fX�
	x�j�
fM jY�X�

	mjy� x�� �

n
Pr	yjx�� x�� �
fX�jX�

	x�jx�� �

om

�Z
Pr	yjx�� z� �
fX�jX�

	zjx�� �
 dz
���m

� 	�


where � � 	�� �� �
� The parameters �� � and � refer to the marginal distribution

of X�� to the conditional distribution of M given Y and X� which is binomial with

probabilities q	y� x�
� and to the conditional distribution ofX� givenX�� Maximizing

	�
 in � is obviously not possible without knowledge of fX�jX�
whereas knowledge

about fX�
and the missing mechanism is not required as far as the latter is MAR�

The parametric approach which will be proposed in the next section consists in

specifying fX�jX�
up to the unknown parameter � which is assumed to be �nite and

then maximizing 	�
 simultaneously in � and �� The semiparametric approach takes

� as an �in�nite dimensional� parameter with values in the set of the corresponding

densities�

A special role will be played by the observable response rates given by

V 	y� x�


N	y� x�

� �q	y� x�
� y� x� � f�� �g� 	�


with frequencies N	y� x�
 � �fi � f�� � � � � Ngjyi � y� xi� � x�g and V 	y� x�
 �

�fi � Vjyi � y� xi� � x�g� They can be regarded as estimates of q	y� x�
� y� x� �

f�� �g� Note that this straightforward estimation is only possible if Y and X� are

discrete�

�� The Estimators

��
 Complete case analysis

The complete case analysis consists in applying complete data methods to the re�

duced data set f	yi� xi�� x
i
�
ji � Vg� i�e� it maximizes

LCC	�
 �
Y
i�V

Pr	yijxi�� x
i
�� �
�

�



The resulting estimator will be denoted by ��CC � As shown by Zhao et al� 	����


it is consistent if the missingness is conditionally independent of Y given X� and

X� but it may be biased under MAR� Obviously the complete case estimator is in

general not e�cient since it ignores the information in f	yi� xi�
ji � f�� � � � � NgnVg�

��� Maximum likelihood estimation

Following Ibrahim and Weisberg 	����
 the considered maximum likelihood estima�

tor is computed under the assumption that the conditional distribution of X� given

X� is Gaussian� This is parametrized as follows� let 	x � E	X�jX� � x
� x � f�� �g�

denote the means which depend on X� and 
� the variance which is independent of

X�� i�e� we have in 	�
 � � 		�� 	�� 

�
� The likelihood to be maximized is given by

LML	�� �
 �
Y
i�V

h
Pr	yijxi�� x

i
�� �
fX�jX�

	xi�jx
i
�� �


i
Y
j�V

�Z
Pr	yjjxj�� z� �
fX�jX�

	zjxj�� �
 dz
�
�

where V � f�� � � � � NgnV and fX�jX�
	�jx�
 is the density of the Gaussian distribution

with parameters 	x� and 

�� In general� maximization of LML	�� �
 has to be carried

out numerically due to the integration in the third sum� This can partly be simpli�ed

by using the EM algorithm 	Dempster et al�� ��


 which is easy to apply when the

considered model is an exponential family� In our special case� the joint conditional

distribution of Y and X� given X� constitutes an exponential family as one can

easily check� Still� the E�step involves numerical integration in order to compute

the expectations with respect to the distribution of X� given Y and X� with density

fX�jY�X�
	x�jy� x�� �� �
 �

Pr	yjx�� x�� �
fX�jX�
	x�jx�� �
R

Pr	yjx�� z� �
fX�jX�
	zjx�� �
 dz

� 	�


In our simulation the denominator is approximated by a �� point Gaussian quadra�

ture in analogy to Ibrahim and Weisberg 	����
�

��� Semiparametric estimation

In this section we �rst present some speci�c semiparametric estimators which leave

the unknown distributions in 	�
 completely unrestricted and which are consistent

under the MAR assumption� Their relation to the parametric maximum likelihood

�



estimator is discussed� After that� a general class of semiparametric estimators is

introduced which contains the semiparametric e�cient estimator�

����
 Corrected complete case estimator

The complete case estimator may be biased under the MAR assumption� By consid�

ering the bias factor Vach and Illi 	���

 show that in the special case of a logistic

regression model a simple correction is given by

��CCC� � ��CC� � log
�q	�� �


�q	�� �

� ��CCC� � ��CC�

	�


��CCC� � ��CC� � log
�q	�� �
�q	�� �


�q	�� �
�q	�� �

�

Note that this estimator uses the incomplete observations since the correction terms

use 	�
 and therefore the additional knowledge about the frequencies N	y� x�
�

Cain and Breslow 	����
 derive ��CCC as a special case of a pseudoconditional likeli�

hood approach in a more general setting where they prove the asymptotic normality

	Breslow and Cain� ����
�

In case that all covariates are discrete and a saturated model for the covariate dis�

tribution is assumed ��CCC is identical to the ML estimator 	Vach and Illi� ���

�

It follows that in our case of a continuous X�
��CCC can be derived as a �nonpara�

metric� maximum likelihood estimator in the following sense� Let X denote the

observed values of X� and � � 	�	x�� x�
j x� � f�� �g� x� � X 
 discrete conditional

probabilities for X� � x� given X� � x�� By assuming that fX�jX�
is the density

of an arbitrary conditional distribution of X� given X� putting mass only on the

observed values of X� we get ��CCC by maximizing the likelihood 	�
 in � and �� In

the univariate case this nonparametric procedure leads to the empirical distribution

as estimator of the underlying continuous one�

����� Mean score estimator

As shown by Robins et al� 	����
 the contribution of an incomplete observation to

the total score function is given by the derivation of the logarithm of 	�
 with respect

to � which can be writen as

E

�
�

��
log Pr	Y jX�� X�� �


�����Y � y�X� � x�

�

�



�
Z

�

��
log �Pr	yjx�� x�� �
� fX�jY�X�

	x�jy� x�
dx�� 	�


evaluated at the unknown true conditional density fX�jY�X�
� Under the MAR as�

sumption a consistent estimate of fX�jY�X�
can be based on the complete cases�

Reilly and Pepe 	����
 choose the empirical conditional distribution leading to

X
i�V�y�x��

�

V 	y� x�


�

��
logPr	yjx�� x

i
�� �
 	



as an estimator for 	�
 where V	y� x�
 � fi � Vjyi � y � xi� � x�g� As shown by

the authors� replacing the unknown contribution of an incomplete observation to

the total score function by 	

 leads to a weighted sum of the contributions of the

complete cases which motivates the name of the mean score method� The estimated

total score function is given by

X
i�V

�
N	yi� xi�


V 	yi� xi�


�
�

��
log Pr	yijxi�� x

i
�� �
�

Computation of the corresponding estimator ��ms as root of the above expression is

straightforward� Reilly and Pepe 	����
 show that it is consistent and asymptotically

normal�

A similar idea is proposed by Pepe and Fleming 	����
 and Carroll and Wand 	����
�

Note that expression 	�
 can be rewritten asZ
�

��
log �Pr	yjx�� x�� �
�

Pr	yjx�� x�� �
fX�jX�
	x�jx�
R

Pr	yjx�� z� �
fX�jX�
	zjx�
dz

dx�� 	�


The authors propose to substitute fX�jX�
in 	�
 by a nonparametric density estima�

tor� Since this estimator has to be based on the complete cases it is only consistent

if the missing mechanism is MAR and does not depend on the response variable� It

follows that the resulting estimator of �� too� is only consistent under this restrictive

condition� A detailed discussion can be found in Robins et al� 	����
�

Note that 	�
 or 	�
 are identical to the expectation of the loglikelihood for a com�

plete observation with respect to 	�
� i�e� the conditional distribution of X� given

Y and X�� The idea of Reilly and Pepe 	����
 and Pepe and Fleming 	����
 can

therefore be viewed as approximation of the maximum likelihood estimation by es�

timating the E�step and performing only one iteration of the EM algorithm�






����� Semiparametric e�cient estimation

Robins et al� 	����
 propose a class of semiparametric estimators which depend on

two functions� With K denoting the dimension of the regression parameter the �rst

one� h � IR� � IRK� is a function of the covariates and the second one� � � IR� � IRK �

is a function of the completely observed variables� The corresponding estimator

��	h� �
 is given as solution of the following equation system

NX
i��

�
mih	xi�� x

i
�



i	�


q	yi� xi�

�

	mi � q	yi� xi�

�	y
i� xi�


q	yi� xi�


�
� �� 	�


where 
i	�
 � yi � E	Y ijxi�� x
i
�� �
� Under regularity conditions and under MAR

��	h� �
 is consistent and asymptotically normal� If the unknown missing mechanism

in 	�
 is replaced by 	�
 the resulting estimator of � will be denoted by
b��	h� �
�

The main interest of Robins et al� 	����
 concerns the derivation of an estimator

which is semiparametric e�cient� They show that the proposed class contains an

estimator ��	heff � �eff
 that attains the lower variance bound with the functions

heff and �eff given as follows� The �rst is the solution of the functional equation

h	x�� x�
 � t	x�� x�
� �

��
		x�� x�� �

�
 � EY jX��X�
f	q	Y�X�


�� � �


� EX�jY�X�

	
h	X�� X�

	�

�
jY�X� � x�



	��
jX� � x�� X� � x�g� 	��


with t	x�� x�
 � fE	 ������

q�Y�X��
jX� � x�� X� � x�
g

�� and �� as true value of the regres�

sion parameter� The function �h that minimizes the asymptotic variance of ��	h� �h


for a general function h is given as conditional expectation

�h	y� x�
 � E	h	X�� X�

	�
jY � y�X� � x�
�

It follows that �eff � �heff � The authors further show that ��	h� �h
 is asymptoti�

cally equivalent to
b��	h� �
 calling the latter a pseudo complete case estimator since

it uses the incomplete observations only to estimate the response rates 	�
�

In order to get closed expressions for �eff and heff we can make use of the fact that

Y is discrete� Let Y denote the �nite set of possible realizations of Y � Then taking

expectation of 	��
 with respect to the conditional distribution ofX� given Y andX�

leads to a closed expression for each �eff	y�� �
� y� � Y� These are imputed in 	��


to get heff � Both functions obviously still depend on the unspeci�ed distribution of

�



X� given Y and X�� on the true value �� of the regression parameter� and on the

missing mechanism q� Estimators �heff and ��eff with the property that
b��	�heff � ��eff


is asymptotically equivalent to ��	heff � �eff
 can for example be obtained in the fol�

lowing way� The conditional distribution of X� given Y and X� is estimated by the

corresponding empirical one and the unknown �� can be replaced by any consistent

estimator even an ine�cient one� In our simulation study we choose the mean score

estimator since it is easy to compute� Finally� q is replaced by 	�
� Robins et al�

	����
 show the desired asymptotic equivalence of the resulting estimator ��eff to

the semiparametric e�cient estimator�

Note that the semiparametric estimators proposed above are elements of the class

just de�ned which can be seen as follows� If we choose h � hFeff as the optimal func�

tion for complete data and if q	y� x�
 � q where q is a constant then ��CC � ��	hFeff � �
�

In contrast�
b��	hFeff � �
 is consistent for general MAR mechanisms and identical to the

mean score estimator� Furthermore� one can �nd a function hBC such that
b��	hBC � �


is asymptotically equivalent to the estimator proposed by Breslow and Cain 	����


which is in our case the corrected complete case estimator� But neither
b��	hFeff � �


nor
b��	hBC � �
 are in general semiparametric e�cient�

�� Simulation Designs

The simulation study presented here compares the proposed estimators for small

sample size� A similar study has been carried out by Robins et al� 	����
 with a

large sample size and without including the maximum likelihood estimator� Other

studies 	Zhao and Lipsitz� ����� Vach� ����
 consider only discrete covariates where

the problem of misspeci�cation� which is of special interest here� does not occur�

The di�erent simulation designs are given by varying the type of missing mechanism�

the slope of the conditional distribution of X� given X�� the dependence between

these covariates� and the regression parameter� The chosen missing mechanisms

can be read o� Table �� The �rst mechanism means missing completely at random

	MCAR
 since the missingness is independent of Y and X�� The second depends

only on X� 	MDX
 and the third only on Y 	MDY
� Consequently� MDXY means

that the mechanism depends on both� Y and X�� Note that the MCAR mechanism

�



leads to a greater over all missing rate than the other mechanisms� This has to be

taken into account when interpreting the results�

Table ��

The missing mechanisms and the corresponding probabilities q�y� x���

q	�� �
 q	�� �
 q	�� �
 q	�� �


MCAR ��� ��� ��� ���

MDX ��� ��� ��� ���

MDY ��� ��� ��� ���

MDXY ��� ��� ��� ���

The conditional distribution of X� given X� is either Gaussian� or t	�
 representing

a symmetric but heavy�tailed distribution� or ��	�
 representing a non�symmetric

distribution� These choices are rather meant as archetypes than as being realistic�

With respect to the dependence between the covariates we consider two choices for

	x � E	X�jX� � x
� In the case 	� � 	� � � the covariates are independent� in the

case 	� � ��� 	� � � they are dependent�

To keep the number of parameter constellations limited we let �� take the values

f����� �� ���g whereas �� and �� are kept �xed as �� � � and �� � ��

The covariate X� follows a Bernoulli distribution with Pr	X� � �
 � ���� The sam�

ple size is chosen to be N � ���� For each of the resulting 
� designs ���� samples

are generated using Turbo Pascal 
���

�� Results

In order to compare the estimators we compute the estimated relative mean squared

errors which are the ratios of the Monte Carlo mean squared error of the semipara�

metric e�cient estimator and that of the considered one� This will simply be called

relative MSE� Robins et al� 	����
 consider instead the estimated relative e�ciencies�

i�e� the ratio of the Monte Carlo variances� This is not sensible here since the sample

size is considerably smaller and hence bias is not negligible� Also� for this reason we

additionally compute the means of the observed biases which we will simply call bias�

��



��
 Comparison of the semiparametric e�cient estimator and the ML estimator

We �rst discuss the bias of the semiparametric e�cient and the ML estimator and

after that the relative MSE of the latter one� Therein we distinguish the cases where

the ML estimator is based on a correct assumption about the covariate distribution

and where this assumption is wrong�

��
�
 Bias of the semiparametric e�cient estimator

The bias of the semiparametric e�cient estimator can be read o� Table �� In case

that X� has no in�uence� i�e� �� � �� the bias of all three components ��eff� � ��eff� and

��eff� is negligible for each missing mechanisms and each covariate distribution since

it is always in absolute value smaller than �����

The case �� �� � is more serious especially concerning the estimation of �� when

the covariate distribution is not Gaussian� Here� the bias of ��� is for 	� � 	� of�

ten� and for 	� �� 	� and any covariate distribution nearly always in absolute value

larger than ���� and even larger for the �� and Student covariate distribution� In

both latter situations the bias of ��� is in absolute value roughly about ���� for the

MCAR and about ���� for the other missing mechanisms� The bias of ��� and ��� is

for �� �� � still relatively small� The bias of ��� is in absolute value smaller than ���

besides some exceptions for the �� covariate distribution whereas the one of ��� can

be larger than ��� for 	� �� 	� and also for the �� and Student covariate distribution�

The largest bias has an absolute value of ���� and can be observed for three designs�

two of them within the �� covariate distribution�

An additional aspect concerns the direction of the bias� The estimation of �� has

nearly always a negative one especially for 	� � 	� and the Gaussian covariate dis�

tribution� In contrast to this� the bias of ��eff� is in general positive for 	� � 	�� The

direction of the bias of ��eff� depends on the true value� it is negative for �� � ����

and positive for �� � ����

��



Table ��

Bias of the semiparametric e�cient estimator proposed by Robins et al� �������

covariate distrib� �� � �� � � �� � ��� �� � �

� Gaussian ��eff
�

��eff
�

��eff
�

��eff
�

��eff
�

��eff
�

	��
 ����� ���� ����� ����� ���� �����

MCAR� �� � � ����� ���� ����� ����� ���� �����

��
 ����� ���� ���	 ���� ����� ���


	��
 ����� ���� ����� ����� ���� �����

MDX� �� � � ����� ���� ����� ����� ���� �����

��
 ����� ���� ���	 ���� ����� ����

	��
 ����� ���� ����	 ����� ���� ����	

MDY� �� � � ����� ���� ���� ����� ���� �����

��
 ����� ���
 ���� ���� ����� ����

	��
 ����� ���� ����	 ����� ���� �����

MDXY� �� � � ����� ���
 ����� ����� ���� ����

��
 ����� ���� ���� ���� ���� ���


covariate distrib� �� � �� � � �� � ��� �� � �

� �� ��eff
�

��eff
�

��eff
�

��eff
�

��eff
�

��eff
�

	��
 ����� ���� ����� ����� ���� �����

MCAR� �� � � ����� ���� ���� ���� ����� ����

��
 ���
 ���� ���	 ���� ����� ����

	��
 ����� ���� ����	 ����� ���� �����

MDX� �� � � ���� ���� ���� ���� ����� ����

��
 ���� ����� ���� ���
 ����� ����

	��
 ����� ���� ����� ����� ���	 �����

MDY� �� � � ����� ���� ����� ����
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covariate distrib� �� � �� � � �� � ��� �� � �

� student ��eff
�

��eff
�

��eff
�

��eff
�

��eff
�

��eff
�
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��
 ����� ���� ���� ���� ���
 ����

��
�� Bias of the the ML estimator

As can bee seen from Table �� the bias of the ML estimator is very similar to the

��



one of the semiparametric e�cient one for the Gaussian covariate distribution�

Table � shows the bias of the ML estimator in the situations where the distributional

assumptions are wrong� i�e� for the �� and Student covariate distribution� Here� we

can observe a surprisingly small bias for several parameter constellations� If �� � �

the bias is in absolute value smaller than ���� for each missing mechanism and re�

gardless of the dependence between the covariates� Thus� the wrong assumption

about the covariate distribution does not appear to a�ect the consistency of the ML

estimator when this covariate has no in�uence�

If �� �� � and X� follows the considered �� distribution the bias is clearly a�ected�

Especially the estimation of �� in the presence of a missing mechanism that depends

on the response variable 	MDY and MDXY
 appears to be inconsistent since the

bias takes values about ��� and even larger ones� The bias when estimating �� and

�� is in general larger than ��� if 	� � 	� and even larger if 	� �� 	�� In contrast�

the bias of ��ML
� is negligible given one of the other missing mechanisms 	MCAR or

MDX
 whereas it is in some cases about ��� for ��ML
� and ��ML

� � The largest observed

absolute bias among the designs with �� distribution is �����

If the covariate distribution is Student we can observe the same bias pattern as

for the Gaussian covariate distribution with a slight general tendency to extremer

values and a clear tendency to extremer values for the estimation of �� and �� in

the special case of 	� � 	�� �� �� � and a MDXY missing mechanism� With this

last exception� the results are also similar to those of the semiparametric e�cient

estimator for the Student distribution� The largest observed absolute bias among

the designs with Student covariate distribution is ���
�

��
�� Relative MSE of the ML estimator with correct assumptions

The results presented in Table � allow a direct comparison of the semiparametric

e�cient and the parametric e�cient estimation� Since the bias is similar for both

estimators the relative MSE essentially re�ects the gain in e�ciency due to the ad�

ditional parametric assumption�

��



Table ��

Relative MSE and bias of the maximum likelihood estimator with incomplete data
assuming a gaussian covariate distribution� �The bias is given in brackets in italics��

covariate distrib� �� � �� � � �� � ��� �� � �

� Gaussian ��ML
�

��ML
�

��ML
�

��ML
�

��ML
�

��ML
�
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������ ���� 
���
� ���� 
������ ���� 
����� ���� 
����� ���� 
�����

��
 ���� 
������ ���� 
����� ���� 
����� ���� 
����� ���� 
����� ���� 
�����

At �rst� one can say that both estimators are nearly equal for �� � �� i�e� when

the incompletely observed covariate has no e�ect on the response� since the relative

MSE lies between ���� and ����� Furthermore� the gain in e�ciency is generally only

modest for the MCAR and MDX missing mechanisms amounting to less than ����

in the �rst case and to less than ���� in the second and being even smaller when

	� � 	�� If �� �� � and the missing mechanism is MDY or MDXY we can observe

that in more than half of the designs the relative MSE is greater than ���� reaching

the maxima of ���� and ����� respectively� for �� � ���� The missing mechanisms

which depend on the response variable may therefore be those where the maximum

likelihood estimator truly outperforms the semiparametric e�cient one�

��
�
 Relative MSE of the ML estimator with wrong assumptions

Despite the wrong distributional assumption there are some situations where the

maximum likelihood estimator performs at least as good as the semiparametric e��

cient one with respect to the relative MSE� If �� � � the relative MSEs of all three

components� ��ML
� � ��ML

� � and ��ML
� � are at least � for both covariate distributions and

almost every missing mechanism while at the same time the bias is always very small

as we have seen above� Thus� in these situations the maximum likelihood estimator

seems neither inconsistent nor ine�cient� Exceptions are given by the design with

the MDXY mechanism and the �� distribution where for example the relative MSE

��



of ��� is only ��
� 		� � 	�
 and ���� 		� �� 	�
 which constitutes a serious loss of

e�ciency although the bias is still very small�

Table ��

Relative MSE and bias of the maximum likelihood estimator with incomplete data falsely
assuming a Gaussian covariate distribution� �The bias is given in brackets in italics��

covariate distrib� �� � �� � � �� � ��� �� � �

� �� ��ML
�

��ML
�

��ML
�

��ML
�

��ML
�
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covariate distrib� �� � �� � � �� � ��� �� � �
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�

��ML
�
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�
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�

��ML
�
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�
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If �� �� � and X� is distributed according to the considered �� distribution the max�

imum likelihood estimator performs fairly well for the MCAR and MDX missing

mechanisms� The relative MSE is often greater than � and nearly always greater

than ���� Taking the bias into account� it follows that the good results are mainly

due to a small variance of the maximum likelihood estimator� But if additionally

the missing mechanism depends on the response variable the results are truly bad�

The smallest observed relative MSE amounts to ���� and the largest absolute bias

to ���� occurring for the MDY mechanism�

��



If the covariate distribution is Student the maximum likelihood estimator performs

nearly as well as for the Gaussian� The designs where the relative MSE takes val�

ues smaller than � are given when the covariates are independent and the missing

mechanism is not MCAR� It reaches its minimum of ��
� for the MDXY mechanism

and �� � ���� If� in contrast� 	� �� 	� the relative MSE is in most cases even greater

for the Student than for the Gaussian covariate distribution� This may suggest that

the maximum likelihood estimator is still appropriate for dependent covariates be�

cause it makes a correct assumption about the dependence structure although the

distributional assumption is wrong�

��� Loss of information due to missing values

The comparison of the semiparametric e�cient estimator with the complete data

maximum likelihood estimator denoted by ��full allows to assess the general loss

of information of the semiparametric approach which is due to the missing values

	measured by the relative MSE of the complete data maximum likelihood estima�

tor
� The simulation results are shown in Table ��

First we discuss the information loss concerning the estimation of �� and ��� An

important result is that this is very small if �� � � and the covariates are indepen�

dent 		� � 	�
 as can be observed for each missing mechanism and each covariate

distribution� But in the other situations� i�e� if �� �� � or 	� �� 	�� one has to reckon

with a considerable loss of information due to the missing values since the relative

MSE is clearly greater than �� If the covariates are not independent 		� �� 	�
 the

relative MSE is not smaller even for the designs whith �� � �� Especially for the

MDY and MDXY missing mechanisms it decreases with increasing ��� The simul�

taneity of �� �� � and 	� �� 	� mainly a�ects the estimation of �� which then often

has a greater relative MSE than for independent covariates� Concerning ��full� this

can only be observed with the Student covariate distribution� Another di�erence

between these two components is that the MDX mechanism results in smaller rela�

tive MSEs of ��full� whereas there is no obvious e�ect of the non�MCAR mechanisms

on ��full� � A general result is that the relative MSEs of ��full� and ��full� are greater

for the �� covariate distribution than for the Gaussian or Student while being sim�

��



ilar for the latter two� Additionally� the relative MSEs are greatest for the MCAR

mechanism being roughly about ��
� But this is mainly due to the higher global

missing rate of this mechanism�

The last aspect can also be observed for ��full� where the relative MSE is about � for

the MCAR and about ��� for the other missing mechanisms� The dependence or

independence of the covariates does not seem to a�ect the estimation of �� nor does

the in�uence of X�� This means that if �� � � the relative MSE is not generally

smaller� with some exceptions for 	� � 	� and X� following a Gaussian or Student

distribution� But here we already observe greater relative MSEs for the �� distri�

bution when 	� � 	� regardless of the true value of ��� In the other situations the

estimation is not clearly a�ected by the di�erent covariate distributions although

the maximal relative MSEs of more than � only occur within the Student and ��

distribution 	and MCAR mechanism
� The results for the MCAR mechanism are

interesting because the asymptotic relative e�ciency of the e�cient complete data

estimator and the complete case estimator equals ��� since both are consistent and

the missing rate is ���� Thus� for �nite sample size 	N����
 and certain parameter

constellations the relative MSE of the semiparametric e�cient estimator may be

greater than the asymptotic MSE of the complete case estimator�

Table ��

Relative MSE and bias of the complete data maximum likelihood estimator� �The bias is
given in brackets in italics��

covariate distrib� �� � �� � � �� � ��� �� � �
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The bias of the complete data maximum likelihood estimator is very small for all

designs� as expected� i�e� in absolute value smaller than ����� But one should note

that the largest values occur when estimating �� in case �� �� �� Therefore� these

seem to be the �di�cult� situations�

��� Performance of the semiparametric estimators

In this section� we discuss the performance of the complete case� the corrected com�

plete case� and the mean score estimators compared with the semiparametric e�cient

one� The results of the simulation study are not given in details�

����
 The complete case estimator

For the designs where the complete case estimator is inconsistent we get that the

bias of ��CC� is always less than �� for both missing mechanisms that depend on

��



the response variable whereas ��CC� is inconsistent only for the MDXY mechanism

showing a bias of more than �� But even when ��CC is consistent the relative MSE

is severely a�ected by discarding the incomplete cases� it often takes values between

���� and ����

����� The corrected complete case estimator

The corrected complete case estimator produces nearly identical results as the semi�

parametric e�cient one� The relative MSEs are nearly always between ���� and

����� exceptions arising only for the non�Gaussian covariate distributions when the

missing mechanism depends on the response variable and �� �� �� But even then the

relative MSE is at least ����� Concerning the bias we can observe the same pattern

as for the semiparametric e�cient estimator with a slight tendency to a greater bias

of ��CCC� for the missing mechanisms that depend on the response variable�

����� The mean score estimator

The mean score estimator is clearly dominated by the semiparametric e�cient esti�

mator� The relative MSE is almost always smaller than ����� The worst result is a

relative MSE of ���
 but in most cases it is still at least ��� and even greater than

��� for the MCAR missing mechanism� The main di�culty seems to concern the

estimation for the MDX mechanism especially for 	� �� 	�� Here� the relative MSEs

are roughly about ����

Although the results are similar for the di�erent covariate distributions it can be

observed that in case of a non�MCAR mechanism� �� � � and 	� �� 	� the relative

MSE of all three components is in any case greater for the Gaussian covariate dis�

tribution than for the others�

�� Discussion

The main result of the simulation study concerns the performance of the ML estima�

tor compared to the semiparametric e�cient one proposed by Robins et al� 	����
�

On the one hand� we have seen that in the situation of a correct assumption about

the covariate distribution and �nite sample size the gain in e�ciency by ML estima�

��



tion is only modest� On the other hand� this parametric approach can lead to serious

bias if the assumed covariate distribution is �far away� from the true one� where �far

away� means �� instead of Gaussian� The Student distribution is in contrast similar

enough to the Gaussian for the bias of the ML estimator to be negligible� at least for

a sample size of ���� However� simulations with a sample size of ����� which are not

reported here� show a more serious bias of the ML estimator given a Student covari�

ate distribution� As conclusion we propose the semiparametric e�cient estimation

as a very good alternative to the parametric approach� Despite its semiparametric

e�ciency being an asymptotic property� the performance appears to be satisfying

also for �nite sample size�

Another interesting result has been obtained for the corrected complete case esti�

mator� It strongly supports the supposition that in the special case of a logistic

regression where all variables except the incomplete one are discrete the estimator

of Breslow and Cain 	����
 is semiparametric e�cient since it appears to be equiv�

alent to the semiparametric e�cient estimator of Robins et al� This has also been

con�rmed by simulations with a sample size of ���� yielding nearly always identical

results for both estimators� However� we have to restrict this result to the logistic

regression model since it has been shown by Robins et al� 	����
 that ��CCC is in

general not semiparametric e�cient�

A point which has not been addressed in this paper but that has to be taken into

account is the possible misspeci�cation of the missing mechanism� The discussed

semiparametric approaches need an estimation of the observation probabilities which

is given by 	�
� For continuous Y or X� there is no such straightforward procedure�

Instead� a parametric model for the missing mechanism has to be assumed� As

shown by Zhao et al� 	����
 the correctness of this model is crucial in assuring the

consistency of the semiparametric estimators�

��
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