LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e SONDERFORSCHUNGSBEREICH 386

Didelez:

Maximum Likelihood and Semiparametric Estimation
in Logistic Models with Incomplete Covariate Data

Sonderforschungsbereich 386, Paper 110 (1998)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Maximum Likelihood and
Semiparametric Estimation in Logistic
Models with Incomplete Covariate Data

By Vanessa Didelez
Unwversity of Munich, Institute of Statistics,
Ludwigstr. 33, D-80539 Munich, Germany

SUMMARY

Maximum likelihood estimation of regression parameters with incomplete covariate
information usually requires a distributional assumption about the concerned
covariates which implies a source of misspecification. Semiparametric procedures
avoid such assumptions at the expense of efficiency. A simulation study is
carried out to get an idea of the performance of the maximum likelihood estima-
tor under misspecification and to compare the semiparametric procedures with

the maximum likelihood estimator when the latter is based on a correct assumptions.

KEY WORDS: Logistic regression; Maximum likelihood; EM algorithm; Missing

covariates; Missing data; Semiparametric efficient.

1. Introduction

The problem of coping with incomplete information in the covariates when estimat-
ing a regression parameter is common in applied work. A simple solution is given by
the complete case analysis where all incomplete cases are discarded. The resulting
complete case estimator, however, is obviously inefficient and not generally consis-
tent under the missing at random assumption (MAR), which excludes dependence
of the observability of a covariate on its unobserved value (Rubin, 1976). Within the
more sophisticated methods two main approaches can be distinguished and will be

compared in this paper. These are the parametric one which consists in specifying



the covariate distribution and thus allows for likelihood inference and the semipara-
metric one which avoids any distributional assumption about the covariates, only
the original regression model is specified.

Full parametric procedures have been proposed for instance by Little (1992), Black-
hurst and Schluchter (1989), Ibrahim (1990), and Ibrahim and Weisberg (1992).
Usually the distributional assumption concerns the conditional distribution of the
incomplete covariate given a subset of or all the other covariates and the response
variable. The resulting maximum likelihood estimator is asymptotically efficient if
the specification of this conditional covariate distribution is correct. Misspecifica-
tion is likely to occur when restrictive assumptions are inevitable as for example
when one of the involved variables is continuous. Little (1992) and Ibrahim and
Weisberg (1992) assume in this situation a Gaussian covariate distribution. There
is no apparent reason why this standard assumption should be correct and nothing
is known so far about its ‘robustness’ against misspecification. In our simulation
study we investigate the behaviour of a maximum likelihood estimator which as-
sumes a Gaussian covariate distribution while the true distribution is Student or x?
representing serious violations of the standard assumption.

Semiparametric procedures have been intensively investigated in the last years. For
the situation of two-stage case—control studies Breslow and Cain (1988) propose
a pseudoconditional likelihood approach yielding a consistent estimator under the
MAR assumption. It has been shown (Cain and Breslow, 1988; Vach and Illi, 1997)
that in the situation of a logistic regression model this turns out to be a simple mod-
ification of the complete case estimator. Another approach is to use the empirical
distribution or nonparametric kernel estimates to estimate the unknown distribu-
tion. This has been proposed by Pepe and Flemming (1991) and Carroll and Wand
(1991) in the context of mismeasured covariates but the resulting estimators for the
regression parameter are only consistent if the missing mechanism is MAR and does
not depend on the response variable. Reilly and Pepe (1995) apply the same idea
in order to estimate the score function for incomplete observations. Their so—called
mean score estimator is consistent under MAR. Robins et al. (1994) and Robins et

al. (1995) address the performance of such semiparametric estimators by considering



the lower variance bound of any regular semiparametric estimator. The estimator
that attains this variance bound, however, usually depends on the unknown covari-
ate distribution. For rather general cases they describe adaptive semiparametric
efficient estimators which are feasible without this knowledge. The simulation study
conducted here gives an idea of the gain in efficiency of this estimator compared
with the mean score and the pseudoconditional likelihood methods. In addition, it
allows to assess the performance of the semiparametric efficient estimator compared
to the maximum likelihood estimator with correct assumption about the covariate
distribution for finite sample size.

The outline of the paper is as follows. We restrict ourselves to the situation of a lo-
gistic regression model which is mostly used in practice when the response is binary.
In Section 2 we describe this model and the missing situation to which we apply
the different estimators which in turn are presented in Section 3. The considered
estimators are the complete case, the Breslow—and—Cain, the mean score, the semi-
parametric efficient, and the maximum likelihood estimator. The simulation designs
are given in Section 4, the results of the simulation study in Section 5. Finally, we

discuss the obtained results.

2. The Model

We compare the different approaches to estimate a regression parameter along the
special case of a logistic regression. Let Y denote a binary response variable, X; a
completely observed binary covariate and Xy an incompletely observed continuous

covariate. The logistic regression model is given by the assumption that

_ _ oy exp{fo + fix1 + Baxa}
Pr(Y =1|1X; =21, Xy = 29; ) = 1+ exp{ o+ Bror + Bora}’ (1)

where 3 = (o, 51, 32) " is the parameter vector to be estimated. For ease of notation
we also write Pr(y|z,, x9; ) instead of Pr(Y = y|X; = x1, Xo = x9; ).

The considered missing situation can be described as follows. Let M be an indicator
variable indicating if X, is observable (M = 1) or not (M = 0). The missing mech-
anism is assumed to satisfy the MAR assumption, that is Pr(M = 1|y, x,z9) =
Pr(M = 1|y, z1) = q(y,x1). These conditional probabilities for complete observa-

tions are assumed to be bounded away from zero. The MAR assumption allows us



to assume that unobserved values of X, have the same conditional distribution as
the observed values. Let now (Y X{ X! M%), 7 = 1,...,N, be an independent
sample from (Y, Xy, Xo, M). With V = {i|m’ = 1} the observed data is given by
{(y', 2%, 2%, m")]i € V} and {(y*, 2%, m")|i € {1,..., N}\V}. The likelihood generat-
ing (Y, X1, X9, M) is

L(B,0) = fX1($1|Oé)fM\Y,X1(m|?Ja$1;7){Pr(y|$1,$2;ﬁ)fX2|X1(fU2|$1;§)}m

{/Pr(y|$1;z; ﬂ)fxg\xl(z|$1;§) dz}l_ma (2)

where 6 = («,7v,£). The parameters o,y and £ refer to the marginal distribution
of X3, to the conditional distribution of M given Y and X; which is binomial with
probabilities ¢(y, 1), and to the conditional distribution of X5 given X;. Maximizing
(2) in 3 is obviously not possible without knowledge of fy, x, whereas knowledge
about fx, and the missing mechanism is not required as far as the latter is MAR.
The parametric approach which will be proposed in the next section consists in
specifying fx,|x, up to the unknown parameter § which is assumed to be finite and
then maximizing (2) simultaneously in # and . The semiparametric approach takes
f as an ‘infinite dimensional’ parameter with values in the set of the corresponding
densities.

A special role will be played by the observable response rates given by

V(yaxl)
N(y7 xl)

with frequencies N(y,z1) = #{i € {1,...,N}|y’ = y,2} = 21} and V(y,2,) =

= Q(yaxl)a Y, x1 € {07 1}> (3)

#{i € V|y* = y,2% = x1}. They can be regarded as estimates of q(y,z1), y,z; €
{0,1}. Note that this straightforward estimation is only possible if Y and X, are

discrete.

3. The Estimators

3.1 Complete case analysis

The complete case analysis consists in applying complete data methods to the re-
duced data set {(y', 2%, 2%)|i € V}, i.e. it maximizes

L) = [I Pr(y'lai, 2% ).
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The resulting estimator will be denoted by BCC. As shown by Zhao et al. (1996)
it is consistent if the missingness is conditionally independent of Y given X; and
X5 but it may be biased under MAR. Obviously the complete case estimator is in

general not efficient since it ignores the information in {(y%, z%)|i € {1,..., N}\V}.

3.2 Mazimum likelihood estimation
Following Ibrahim and Weisberg (1992) the considered maximum likelihood estima-
tor is computed under the assumption that the conditional distribution of X, given
X is Gaussian. This is parametrized as follows: let p, = E(X|X; = ), z € {0, 1},
denote the means which depend on X; and o? the variance which is independent of
X1, i.e. we have in (2) € = (uo, pt1,02). The likelihood to be maximized is given by
LME(B€) = Hv[Pr(y%i,wé;ﬂ)fX2X1(a:éla:i;§)]

i€

H_ [/ Pr(yﬂx{,z; ﬁ)fXQ\XI(ZWi;f) dz] 5

jEV
where V = {1,..., N}\V and fx,x, (-|z1) is the density of the Gaussian distribution
with parameters y,, and 2. In general, maximization of LM%(3, £) has to be carried
out numerically due to the integration in the third sum. This can partly be simplified
by using the EM algorithm (Dempster et al., 1977) which is easy to apply when the
considered model is an exponential family. In our special case, the joint conditional
distribution of Y and X, given X; constitutes an exponential family as one can
easily check. Still, the E-step involves numerical integration in order to compute

the expectations with respect to the distribution of X5 given Y and X; with density

_ Pf(y|$1,1’2;5)fX2\X1(172|$1;§)
S Pr(ylzy, 25 8) fxo)x, (21215 6) dz

In our simulation the denominator is approximated by a 10 point Gaussian quadra-

(4)

fXg\Y,Xl (w2]y, 21 &, B)

ture in analogy to Ibrahim and Weisberg (1992).

3.8 Semiparametric estimation
In this section we first present some specific semiparametric estimators which leave
the unknown distributions in (2) completely unrestricted and which are consistent

under the MAR assumption. Their relation to the parametric maximum likelihood



estimator is discussed. After that, a general class of semiparametric estimators is

introduced which contains the semiparametric efficient estimator.

3.3.1 Corrected complete case estimator
The complete case estimator may be biased under the MAR assumption. By consid-
ering the bias factor Vach and Illi (1997) show that in the special case of a logistic

regression model a simple correction is given by

AOCCC — AOCC—FIOg (2(070), A2CCC — }CC

q(1,0) )
R N 7(1,0)q(0, 1
= f0+1ogw_

4(0,0)q(1,1)

Note that this estimator uses the incomplete observations since the correction terms
use (3) and therefore the additional knowledge about the frequencies N(y, ).
Cain and Breslow (1988) derive BCCC as a special case of a pseudoconditional likeli-
hood approach in a more general setting where they prove the asymptotic normality
(Breslow and Cain, 1988).

In case that all covariates are discrete and a saturated model for the covariate dis-
tribution is assumed 3°CC is identical to the ML estimator (Vach and IIli, 1997).
It follows that in our case of a continuous X, 3°CC can be derived as a ‘nonpara-
metric’ maximum likelihood estimator in the following sense. Let X denote the
observed values of X, and £ = ({(xy,x2)| 1 € {0,1}, 5 € X) discrete conditional
probabilities for Xy = x5 given X; = x;. By assuming that fx, x, is the density
of an arbitrary conditional distribution of X, given X putting mass only on the
observed values of X, we get 3°°C by maximizing the likelihood (2) in f# and &. In
the univariate case this nonparametric procedure leads to the empirical distribution

as estimator of the underlying continuous one.

3.3.2 Mean score estimator
As shown by Robins et al. (1995) the contribution of an incomplete observation to
the total score function is given by the derivation of the logarithm of (2) with respect

to  which can be writen as

E (%IOgPT(HXth;ﬁ)‘ Y=y X = 1’1)
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_ %Mg[m(ym,u;ﬁnfXﬂ,Xl(my,wl)d% 6

evaluated at the unknown true conditional density fx,y,x,- Under the MAR as-
sumption a consistent estimate of fx,y,x, can be based on the complete cases.

Reilly and Pepe (1995) choose the empirical conditional distribution leading to

1 0 .
" log Pr(yla1, 7); ) (7)
iev%g;l) V(y,xl) aﬁ b

as an estimator for (6) where V(y,z1) = {i € V|y* = y A 2% = 2;}. As shown by
the authors, replacing the unknown contribution of an incomplete observation to
the total score function by (7) leads to a weighted sum of the contributions of the
complete cases which motivates the name of the mean score method. The estimated
total score function is given by
i i
3 (Tl touPrly et o ).

Computation of the corresponding estimator Bms as root of the above expression is
straightforward. Reilly and Pepe (1995) show that it is consistent and asymptotically
normal.

A similar idea is proposed by Pepe and Fleming (1991) and Carroll and Wand (1991).

Note that expression (6) can be rewritten as

9 ) Pr(y|ay, 95 B) fx, x, (2] 71)
aﬁ log [Pr(y|x1,x2, ﬁ)] fPr(yL/L‘l, 2 ﬁ)fXZ‘Xl (Z|.’L‘1)dz T9. (8)

The authors propose to substitute fx,x, in (8) by a nonparametric density estima-
tor. Since this estimator has to be based on the complete cases it is only consistent
if the missing mechanism is MAR and does not depend on the response variable. It
follows that the resulting estimator of 3, too, is only consistent under this restrictive
condition. A detailed discussion can be found in Robins et al. (1995).

Note that (6) or (8) are identical to the expectation of the loglikelihood for a com-
plete observation with respect to (4), i.e. the conditional distribution of X, given
Y and X;. The idea of Reilly and Pepe (1995) and Pepe and Fleming (1991) can
therefore be viewed as approximation of the maximum likelihood estimation by es-

timating the E—step and performing only one iteration of the EM algorithm.



3.3.8 Semiparametric efficient estimation

Robins et al. (1994) propose a class of semiparametric estimators which depend on
two functions: With K denoting the dimension of the regression parameter the first
one, h : IR? — IRX, is a function of the covariates and the second one, ¢ : IR?> — IRK,
is a function of the completely observed variables. The corresponding estimator

~

B(h, ) is given as solution of the following equation system

$- <mlh(a:g,x§)sl(ﬂ) (' - q(y%wi))sO(yﬂwi)) o, ()

q(y, 1) q(yt, )

i=1
where €'(3) = y* — E(Y"|2¢, z%; ). Under regularity conditions and under MAR
3 (h, @) is consistent and asymptotically normal. If the unknown missing mechanism
in (9) is replaced by (3) the resulting estimator of § will be denoted by B(h, ©).
The main interest of Robins et al. (1994) concerns the derivation of an estimator
which is semiparametric efficient. They show that the proposed class contains an

estimator B(hess, pess) that attains the lower variance bound with the functions

herr and @.rp given as follows. The first is the solution of the functional equation

Bwn, 22) = tn, 22) | o, 0 6°) + By od (¥, X1) 7 — 1)

%M(

“Exvx, (h(X1>X2)5(ﬁ0)|Ya Xy = $1) ()| X1 =21, Xy = 1“2}] (10)

with t(zy, z9) = {E(qs((figf) | X, = 21, Xy = 23)} 7" and 3° as true value of the regres-
sion parameter. The function ¢” that minimizes the asymptotic variance of 5(h, ")

for a general function A is given as conditional expectation
¢"(y, 21) = E(h(X1, X2)e(B)]Y =y, X1 = 21).

It follows that @.;; = @"<fs. The authors further show that 3(h, ¢") is asymptoti-
cally equivalent to E (h,0) calling the latter a pseudo complete case estimator since
it uses the incomplete observations only to estimate the response rates (3).

In order to get closed expressions for ¢.¢s and h.f; we can make use of the fact that
Y is discrete. Let ) denote the finite set of possible realizations of Y. Then taking
expectation of (10) with respect to the conditional distribution of X, given Y and X,
leads to a closed expression for each wesr(vo,-), yo € Y. These are imputed in (10)
to get hesp. Both functions obviously still depend on the unspecified distribution of
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X, given Y and X, on the true value 3° of the regression parameter, and on the
missing mechanism ¢. Estimators ﬁeff and @.sp with the property that E(ﬁeff, Deff)
is asymptotically equivalent to 3 (heff, pess) can for example be obtained in the fol-
lowing way. The conditional distribution of X5 given Y and X, is estimated by the
corresponding empirical one and the unknown 3° can be replaced by any consistent
estimator even an inefficient one. In our simulation study we choose the mean score
estimator since it is easy to compute. Finally, ¢ is replaced by (3). Robins et al.
(1994) show the desired asymptotic equivalence of the resulting estimator Beff to
the semiparametric efficient estimator.

Note that the semiparametric estimators proposed above are elements of the class
just defined which can be seen as follows. If we choose h = hl;; as the optimal func-
tion for complete data and if ¢(y, 1) = ¢ where ¢ is a constant then [CC = B(hfff, 0).
In contrast, E(hfff, 0) is consistent for general MAR mechanisms and identical to the
mean score estimator. Furthermore, one can find a function A% such that E(hBC, 0)
is asymptotically equivalent to the estimator proposed by Breslow and Cain (1988)
which is in our case the corrected complete case estimator. But neither E(hfff, 0)

nor 3(hB%,0) are in general semiparametric efficient.

4. Simulation Designs

The simulation study presented here compares the proposed estimators for small
sample size. A similar study has been carried out by Robins et al. (1994) with a
large sample size and without including the maximum likelihood estimator. Other
studies (Zhao and Lipsitz, 1992; Vach, 1994) consider only discrete covariates where
the problem of misspecification, which is of special interest here, does not occur.
The different simulation designs are given by varying the type of missing mechanism,
the slope of the conditional distribution of Xy given X, the dependence between
these covariates, and the regression parameter. The chosen missing mechanisms
can be read off Table 1. The first mechanism means missing completely at random
(MCAR) since the missingness is independent of Y and X;. The second depends
only on X; (MDX) and the third only on Y (MDY). Consequently, MDXY means
that the mechanism depends on both, Y and X;. Note that the MCAR mechanism



leads to a greater over all missing rate than the other mechanisms. This has to be

taken into account when interpreting the results.

Table 1:
The missing mechanisms and the corresponding probabilities ¢(y, z1).

q(0,0) | ¢(1,0) | (0,1) | g(1,1)

MCAR || 0.3 0.3 | 0.3 0.3
MDX | 0.8 0.8 | 0.3 0.3
MDY | 0.8 0.3 | 08 0.3

MDXY | 0.8 0.3 | 0.3 0.8

The conditional distribution of X, given X, is either Gaussian, or ¢(6) representing
a symmetric but heavy-tailed distribution, or x*(1) representing a non-symmetric
distribution. These choices are rather meant as archetypes than as being realistic.
With respect to the dependence between the covariates we consider two choices for
tr = E(X3| X, = x). In the case pg = u1 = 0 the covariates are independent, in the
case g = —1, 1 = 1 they are dependent.

To keep the number of parameter constellations limited we let 35 take the values
{—1.5,0,1.5} whereas [, and 3; are kept fixed as 3y =0 and f; = 1.

The covariate X; follows a Bernoulli distribution with Pr(X; = 1) = 0.5. The sam-
ple size is chosen to be N = 200. For each of the resulting 72 designs 1000 samples

are generated using Turbo Pascal 7.0.

5. Results

In order to compare the estimators we compute the estimated relative mean squared
errors which are the ratios of the Monte Carlo mean squared error of the semipara-
metric efficient estimator and that of the considered one. This will simply be called
relative MSE. Robins et al. (1994) consider instead the estimated relative efficiencies,
i.e. the ratio of the Monte Carlo variances. This is not sensible here since the sample
size is considerably smaller and hence bias is not negligible. Also, for this reason we

additionally compute the means of the observed biases which we will simply call bias.
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5.1 Comparison of the semiparametric efficient estimator and the ML estimator

We first discuss the bias of the semiparametric efficient and the ML estimator and
after that the relative MSE of the latter one. Therein we distinguish the cases where
the ML estimator is based on a correct assumption about the covariate distribution

and where this assumption is wrong.

5.1.1 Bias of the semiparametric efficient estimator

The bias of the semiparametric efficient estimator can be read off Table 2. In case
that X5 has no influence, i.e. 3y = 0, the bias of all three components Bgff, Afff and
ﬁ;f UBTS negligible for each missing mechanisms and each covariate distribution since
it is always in absolute value smaller than 0.08.

The case (3, # 0 is more serious especially concerning the estimation of 3, when
the covariate distribution is not Gaussian. Here, the bias of 32 is for py = py of-
ten, and for pg # 1 and any covariate distribution nearly always in absolute value
larger than 0.1, and even larger for the x? and Student covariate distribution. In
both latter situations the bias of 3, is in absolute value roughly about 0.24 for the
MCAR and about 0.12 for the other missing mechanisms. The bias of ﬁo and ﬁl is
for By # 0 still relatively small. The bias of [y is in absolute value smaller than 0.1
besides some exceptions for the y? covariate distribution whereas the one of Bl can
be larger than 0.1 for g # 1 and also for the x? and Student covariate distribution.
The largest bias has an absolute value of 0.26 and can be observed for three designs,
two of them within the x? covariate distribution.

An additional aspect concerns the direction of the bias. The estimation of [, has
nearly always a negative one especially for pp = p; and the Gaussian covariate dis-
tribution. In contrast to this, the bias of Bff s in general positive for pg = p1. The
direction of the bias of Bgff depends on the true value: it is negative for 3y = —1.5

and positive for fy = 1.5.
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Table 2:

Bias of the semiparametric efficient

estimator proposed by Robins et al. (1994).

covariate distrib.

o =p1 =0

po=—-1,p1 =1

ﬁgff ‘Bf“ ‘ A;ff

ﬁgff ‘ Bf“ ‘ A;ff

-0.02 0.08 | -0.13
-0.01 0.03 | -0.01
-0.00 0.08 0.19

-0.07 0.21 | -0.18
-0.02 0.07 | -0.02
0.07 | -0.07 0.24

-0.00 | 0.05 | -0.08
-0.01 0.02 | -0.01
-0.02 | 0.07 0.09

-0.02 0.11 | -0.10
-0.01 0.03 | -0.00
0.01 | -0.00 0.10

-0.02 0.05 | -0.09
-0.01 0.02 0.00
-0.03 0.04 0.08

-0.05 0.11 | -0.09
-0.02 0.06 | -0.01
0.01 | -0.02 0.13

= Gaussian
-1.5
MCAR, (2 = 0
1.5
-1.5
MDX, f2 = 0
1.5
-1.5
MDY, g2 = 0
1.5
-1.5
MDXY, B2 = 0
1.5

-0.03 0.08 | -0.09
-0.02 0.04 | -0.01
-0.01 0.07 0.08

-0.05 0.13 | -0.08
-0.01 0.03 0.01
0.02 0.03 0.14

covariate distrib.
2

o =p1 =0

po=—1,p1 =1

Bgff ‘ Bfff ‘ ﬁ;ff

Agff ‘ Bf“ ‘ B;ff

-0.08 0.10 | -0.26
-0.00 0.05 0.01
0.04 0.07 0.19

-0.10 0.28 | -0.23
0.03 | -0.02 0.02
0.13 | -0.16 0.26

-0.02 0.07 | -0.09
0.00 0.03 0.02
0.03 | -0.00 0.08

-0.08 0.15 | -0.12
0.01 | -0.01 0.01
0.04 | -0.056 0.11

-0.08 0.06 | -0.12
-0.01 0.02 | -0.01
0.00 0.06 0.11

-0.13 0.19 | -0.15
-0.04 0.07 | -0.02
0.02 | -0.03 0.13

=X
1.5
MCAR, 2= 0
1.5
1.5
MDX, 82 = 0
1.5
1.5
MDY, 82 = 0
1.5
1.5
MDXY, B2 = 0
1.5

-0.06 0.13 | -0.12
-0.02 0.06 0.01
0.01 0.07 0.11

-0.07 0.15 | -0.10
-0.02 0.07 | -0.01
0.00 0.01 0.15

covariate distrib.

po =p1 =0

o =—1,p1 =1

ﬁgff ‘Bf“ ‘ A;ff

Agff Bf“ ‘ A;ff

-0.02 0.11 | -0.19
0.00 0.04 | -0.00
-0.01 0.09 0.15

-0.08 0.26 | -0.22
-0.03 0.07 | -0.02
0.10 | -0.08 0.26

0.01 0.01 | -0.11
-0.01 0.04 | -0.00
-0.01 0.05 0.10

-0.03 0.13 | -0.12
0.01 0.00 0.01
0.04 | -0.02 0.13

-0.01 | 0.08 | -0.09
-0.01 | 0.02| 0.00
-0.04 | 0.0/ | o0.10

-0.05 0.12 | -0.11
-0.00 0.01 0.01
0.01 | -0.02 0.12

= student
-1.5
MCAR, (2 = 0
1.5
-1.5
MDX, (2 = 0
1.5
-1.5
MDY, g2 = 0
1.5
-1.5
MDXY, B2 = 0
1.5

-0.02 0.09 | -0.10
0.00 0.02 | -0.01
-0.03 0.11 0.13

-0.09 0.20 | -0.11
-0.01 0.03 0.01
0.00 0.04 0.15

5.1.2 Bias of the the ML estimator

As can bee seen from Table 3, the bias of the ML

12

estimator is very similar to the




one of the semiparametric efficient one for the Gaussian covariate distribution.
Table 4 shows the bias of the ML estimator in the situations where the distributional
assumptions are wrong, i.e. for the y? and Student covariate distribution. Here, we
can observe a surprisingly small bias for several parameter constellations. If §; =0
the bias is in absolute value smaller than 0.08 for each missing mechanism and re-
gardless of the dependence between the covariates. Thus, the wrong assumption
about the covariate distribution does not appear to affect the consistency of the ML
estimator when this covariate has no influence.

If B3y # 0 and X, follows the considered x? distribution the bias is clearly affected.
Especially the estimation of 35 in the presence of a missing mechanism that depends
on the response variable (MDY and MDXY) appears to be inconsistent since the
bias takes values about 0.5 and even larger ones. The bias when estimating (3, and
(1 is in general larger than 0.1 if gy = py and even larger if g # py. In contrast,
the bias of Bé‘“ is negligible given one of the other missing mechanisms (MCAR or
MDX) whereas it is in some cases about 0.2 for Bé\“ and B{VIL The largest observed
absolute bias among the designs with x? distribution is 1.03.

If the covariate distribution is Student we can observe the same bias pattern as
for the Gaussian covariate distribution with a slight general tendency to extremer
values and a clear tendency to extremer values for the estimation of 3; and (3, in
the special case of py = py1, fo # 0 and a MDXY missing mechanism. With this
last exception, the results are also similar to those of the semiparametric efficient
estimator for the Student distribution. The largest observed absolute bias among

the designs with Student covariate distribution is 0.27.

5.1.3 Relative MSE of the ML estimator with correct assumptions

The results presented in Table 3 allow a direct comparison of the semiparametric
efficient and the parametric efficient estimation. Since the bias is similar for both
estimators the relative MSE essentially reflects the gain in efficiency due to the ad-

ditional parametric assumption.
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Table 3:

Relative MSE and bias of the maximum likelihood estimator with incomplete data
assuming a gaussian covariate distribution. (The bias is given in brackets in italics.)

covariate distrib. pwo=p1 =0 pwo=—-1,u; =1
= Gaussian e | ppe | gyt e | a0 g
1.5 || 1.05 (-0.02) | 1.05 (0.07) | 1.04 (-0.13) || 1.05 (-0.06) | 1.04 (0.19) | 1.03 (-0.17)
MCAR, B2 = 0 || 1.00 (-0.01) | 1.00 (0.03) | 1.00 (-0.01) || 1.01 (-0.02 ) | 1.01 (0.07) | 1.00 (-0.02)
1.5 || 1.04 (-0.00) | 1.05 (0.08) | 1.02 (0.19) || 1.06 (0.06) | 1.05 (-0.07) | 1.07 (0.22)
-1.5 || 1.01 (-0.00) | 1.04 (0.05) | 1.01 (-0.08) || 1.00 (-0.02) | 1.01 (0.10) | 1.01 (-0.10)
MDX, 2= 0 | 1.00 (-0.01) | 1.00 (0.02) | 1.00 (-0.01) || 1.00 (-0.01) | 1.00 (0.03) | 1.00 (-0.00)
1.5 || 1.00 (-0.02) | 1.03 (0.07) | 1.01 (0.09) | 1.01 (0.01) | 1.03 (0.01) | 1.04 (0.10)
1.5 || 1.07 (-0.02) | 1.07 (0.04) | 1.10 (-0.09) || 1.07 (-0.04) | 1.04 (0.10) | 1.05 (-0.09)
MDY, 82 = 0 | 1.00 (-0.01) | 0.99 (0.03) | 0.99 (0.00) || 1.01 (-0.02) | 1.01 (0.06) | 1.00 (-0.01)
1.5 || 1.05 (-0.02) | 1.06 (0.04) | 1.04 (0.08) || 1.03 (0.02) | 1.04 (-0.00) | 1.10 (0.12)
-1.5 || 1.06 (-0.02) | 1.07 (0.06) | 1.07 (-0.08) || 1.06 (-0.03) | 1.07 (0.10) | 1.03 (-0.07)
MDXY, B2 = 0 || 1.00 (-0.02) | 1.00 (0.04) | 0.99 (-0.01) || 1.02 (0.00) | 1.02 (0.02) | 1.01 (0.01)
1.5 || 1.04 (-0.01) | 1.04 (0.06) | 1.04 (0.08) || 1.06 (0.03) | 1.07 (0.01) | 1.16 (0.12)

At first, one can say that both estimators are nearly equal for 3, = 0, i.e. when
the incompletely observed covariate has no effect on the response, since the relative
MSE lies between 0.99 and 1.01. Furthermore, the gain in efficiency is generally only
modest for the MCAR and MDX missing mechanisms amounting to less than 1.08
in the first case and to less than 1.05 in the second and being even smaller when
to = p1. If B2 # 0 and the missing mechanism is MDY or MDXY we can observe
that in more than half of the designs the relative MSE is greater than 1.05 reaching
the maxima of 1.10 and 1.16, respectively, for 3y = 1.5. The missing mechanisms
which depend on the response variable may therefore be those where the maximum

likelihood estimator truly outperforms the semiparametric efficient one.

5.1.4 Relative MSE of the ML estimator with wrong assumptions

Despite the wrong distributional assumption there are some situations where the
maximum likelihood estimator performs at least as good as the semiparametric effi-
cient one with respect to the relative MSE. If 35 = 0 the relative MSEs of all three
components, M, BML and ML, are at least 1 for both covariate distributions and
almost every missing mechanism while at the same time the bias is always very small
as we have seen above. Thus, in these situations the maximum likelihood estimator

seems neither inconsistent nor inefficient. Exceptions are given by the design with

the MDXY mechanism and the x? distribution where for example the relative MSE
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of B is only 0.72 (1 = p1) and 0.63 (po # 1) which constitutes a serious loss of

efficiency although the bias is still very small.

Table 4:

Relative MSE and bias of the maximum likelihood estimator with incomplete data falsely
assuming a Gaussian covariate distribution. (The bias is given in brackets in italics.)

covariate distrib. po =p1 =0 po=—1l,pu1 =1
.2 AML ‘ AML ‘ AML AML ‘ AML ‘ AML
=X 0 i 2 0 1 2
-1.5 || 1.16 (0.16) | 1.15 (0.08) | 1.64 (-0.08) || 1.14 (0.27) | 1.20 (-0.13) | 1.31 (-0.10)
MCAR, 2= 0 | 1.02 (-0.01) | 0.99 (0.05) | 1.02 (0.01) || 1.13 (0.03) | 1.14 (-0.02) | 1.05 (0.02)
15 || 0.89 (-0.19) | 0.81 (0.16) | 1.30 (0.07) | 1.28 (-0.25) | 1.01 (0.44) | 1.34 (0.07)
-1.5 || 1.03 (0.06) | 1.01 (0.22) | 1.19 (-0.01) || 1.15 (0.04) | 1.01 (0.08) | 1.15 (-0.07)
MDX, 82 = 0 || 1.00 (0.00) | 1.00 (0.03) | 1.00 (0.02) || 1.02 (0.01) | 1.06 (-0.01) | 1.00 (0.01)
1.5 || 1.04 (-0.08) | 0.83 (-0.03) | 1.12 (0.05) || 1.12 (-0.09) | 0.77 (0.53) | 1.16 (0.04)
-1.5 || 1.26 (0.15) | 1.10 (0.03) | 0.68 (0.51) || 0.66 (0.69) | 0.54 (-1.03) | 0.93 (0.42)
MDY, B2 = 0 || 1.01 (-0.01) | 1.00 (0.02) | 1.01 (0.01) | 1.16 (-0.01) | 1.13 (0.03) | 1.14 (0.00)
15 || 0.79 (-0.03) | 0.90 (0.10) | 0.25 (0.71) || 0.83 (0.26) | 0.52 (-0.50) | 0.84 (0.27)
-1.5 0.73 (-0.03) | 1.08 (0.16) 1.27 (-0.06) 0.71 (0.43) 1.07 (-0.25) | 1.08 (0.02)
MDXY, B2 = 0 | 0.98 (-0.02) | 0.93 (0.07) | 0.72 (0.03) | 0.89 (0.04) | 1.03 (-0.05) | 0.63 (0.06)
1.5 || 0.81 (-0.17) | 0.26 (0.73) | 0.44 (0.48) || 0.67 (0.87) | 0.96 (-0.10) | 0.34 (0.77)
covariate distrib. po =p1 =0 po=—1,pu =1
= Student e | prr | pyr e | per |
1.5 || 1.00 (-0.02) | 1.00 (0.13) | 1.03 (-0.18) || 1.11 (-0.02) | 1.14 (0.14) | 1.09 (-0.20)
MCAR, B2 = 0 || 1.00 (0.00) | 1.00 (0.04) | 1.00 (-0.00) || 1.04 (-0.03) | 1.06 (0.07) | 1.02 (-0.02)
1.5 || 1.00 (-0.01) | 1.01 (0.09) | 1.03 (0.15) || 1.19 (0.04) | 1.08 (0.03) | 1.12 (0.22)
1.5 || 0.99 (0.01) | 0.99 (0.04) | 1.01 (-0.10) || 1.01 (-0.02) | 1.05 (0.07) | 1.02 (-0.11)
MDX, 82 = 0 || 1.00 (-0.01) | 1.00 (0.04) | 1.00 (-0.00) || 1.01 (0.01) | 1.03 (0.00) | 1.01 (0.01)
1.5 || 0.99 (-0.01) | 0.98 (0.07) | 1.01 (0.10) || 1.02 (0.03) | 1.08 (0.07) | 1.02 (0.12)
-1.5 || 0.98 (-0.05) | 1.02 (0.05) | 1.01 (-0.09) || 1.08 (-0.00) | 1.14 (0.02) | 1.16 (-0.08)
MDY, B2 = 0 || 1.00 (-0.01) | 0.99 (0.02) | 1.01 (0.00) || 1.03 (-0.00) | 1.04 (0.01) | 1.03 (0.01)
1.5 || 0.96 (-0.07) | 1.02 (0.06) | 1.07 (0.09) || 1.11 (-0.02) | 1.02 (0.09) | 1.16 (0.10)
1.5 || 0.91 (-0.07) | 0.83 (0.21) | 0.88 (-0.16) || 1.13 (-0.01) | 1.15 (0.05) | 1.18 (-0.03)
MDXY, B2 = 0 || 1.00 (0.00) | 1.00 (0.02) | 0.97 (-0.01) || 1.05 (0.01) | 1.07 (-0.02) | 0.99 (0.03)
1.5 || 0.88 (-0.08) | 0.79 (0.25) | 0.87 (0.19) || 1.02 (0.02) | 1.03 (0.02) | 0.82 (0.27)

If By # 0 and X, is distributed according to the considered x? distribution the max-
imum likelihood estimator performs fairly well for the MCAR and MDX missing
mechanisms. The relative MSE is often greater than 1 and nearly always greater
than 0.8. Taking the bias into account, it follows that the good results are mainly
due to a small variance of the maximum likelihood estimator. But if additionally
the missing mechanism depends on the response variable the results are truly bad.
The smallest observed relative MSE amounts to 0.25 and the largest absolute bias

to 1.03 occurring for the MDY mechanism.
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If the covariate distribution is Student the maximum likelihood estimator performs
nearly as well as for the Gaussian. The designs where the relative MSE takes val-
ues smaller than 1 are given when the covariates are independent and the missing
mechanism is not MCAR. It reaches its minimum of 0.79 for the MDXY mechanism
and fy = 1.5. If, in contrast, py # p; the relative MSE is in most cases even greater
for the Student than for the Gaussian covariate distribution. This may suggest that
the maximum likelihood estimator is still appropriate for dependent covariates be-
cause it makes a correct assumption about the dependence structure although the

distributional assumption is wrong.

5.2 Loss of information due to missing values
The comparison of the semiparametric efficient estimator with the complete data

maximum likelihood estimator denoted by Bf“ll

allows to assess the general loss
of information of the semiparametric approach which is due to the missing values
(measured by the relative MSE of the complete data maximum likelihood estima-
tor). The simulation results are shown in Table 5.

First we discuss the information loss concerning the estimation of 3y and ;. An
important result is that this is very small if f5 = 0 and the covariates are indepen-
dent (g9 = p1) as can be observed for each missing mechanism and each covariate
distribution. But in the other situations, i.e. if 35 # 0 or ug # 1, one has to reckon
with a considerable loss of information due to the missing values since the relative
MSE is clearly greater than 1. If the covariates are not independent (19 # p1) the
relative MSE is not smaller even for the designs whith 3, = 0. Especially for the
MDY and MDXY missing mechanisms it decreases with increasing (3. The simul-
taneity of G, # 0 and py # p1 mainly affects the estimation of 3; which then often
has a greater relative MSE than for independent covariates. Concerning B{ U this
can only be observed with the Student covariate distribution. Another difference
between these two components is that the MDX mechanism results in smaller rela-
tive MSEs of B({ “ whereas there is no obvious effect of the non-MCAR mechanisms
full

on 3" A general result is that the relative MSEs of Bo and 3" are greater

for the x? covariate distribution than for the Gaussian or Student while being sim-

16



ilar for the latter two. Additionally, the relative MSEs are greatest for the MCAR
mechanism being roughly about 2.7. But this is mainly due to the higher global
missing rate of this mechanism.

The last aspect can also be observed for B{ “ where the relative MSE is about 5 for
the MCAR and about 2.5 for the other missing mechanisms. The dependence or
independence of the covariates does not seem to affect the estimation of 3, nor does
the influence of X,. This means that if J; = 0 the relative MSE is not generally
smaller, with some exceptions for puy = p; and X, following a Gaussian or Student
distribution. But here we already observe greater relative MSEs for the x? distri-
bution when py = py regardless of the true value of 5. In the other situations the
estimation is not clearly affected by the different covariate distributions although
the maximal relative MSEs of more than 6 only occur within the Student and x?
distribution (and MCAR mechanism). The results for the MCAR mechanism are
interesting because the asymptotic relative efficiency of the efficient complete data
estimator and the complete case estimator equals 3.3 since both are consistent and
the missing rate is 0.3. Thus, for finite sample size (N=200) and certain parameter
constellations the relative MSE of the semiparametric efficient estimator may be

greater than the asymptotic MSE of the complete case estimator.

Table 5:
Relative MSE and bias of the complete data maximum likelihood estimator. (The bias is
given in brackets in italics.)

covariate distrib. o =p1 =0 pwo=—1,u; =1

Afull Afull Afull Afull Afull Afull
0 1 2 0 1 2

= Gaussian

-1.5 || 2.19 (-0.02) | 2.34 (0.04) | 5.03 (-0.02) || 2.79 (0.01) | 3.72 (0.01) | 5.80 (-0.03)
MCAR, fo = 0 || 1.14 (-0.00) | 1.12 (0.01) | 4.79 (-0.01) || 2.15 (-0.01) | 2.48 (0.03) | 3.99 (-0.01)
1.5 || 2.44 (-0.01) | 2.50 (0.04) | 5.37 (-0.05) || 2.52 (0.01) | 2.38 (0.01) | 5.49 (0.07)

-1.5 || 1.13 (0.00) | 1.43 (0.04) | 1.99 (-0.04) || 1.31 (-0.00) | 1.88 (0.04) | 2.31 (-0.05)
MDX, 82 = 0 || 1.02 (-0.01) | 1.04 (0.02) | 1.89 (-0.00) || 1.29 (-0.01) | 1.41 (0.03) | 1.75 (-0.00)
1.5 || 1.15 (-0.01) | 1.56 (0.05) | 2.00 (0.05) || 1.29 (-0.00) | 1.52 (0.03) | 1.87 (0.06)

-1.5 || 1.50 (-0.00) | 1.44 (0.08) | 2.63 (-0.04) || 1.93 (-0.02) | 1.84 (0.06) | 2.23 (-0.05)
MDY, 2 = 0 || 1.04 (-0.00) | 1.03 (0.02) | 2.24 (0.01) || 1.55 (-0.01) | 1.77 (0.05) | 2.35 (-0.00)
1.5 || 1.48 (-0.01) | 1.49 (0.02) | 2.36 (0.04) || 1.35 (0.01) | 1.62 (0.03) | 2.56 (0.06)

-1.5 || 1.58 (-0.01) | 1.98 (0.08) | 2.76 (-0.04) || 1.97 (-0.01) | 2.45 (0.04) | 2.21 (-0.04)
MDXY, B2 = 0 || 1.05 (-0.00) | 1.08 (0.01) | 2.55 (-0.00) || 1.68 (0.00) | 1.83 (0.01) | 2.78 (0.00)
1.5 || 1.52 (0.00) | 1.90 (0.02) | 2.55 (0.04) || 1.50 (0.03) | 1.46 (-0.02) | 3.71 (0.07)
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covariate distrib. o =p1 =0 pwo=—1,u; =1
= %2 B(j;ull ‘ B{ull ‘ B:{ull B(j;ull ‘ B{ull ‘ B:{ull

-1.5 || 3.14 (-0.01) | 3.32 (0.01) | 6.19 (-0.06) || 3.25 (-0.02) | 3.27 (0.06) | 5.13 (-0.06)

MCAR, B2 = 0 1.16 (-0.01) | 1.12 (0.03) | 5.44 (0.01) 2.77 (0.00) | 2.84 (0.01) | 5.99 (0.00)
1.5 2.60 (0.00) 2.46 (0.04) | 4.13 (0.06) 4.00 (0.02) 3.28 (-0.01) | 6.31 (0.06)
-1.5 1.28 (-0.00) | 2.21 (0.00) | 2.29 (-0.05) 1.36 (-0.04) | 1.55 (0.08) 2.00 (-0.07)

MDX, 32 = 0 1.03 (0.00) | 1.05 (0.02) | 2.10 (0.01) 1.27 (0.02) | 1.40 (-0.02) | 2.04 (0.01)
1.5 || 1.21 (0.02) | 1.39 (0.01) | 1.75 (0.06) 1.37 (0.01) | 1.37 (-0.01) | 1.61 (0.07)
-1.5 || 1.97 (-0.02) | 1.40 (0.04) | 3.29 (-0.04) || 2.67 (-0.02) | 2.34 (0.05) | 3.14 (-0.06)

MDY, B2 = 0 1.04 (-0.00) | 1.03 (0.01) | 2.40 (0.00) 1.59 (-0.00) | 1.73 (0.02) | 2.73 (0.00)
1.5 1.45 (0.02) 1.60 (0.03) | 2.20 (0.06) 1.84 (0.04) 1.68 (-0.03) | 2.86 (0.06)
-1.5 1.93 (-0.01) | 2.79 (0.02) | 3.09 (-0.04) 2.08 (0.00) 2.51 (0.03) 2.32 (-0.05)

MDXY, B2 = 0 1.06 (-0.00) | 1.08 (0.03) | 2.68 (0.01) 1.53 (-0.01) | 1.75 (0.02) 2.74 (0.00)
1.5 || 1.58 (0.02) | 2.31 (0.00) | 2.74 (0.04) 2.01 (0.08) | 1.66 (-0.00) | 3.40 (0.05)

covariate distrib. pwo =p1 =0 pwo=—1,pu1 =1
— student Bgull ‘ ﬁ{ull ‘ ﬁgull ﬁ({uu ‘ B{ull ‘ B:{ull

-1.5 2.34 (-0.01) | 2.62 (0.05) 4.78 (-0.07) 2.92 (-0.00) | 4.00 (0.06) 5.77 (-0.06)

MCAR, B2 = 0 1.10 (0.00) 1.14 (0.02) 4.45 (-0.00) 1.89 (-0.01) | 2.28 (0.02) 3.83 (-0.00)
1.5 2.38 (0.00) 2.51 (0.03) 6.00 (0.04) 3.25 (0.02) 2.78 (-0.01) | 6.76 (0.05)
-1.5 || 1.17 (0.01) | 1.63 (0.01) | 2.22 (-0.05) || 1.35 (-0.01) | 1.89 (0.05) | 2.27 (-0.06)

MDX, 2 = 0 1.02 (-0.01) | 1.04 (0.04) | 1.90 (-0.01) || 1.31 (0.01) | 1.47 (-0.00) | 2.12 (0.01)
1.5 || 1.13 (-0.01) | 1.55 (0.04) | 2.31 (0.05) 1.27 (0.02) | 1.65 (0.01) | 2.10 (0.07)
-1.5 || 1.57 (0.01) | 1.39 (0.02) | 2.18 (-0.05) || 2.01 (-0.01) | 1.86 (0.06) | 2.29 (-0.06)

MDY, B2 = 0 1.01 (0.01) | 1.02 (0.01) | 2.40 (0.00) 1.35 (-0.00) | 1.53 (0.02) | 2.24 (0.00)
1.5 1.56 (-0.02) | 1.49 (0.03) 2.57 (0.04) 1.30 (0.01) 1.52 (0.00) 2.53 (0.06)
-1.5 1.65 (-0.00) | 2.14 (0.03) 2.65 (-0.05) || 2.34 (-0.02) | 2.94 (0.06) 2.59 (-0.05)

MDXY, 2= 0 1.03 (0.01) | 1.06 (-0.01) | 2.52 (-0.01) || 1.44 (-0.01) | 1.60 (0.02) | 2.54 (-0.00)
1.5 || 1.59 (-0.01) | 2.11 (0.04) | 2.86 (0.06) 1.37 (0.01) | 1.34 (-0.01) | 3.08 (0.08)

The bias of the complete data maximum likelihood estimator is very small for all
designs, as expected, i.e. in absolute value smaller than 0.09. But one should note
that the largest values occur when estimating s in case 3y # 0. Therefore, these

seem to be the ‘difficult’ situations.

5.3 Performance of the semiparametric estimators
In this section, we discuss the performance of the complete case, the corrected com-
plete case, and the mean score estimators compared with the semiparametric efficient

one. The results of the simulation study are not given in details.

5.83.1 The complete case estimator
For the designs where the complete case estimator is inconsistent we get that the

bias of 3000 is always less than -1 for both missing mechanisms that depend on
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the response variable whereas ﬁAICC is inconsistent only for the MDXY mechanism
showing a bias of more than 2. But even when BCC is consistent the relative MSE
is severely affected by discarding the incomplete cases, it often takes values between

0.55 and 0.8.

5.3.2 The corrected complete case estimator

The corrected complete case estimator produces nearly identical results as the semi-
parametric efficient one. The relative MSEs are nearly always between 0.99 and
1.00, exceptions arising only for the non-Gaussian covariate distributions when the
missing mechanism depends on the response variable and 3, # 0. But even then the
relative MSE is at least 0.98. Concerning the bias we can observe the same pattern
as for the semiparametric efficient estimator with a slight tendency to a greater bias

of 3$CC for the missing mechanisms that depend on the response variable.

5.3.8 The mean score estimator

The mean score estimator is clearly dominated by the semiparametric efficient esti-
mator. The relative MSE is almost always smaller than 1.00. The worst result is a
relative MSE of 0.67 but in most cases it is still at least 0.8 and even greater than
0.9 for the MCAR missing mechanism. The main difficulty seems to concern the
estimation for the MDX mechanism especially for pg # p1. Here, the relative MSEs
are roughly about 0.8.

Although the results are similar for the different covariate distributions it can be
observed that in case of a non-MCAR mechanism, 3 = 0 and pg # p the relative
MSE of all three components is in any case greater for the Gaussian covariate dis-

tribution than for the others.

6. Discussion

The main result of the simulation study concerns the performance of the ML estima-
tor compared to the semiparametric efficient one proposed by Robins et al. (1994).
On the one hand, we have seen that in the situation of a correct assumption about

the covariate distribution and finite sample size the gain in efficiency by ML estima-
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tion is only modest. On the other hand, this parametric approach can lead to serious
bias if the assumed covariate distribution is ‘far away’ from the true one, where ‘far
away’ means x? instead of Gaussian. The Student distribution is in contrast similar
enough to the Gaussian for the bias of the ML estimator to be negligible, at least for
a sample size of 200. However, simulations with a sample size of 1000, which are not
reported here, show a more serious bias of the ML estimator given a Student covari-
ate distribution. As conclusion we propose the semiparametric efficient estimation
as a very good alternative to the parametric approach. Despite its semiparametric
efficiency being an asymptotic property, the performance appears to be satisfying

also for finite sample size.

Another interesting result has been obtained for the corrected complete case esti-
mator. It strongly supports the supposition that in the special case of a logistic
regression where all variables except the incomplete one are discrete the estimator
of Breslow and Cain (1988) is semiparametric efficient since it appears to be equiv-
alent to the semiparametric efficient estimator of Robins et al. This has also been
confirmed by simulations with a sample size of 1000 yielding nearly always identical
results for both estimators. However, we have to restrict this result to the logistic
regression model since it has been shown by Robins et al. (1994) that 3 is in

general not semiparametric efficient.

A point which has not been addressed in this paper but that has to be taken into
account is the possible misspecification of the missing mechanism. The discussed
semiparametric approaches need an estimation of the observation probabilities which
is given by (3). For continuous Y or X there is no such straightforward procedure.
Instead, a parametric model for the missing mechanism has to be assumed. As
shown by Zhao et al. (1996) the correctness of this model is crucial in assuring the

consistency of the semiparametric estimators.
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