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A Small Sample Estimator for a Polynomial
Regression with Errors in the Variables

Chi�Lun Cheng�� Hans Schneeweiss� and Markus Thamerus�

� Institute of Statistical Science� Academia Sinica� Taipei� Republic of China
� Institute for Statistics� University of Munich� Munich� Germany

Abstract� An adjusted least squares estimator� introduced by Cheng and
Schneeweiss ������ for consistently estimating a polynomial regression of any
degree with errors in the variables� is modi	ed such that it shows good results
in small samples without losing its asymptotic properties for large samples

Simulation studies corroborate the theoretical 	ndings
 The new method is
applied to analyse a geophysical law relating the depth of earthquakes to their
distance from a trench where one of the earth�s plates is submerged beneath
another one


Keywords� Polynomial regression� measurement error� adjusted least squares�
modi	ed adjusted least squares� small sample properties

� Introduction

Cheng and Schneeweiss ������� hereafter CS� building on the work of Chan
and Mak ������ and Stefanski ������� developed a consistent estimator of the
parameters of a polynomial regression with errors in the variables
 In this
model the latent true regressor variables �i are taken to be non�stochastic �the
so�called functional variant of the errors�in�variables model�� so that no dis�
tributional assumption on the ��s is needed
 The errors need not necessarily
be normally distributed� although the estimation procedure simpli	es consid�
erably in the normal case
 The errors of regressor and dependent variables
are allowed to be correlated
 Knowledge of certain higher moments of the
error variables is required� but the variance �and higher moments� of the er�
rors of the dependent variable need not be known
 This is justi	ed by the
observation that for pure measurement errors knowledge or at least estimates
of their variance and higher moments may well be available� e
g
 through
replicated measurements or through validation studies� whereas errors in the
dependent variable very often comprise the errors in the equation and for these
the variance is typically not known
 For a further discussion of models with
and without errors in the equation see CS


The �error� adjusted least squares �ALS� estimator developed in CS can be
viewed as resulting from the principle of corrected unbiased estimating equa�
tions see Nakamura ������ and Bounaccorsi ������
 This estimator is asymp�
totically normal under general conditions
 However� in small samples devia�

�



tions from normality can be crucial
 Indeed� simulation studies have shown
that the ALS estimator of a polynomial regression can sometimes produce ex�
tremely large estimating errors
 The purpose of this paper is to modify the
ALS estimator such that this de	ciency is remedied


Fuller ����� p
 ���f
� constructed an error adjusted estimator for a quadratic
errors�in�variables regression using another principle
 His approach can be gen�
eralized to the polynomial case and then turns out to give identical results as
in CS
 However� Fuller�s approach can be used as a starting point to modify the
estimator in such a way that the small sample de	ciencies mentioned above are
considerably alleviated� whereas the large sample properties are left unaltered

The device to modify the estimator is taken again from Fuller ������ p
 ����
��
but must be adapted to our case because� as will be seen� the estimated error
covariance matrices involved in our approach need not necessarily be positive
semi de	nite as required by Fuller


In the next section the polynomial errors�in�variables model is introduced and
the unmodi	ed ALS estimator from CS is presented
 It is shown that Fuller�s
approach� if properly generalized� leads to the same result
 In Section � the
ALS estimator is modi	ed so that it produces a positive �semi� de	nite es�
timate of the error covariance matrix
 Further modi	cations which lead to
estimators with 	nite moments are considered in Section �
 Section � gives
some simulation results showing the e�ect of the modi	cations
 An empirical
example is given in Section � and Section � contains some concluding remarks


� The unmodi�ed ALS estimator

Consider a polynomial functional relationship with errors in the equation�

yi � �i � �i � �� � ���i � ���
�
i � � � � � �k�

k
i � �i�

xi � �i � �i�

i � �� � � � � n� where ��i� �i� are i
i
d
 random errors with expectation � and
covariance matrix

� �

�
��� ���
��� ���

�
�

The �i� i � �� � � � � n� are unobservable �latent� nonstochastic variables
 The
regressor error variance ��� and the covariance ��� of � and � are assumed to be
known
 We assume ��� 	 �
 An often encountered special case is ��� � �
 The
variance ��� � which contains the error�in�the�equation variance component� is
unknown
 If the error variables are jointly normally distributed� i
e
�

�N� ��i� �i� � N������

knowledge of ��� and ��� is su�cient
 Otherwise higher moments E�r� r � �k�
and E��r��� r � k� have to be known


�



It is well�known that replacing the latent variable � by its observable coun�
terpart x in the polynomial relationship and estimating the parameters �j
in the resulting polynomial regression by ordinary least squares �OLS� yields
inconsistent estimates Grilliches and Ringstad ������


A consistent estimator� of course� is given by the OLS normal equations con�
structed from the true variables� supposing for a moment that these were
known
 Let � � ���� ��� � � � � �k�

� and 
i � ��� �i� � � � � �
k
i ��� thenX


i

�

i
��T �

X

iyi ���

are the normal equations for a theoretical OLS estimator ��T of � �all sums�
unless otherwise stated� are taken over i � �� � � � � n� and ��� is estimated by

����T � y� � y
 � ��T � ���

where the bar� here and in the sequel� denotes averages over i � �� � � � � n� e
g
�
y� � �

n

P
y�i 


Of course� ��T and ����T cannot be computed if the �i have measurement errors

CS now replace the matrix 
i


�

i by a �k � ��� �k � �� matrix Hi the elements
of which are certain polynomials in the observable variable xi such that EHi �

i


�

i
 Similarly 
iyi is replaced by a vector hi� which can also be computed from
the observable variables� such that Ehi � E�
iyi� � 
i�i
 It then follows that
the solution ��A of X

Hi
��A �

X
hi ���

is a consistent estimator of � assuming that lim 

 � exists and is nonsingular

Its asymptotic covariance matrix can be estimated by

����A
�

�

n
�H�� �U �H��� ���

where �H � �

n

P
Hi and �U � �

n

P
uiu

�

i with ui � Hi
��A � hi
 Once � has been

consistently estimated� a consistent estimate for ��� can also be found�

����A � y� � �h� ��A� ���

��A and ����A are the ALS estimates of � and ��� � respectively


The matrices Hi� i � �� � � � � n� are constructed as follows for details see CS

First compute the polynomials

tri �
rX

j��

arix
j
i � r � �� � � � � k�

by solving the linear system

xmi �
mX
r��

�
m

r

�
triE�

m�r� m � �� � � � � k�

�



It can be shown that Etri � �ri 
 The matrix Hi is then given by its elements
Hrsi � tr�si  r� s � �� � � � � k


The elements hri of the vector hi� r � �� � � � � k� are constructed as

hri � triyi �
rX

j��

brjtji�

brj �
rX

s�j

ars

�
s

j

�
E��s�j���

These computations are greatly simpli	ed if �N� can be assumed see CS

In fact� in this case� the tri can be computed from the recursive equation
tr���i � xitri � ���rtr���i� r � �� �� �� � � � � with t�i � t��i � �� and the elements
of hi are given by hri � triy � ���rtr���i� r � �� �� � � � � k


Fuller ������ p
 ���f
� solved the problem of constructing a consistent esti�
mator of � by a di�erent approach� which he described� however� only for the
quadratic case �k � �� under �N� and with ��� � �
 It can be generalized to
the polynomial case without �N� and with ��� arbitrary
 Fuller suggested to
view the powers of � as k � � di�erent latent regressor variables� for which� as
their observable counterparts� the unbiased estimates tr are available� so that
a linear functional relationship results�

yi � ���
�
i � ���

�
i � � � � � �k�

k
i � �i�

tri � �ri � eri� r � �� � � � � k� i � �� � � � � n�

where the eri are the new measurement errors� with Eeri � �
 Let ti �
�t�i� � � � � tki�

�� ei � �e�i� � � � � eki�
�� then the model can be written as

yi � 
 �i� � �i

ti � 
i � ei
i � �� � � � � n�

For this linear functional relationship a consistent estimator of � can now be
constructed if unbiased estimates �Vi and �vi of� respectively� the covariance ma�
trix Vi � E�eie

�

i� and the covariance vector vi � E�ei�i� are available
 Fuller�s
error adjusted least squares normal equations are given by

��tit
�

i � �Vi� ��F � ��tiyi � �vi�� ���

and ��� is estimated by

����F � y� � �ty � �v�� ��F � ���

where �v is short term for ��v


The covariance matrix Vi is given by

Vi � E�ti � 
i��ti � 
i�
�

� E�tit
�

i�� 
i

�

i�

�



As EHi � 
i

�

i� an unbiased estimate of Vi is given by

�Vi � tit
�

i �Hi� ���

Similarly�

vi � Ef�ti � 
i��ig � E�ti�i� � Efti�yi � �i�g � E�tiyi�� 
i�i � E�tiyi � hi��

Thus an unbiased estimate of vi is given by

�vi � tiyi � hi� ���

Substituting ��� and ��� into the error adjusted normal equations ��� results
in X

Hi
��F �

X
hi�

These are the same estimating equations for � as ���
 Similarly ��� is seen to
be equivalent to ���
 So Fuller�s approach and that of CS give rise to the same
estimators for � and ��� � i
e
� ��F � ��A and ����F � ����A
 Nevertheless� Fuller�s
approach will be useful as a starting point to improve the ALS estimator


� Small sample modi�cation

For large samples �n � �� �H tends to 

 � and therefore will be positive
de	nite �p
d
� with high probability
 For small samples� however� �H may well
be inde	nite� despite the fact that it is an unbiased estimate of 

 �� which is
p
d

 As a consequence� the estimate ��A can sometimes be far o� the true
parameter vector �
 Even if �H is p
d
� the estimator of ��� given by ��� is
de	cient in that the estimated covariance matrix

��A �

�
��� ���
��� ����A

�
����

may not be p
d
� and� what is more� ����A may even turn out to be negative
 Thus
one would like to modify the estimation procedure so that it yields estimates
of 

 � and � which are p
d
 or at least positive semi de	nite �p
s
d
�


Fuller ������ pp
 ����
� ���f
� ���� introduced such a modi	cation for the
general linear model with errors in the variables� which can be applied to our
case� although� as will be seen� some adaptations are necessary
 �Fuller ������
p
 ���� also tried to modify the quadratic errors�in�variables model� but only
partially succeeded in doing so
�

First note that the estimating equations ��� and ��� � or equivalently ��� and
��� � for � and ��� can be put together into one system of equations
 De	ne
�� � ������ ���� then ��� and ��� are equivalent to��

y� yt�

ty tt�

�
�
�

���� �v�

�v �V

��
�� � �� ����

�



where �v and �V are short terms for ��v and
��V � respectively
 In the sequel we

assume the 	rst matrix in the square brackets of ���� to be p
d
� which it is
with probability � if the �i properly vary


Now let � be the smallest positive root of

�����
�
y� yt�

ty tt�

�
� �

�
�����

�
� �v�

�v �V

������ � �� ����

It can be shown that there is always at least one positive root of ����� and
therefore � exists see proof of Prop
 �


The following estimation procedure is proposed�

a� If � 	 �� then solve ���� for �� and ���� 
 The solution will be the ALS
estimates given by ��� and ���� respectively


b� If � � �� then� instead of ����� solve

��
y� yt�

ty tt�

�
� �

�
���� �v�

�v �V

��
�� � �� ����

Proposition �

The estimates �� and ���� resulting from this procedure have the
following properties�

In case �a�� �� and tt� � �V are both p
d



In case �b�� �� is p
s
d
 and singular with probability �� and tt��� �V
is p
d
 with probability �


Thus in both cases� �� is uniquely determined �with probability ��
from ���� or ����� respectively


Proof

Let

A �

�
y� yt�

ty tt�

�
� B �

�
�����

�
� �v�

�v �V

�
� �B �

�
���� �v�

�v �V

�
�

As already said� we suppose A to be p
d

 Let A be decomposed as

A � CC �

with a nonsingular matrix C �e
g
� by a Cholesky decomposition� and de	ne

�B � C��BC ����

�



Let d be the largest eigenvalue of �B
 As the second diagonal element of �V � i
e
�
t�� � �t� � ��� � is positive� �B has at least one positive eigenvalue� and therefore
d 	 �
 It follows that � � �d
 Case �a� corresponds to d � � and case �b� to
d � �


Let D be the diagonal matrix of the eigenvalues of �B and E a matrix the
columns of which are the corresponding normalized eigenvectors
 Then

�B � EDE �� EE � � I�

It follows that B � CEDE �C �� and� with T � CE� we can write

A � TT �� B � TDT ��

Hence for any scalar a

A� aB � T �I � aD�T �� ����

with a nonsingular matrix T 


In case �a�� d � �� i
e
� D � I� and because of ����

A� B 	 ��

Obviously then also tt� � �V 	 �
 In order to prove �� 	 � note that� because
of ���� and the positive de	niteness of A� B�

����A� �B��� � �
����A� B��� 	 �

and therefore
���� �B �B��� � ���� � �����

�
� 	 ��

This is equivalent to �� 	 �


In case �b�� d � �� and therefore I � �

d
D is singular and � �
 It follows from

���� that A � �

d
B � A � �B is singular and p
s
d

 With probability �� rank

�A � �B� � k � � and the 	rst row of A� �B is a linear combination of the
remaining k � � last rows� i
e
� the rows of the matrix

�ty� tt��� ���v� �V � � C�

say
 Since by ���� C �� � �� so also �A��B��� � �
 But by ���� also �A�� �B��� �
�
 It follows that � �B �B��� � �� i
e
�

���� � �����
�
� �

which is equivalent to �� singular and p
s
d

 �
Note that the 	rst paragraph of the proof gives a method of how to compute
� by standard programs see also Amemiya ������


�



Note also that if ��� � �� ���� � � in case �b�


Finally note that �Vi� although it is an unbiased estimate of the covariance
matrix of the errors ei of the derived linear errors�in�variables model� need
not be p
s
d

 The same is true for �V 
 But since we are not interested in an
estimate of Vi per se� this should not bother us too much
 But as a consequence
of the possible inde	niteness of �V we had to adapt Fuller�s modi	cation to our
case by taking for � not just the smallest root of ���� but rather the smallest
positive root


Proposition ��

Let � and lim 

 � be p
d

 The modi	ed estimator �� is
asymptotically equivalent to the unmodi	ed adjusted es�
timator ��A� i
e
� plimn��

p
n� ��� ��A� � �� and therefore

both estimators have the same asymptotic properties


Proof�

From the construction of �� we know that �� � ��A if case �a� occurs or � � �

The case � � � can be neglected� as it occurs only with probability �
 Case
�a� is equivalent to A 	 B see the proof of Prop
 �
 Therefore

Pfpn� �� � ��A� 	� �g � �� P �A 	 B��

But A 	 B is equivalent to ��A 	 � and tt� � �V 	 � see the proof of Prop

�
 As ��A converges to � 	 � in probability and as tt� � �V � �H converges to
lim 

 � 	 � in probability� therefore P �A 	 B� converges to �� and consequentlyp
n� �� � ��A� converges to � in probability
 �

� Further modi�cations

Although the modi	cation of the ALS estimator introduced so far guarantees
that the linear system of estimating equations for �� resulting from ���� or �����
respectively� has a p
d
 system matrix� viz
� tt�� �V or tt��� �V � respectively� this
matrix may still come arbitrarily close to the case of singularity and may thus
produce estimates with large deviations from the true parameter values
 This
di�culty can be partly overcome by a further modi	cation of the estimator


The idea for this modi	cation again stems from Fuller ������
 But due to
the fact that B need not be p
d
� his approach cannot be adopted unchanged

We 	rst modify cases �a� and �b� to �a�� � 	 � � �n and �b�� � � � � �n�
respectively
 The modi	ed estimators ��M and ����M are then de	ned as the
solution of the equations system

�A� a �B���M � �� ����

�



where

a �

�
�n� ��n in case �a��

��n� ���n � �� in case �b��

with some � � n to be chosen so that an estimator with good small sample
properties results
 Following Fuller ������ p
 ���� � but note that he deter�
mined � in a somewhat di�erent context � it is suggested to choose � � k� �


It should be noted that Fuller used a di�erent modi	cation in case �b��
 His
�additive� modi	cation cannot be applied to our model
 We use instead a
�multiplicative� modi	cation


Proposition ��

The system matrix of ���� for ��M satis	es the inequality

tt� � a �V � � � �

n � �
tt� 	 �� ����

and ����M satis	es

����M � �����
�
� �

� � �

�n � ��a
���MA��M 	 �� ����

Proof�

In case �a��� d � n�n � �� and therefore D � n�n � ��I see the proof of
Prop
 �
 It follows that

I � aD � I � n� �

n
D 	

� � �

n � �
I�

In case �b��� d � n�n � �� 	 � and d��D � I
 It follows that

I � aD � I � n� �

n � �
d��D � � � �

n � �
I

because � � d��
 So in both cases� because of �����

A� aB � � � �

n � �
A 	 �� ����

Deleting the 	rst row and column of these matrices results in ����


To prove ���� note that ���� implies

���M�A� aB���M � � � �

n � �
���MA��M �

On the other hand� ���� implies

���M�A� a �B���M � ��

�



Hence

a���M� �B �B���M � a�����M � �����
�
� � �

� � �

n � �
���MA��M �

which proves ����
 �
By similar arguments as in the proof of Prop
 � it can also be shown that ��M
has the same asymptotic properties as �� and ��A


Up to now we assumed that the error of measurement in the dependent variable
� was not known
 This measurement error is part of �
 In general � can be
decomposed into the error of the equation� � say� and the measurement error
of �� �� say� so that

� � �� � ��

We assume �� and � to be independent� so that

��� � ���� � ���� ����

The measurement error covariance matrix is therefore

�� �

�
��� ���
��� ����

�
�

Note that ���� � ���
 Contrary to what was assumed before� we now suppose�
for the remaining part of this section� that besides ��� and ��� also ���� and
therefore the whole covariance matrix �� is known
 With this knowledge� once
��� has been estimated by one of the methods dealt before� the variance of the
error in the equation� ���� can also be estimated� viz
� due to ����� by

���� � ���� � ���� �

However� this estimate may be negative
 In order to avoid this possibility the
estimators of � and ��� must be modi	ed such that ����M 	 ����


This can be easily done by using the same estimator as de	ned in ���� but
with � replaced by �� de	ned as the smallest positive root of

j A� ��B� j� ��

where

B� �

�
���� �v�

�v �V

�

and where cases �a�� and �b�� are also rede	ned with �� in place of �


It can be shown� in the same way as before� that for the estimators resulting
from this method ���� is satis	ed as before and ���� is strengthened to

����M � ���� �
� � �

�n � ��a
���MA��M 	 �����

��



� Simulation

In order to study the small sample properties of the estimators and in par�
ticular the e�ect of the various modi	cations proposed we performed a small
simulation study
 We studied 	ve models
 The 	rst two are almost identical
to those of CS� except that ��� has been given a larger value and that now the
new estimators are included� the other three have been investigated by Moon
and Gunst ������� but without considering the modi	cations in this article
 It
turns out that these modi	cations are crucial for the precision of the estimates

The models are de	ned by the following parameter values given in table �
 In

Model I II III IV V
k � � � � �
�� � � �
�� � �
�� � � � � �
�� ��
� ��
� � � �
�� � �
� � �� ��
range  ���� !  ���� !  ��
���
�!  ���� !  ���� !
n ��� ��� �� ��� ���
��� �
� �
� �
���� �
� �
�
� �
� �
� �
�� �
�� �
��

Table �� Parameter values of simulated models I�V ��� noise�to�signal ratio��

all models � and � were speci	ed as normally distributed variables with ��� � ���
and ��� � �
 The �i were taken as 	xed equidistant values within the interval
indicated by �range�� with the exception of model III where the �i were placed
at the points ���� � i��� i � �� � � � � ��� each point taken � times
 The param�
eter � is the noise�to�signal ratio and is computed as � � �����r

�� where r is
the range of the �i
 For each model ���� samples were simulated and used to
estimate the �i by the various methods� the naive method M�� which consists
in replacing �i by xi and applying least squares� the ALS method M� of Section
�� the modi	ed ALS method M� of Section �� and the further modi	cation M�
of Section �
 In each case the ���� estimates were averaged and their stan�
dard deviations were computed
 In each simulation run we also estimated the
asymptotic covariance matrix of �� by ���� where however ��A was replaced by
the estimate of � that resulted from the particuliar estimation method used in
that run
 From the covariance matrix an estimate of the asymptotic standard
deviation of each ��i was derived
 The standard deviations were averaged over
the ���� simulation runs
 The averages can be compared with the standard
deviations directly derived from the ���� estimates of each �i


The results are presented in the following tables � and �
 In almost all cases the
naive estimator �M�� is strongly biased
 Even in model V with the rather small
noise�to�signal ratio ���
�� the coe�cient �� is extremely biased
 Typically

��



Model I �� � ����

�i M� M� M� M� Estimation method
�
�� ��
�� �
�� �
�� ��
�� Averages of
�
�� �
�� �
�� �
�� �
�� estimates
��
�� ��
�� ��
�� ��
�� ��
��

�
�� �
�� �
�� �
�� Standard deviations
�
�� �
�� �
�� �
�� of estimates
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
�� Averages of estimated
�
�� �
�� �
�� �
�� asymptotic standard
�
�� �
�� �
�� �
�� deviations of estimates

Model II �� � ����

�i M� M� M� M� Estimation method
�
�� ��
�� �
�� ��
�� ��
�� Averages of
�
�� �
�� �
�� �
�� �
�� estimates
��
�� ��
�� ��
�� ��
�� ��
��
�
��� ��
�� ��
�� �
�� �
��

�
�� �
�� �
�� �
�� Standard deviations
�
�� ��
�� �
�� �
�� of estimates
�
�� ��
�� �
�� �
��
�
�� ���
�� ��
�� �
��
�
�� ���
�� �
�� �
�� Averages of estimated
�
�� ����
�� ��
�� �
�� asymptotic standard
�
�� ����
�� �
�� �
�� deviations of estimates
�
�� ����
�� ��
�� ��
��

Table �� Simulation results for the models I and II�

the adjusted estimators reduce the bias substantially� often practically to zero

The latter speci	cally holds for models with very small � � like model V� but
also in models I� and II� �not presented here� of CS� which di�er from models
I and II only by a smaller ��� � viz
� ��� � ���� instead of �
� �and thus � � ����
instead of ����
 In these models the ALS estimator �M�� exhibits almost no
bias
 The modi	ed estimators M� and M� perform just as well in these cases
or only slightly better� also in terms of their variability


However for models I�IV we notice that M� does not always fare that well and
that M� is in most �but not in all� cases the best estimator from the point
of view of bias reduction
 But more importantly� M� has usually the smallest
standard deviation among the adjusted estimators� whereas M� and� to a much
lesser degree� also M� show extremely large standard deviations� rendering the
estimates very unstable
 This is particularly true for models II and IV with
k � �� whereas for the quadratic models I and III the di�erences in the various

��



Model III �� � �����

�i M� M� M� M� Estimation method
�
�� �
�� �
�� �
�� �
�� Averages of
�
�� �
�� �
�� �
�� �
�� estimates
�
�� �
�� �
�� �
�� �
��

�
�� �
�� �
�� �
�� Standard deviations
�
�� �
�� �
�� �
�� of estimates
�
�� ��
�� ��
�� �
��
�
�� ��
�� �
�� �
�� Averages of estimated
�
�� ��
�� �
�� �
�� asymptotic standard
�
�� ���
�� ��
�� �
�� deviations of estimates

Model IV �� � �����

�i M� M� M� M� Estimation method
�
�� �
�� ���
�� �
�� �
�� Averages of
�
�� ��
�� ��
�� �
�� ��
�� estimates
�
�� ��
�� �
�� ��
�� �
��
��
�� ��
�� ��
�� ��
�� ��
��

�
�� ���
�� ��
�� �
�� Standard deviations
�
�� ����
�� �
�� �
�� of estimates
�
�� ���
�� �
�� �
��
�
�� ��
�� �
�� �
��
�
�� �����
�� ��
�� ��
�� Averages of estimated
�
�� �����
�� ���
�� ��
�� asymptotic standard
�
�� ����
�� ��
�� �
�� deviations of estimates
�
�� ����
�� �
�� �
��

Model V �� � �����

�i M� M� M� M� Estimation method
�
�� ��
�� ��
�� ��
�� ��
�� Averages of
�
�� ��
�� �
�� �
�� �
�� estimates
�
�� �
�� �
�� �
�� �
��
��
�� ��
�� ��
�� ��
�� ��
��

�
�� �
�� �
�� �
�� Standard deviations
�
�� �
�� �
�� �
�� of estimates
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
��
�
�� �
�� �
�� �
�� Averages of estimated
�
�� �
�� �
�� �
�� asymptotic standard
�
�� �
�� �
�� �
�� deviations of estimates
�
�� �
�� �
�� �
��

Table �� Simulation results for the models III�V�
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adjusted methods are not that prominent albeit still noticeable
 The estimated
asymptotic standard deviations are even larger than the observed ones and in
some cases �M� in model IV� completely out of any reasonable range
 In these
situations M� produces the smallest asymptotic standard deviations


For model V and similarly for models I� and II� �not presented here� with rather
small measurement errors �� � ���� and � � ����� respectively� the asymptotic
standard deviations do almost coincide with the empirical standard deviations
of the estimates and� for the adjusted estimators� are only slightly larger than
for the naive estimator
 The same holds for the adjusted estimator M�� which
in this case surpasses M� with respect to the bias
 Actually� if we examine
the average estimates of the parameter �� in model V for both methods� we
realize that M� tends to overcorrect for bias if compared to M� in this situation
whereas M� shows satisfactory results
 This e�ect disappears when we shift
the interval of the �i values to the right and simulate a polynomial shifted in
the same way
 Then both estimators M� and M� perform almost in the same
manner
 This indicates exemplarily the dependency of the adjusted estimators
not only on the amount of measurement error but also on the speci	c type of
polynomial to be 	tted


It is interesting to note that Moon and Gunst ������ considered the ALS
method M� as being very ine�cient �for small samples�� and this is born out
by our simulation results
 However its modi	cations� in particular M�� do not
show that de	ciency any more


� Earthquake Data

To see how our method works in practice we applied it to data that was anal�
ysed by Fuller ������ p
 ���� with the help of a quadratic model
 The data
consists of �� measurements of the three�dimensional location of earthquake
centers in a region near the Tonga trench
 The variable y is the depth of the
center of an earthquake� �� its distance on the earth�s surface from the Tonga
trench� and �� is a coordinate measuring the location of the earthquake parallel
to the Tonga trench
 For geophysical reasons the depth of an earthquake is
nonlinearly related to its distance �� from the Tonga trench and linearly with
respect to the other coordinate ��
 The nonlinear relation was approximated
by a quadratic function in Fuller ������
 Here we experiment with a polyno�
mial of third degree in order to 	nd out whether a quadratic function is� in
fact� su�cient or whether the third power of the distance variable needs to be
introduced in the model
 We thus work with the following regression

yi � �� � ����i � ���
�
�i � ���

�
�i � ����i � �i� i � �� � � � � ��� ����

with the purpose in mind to test the hypothesis �� � �
 The data can be found
in Fuller ������ p
 ����
 All variables are measured in ��� km
 The variables

��



��i and ��i are measured with errors ��i and ��i� both with the same standard
deviation ��� which is known to be �� km
 Thus xki � �ki � �ki� k � �� �� with
���k � ��� � ����
 The errors �� ��� and �� are independent� and the normality
assumption �N� is adopted


The model ���� di�ers from the basic polynomial model in that it contains
a second �error�ridden� variable �� in addition to the variable ��� which ap�
pears in the polynomial part of the model
 Nevertheless the same approach as
developed for the basic model can be chosen to analyse the present model


The matrix Hi is modi	ed by adding the column �and corresponding row�

�toit
�

�i� � � � � t�it
�

�i� t
�

�i�
��

where t��i � x�i and t��i � x��i � ��� 
 Similarly the vector ti is augmented by
the element t��i � x�i
 With these modi	ed matrices Hi and vectors ti the
matrices �Vi are computed according to ��� and the matrices A�B� and �B are
constructed with �v � � and ��� � �
 We then estimated the parameters of
���� in the same way as for the one variable polynomial model


The results are presented in table �
 For the naive� the adjusted� and the second
modi	ed adjusted estimation method� estimates of the parameters ��� � � � � ��
are shown together with their asymptotic standard deviations
 In this case�
probably due to the rather small error variances� the estimates of the two last
methods do not di�er very much� but both of them di�er to some degree from
the estimates of the naive method
 Except for the last parameter �� all other
parameters are not signi	cant
 This is certainly due to the high collinearity of
the powers of �� and does not mean that �� does not have any in"uence on y

The smallest t�value is the one for ��� j���j�����

� ������ which suggests that

��� � being quite insigni	cant� should be dropped from the regression


Estimation method �� �� �� �� ��
Naive ��
��� �
��� �
��� ��
��� �
���

��
���� ��
���� ��
���� ��
���� ��
����
Adjusted ��
��� �
��� �
��� ��
��� �
���

��
���� ��
���� ��
���� ��
���� ��
����
�nd Modi	ed ��
��� �
��� �
��� ��
��� �
���

��
���� ��
���� ��
���� ��
���� ��
����

Table �� Earthquake data� Estimated parameters values and their asymptotic
standard errors �given in parantheses� for the naive� the adjusted and the
second modi	ed adjusted estimation method�

The resulting quadratic �in ��� regression can be estimated
 We present only
the results for the modi	ed adjusted estimation method�

�yi � ������ ������ ��i ������ ���i ������ ��i�
������� ������� ������� �������
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where the numbers in parentheses are the estimated standard errors
 They
correspond closely to Fuller�s result� who only studied the quadratic case
 It
is seen that the estimates are now all signi	cant


	 Conclusion and discussion

If the naive estimator of a regression with errors in the variables� i
e
� the
estimator which disregards the measurement errors� is adjusted for the errors
with the help of the error variance and possibly also of higher moments of the
error variable� then a consistent estimator results� the adjusted least squares
�ALS� estimator
 This estimator� however� is extremely unstable for small
samples� particularly if the error variance is high relative to the variance of
the regressor
 Various modi	cations of the ALS estimator are possible to
remedy this situation without destroying the consistency and other asymptotic
properties of the estimator
 We discussed two such modi	cations� though other
modi	cations are also possible
 They do not seem to di�er very much in their
results� but rather all agree in reducing the small sample variance considerably


When Moon and Gunst ������ in their simulation study judged the unmodi	ed
ALS estimator to be very unstable� they were right� but they were wrong in
their general judgement that #specialized estimators for polynomial measure�
ment error models do not appear to be needed
� By #specialized estimators#
they meant among others unmodi	ed ALS
 Had they considered modi	ed ALS
estimators �and not just the unmodi	ed one� they would have been forced to
qualify their statement
 Also� what they called the general nonlinear estima�
tor� which performed best in their simulations� is not so general after all
 It
uses more information than ALS� namely� knowledge of both error variances�
of regressor and of regressand� and therefore cannot be compared with ALS
or any of its modi	cations� because these methods use only the error variance
of the regressor
 In addition� the general nonlinear estimator� despite its good
performance in their simulation study� is not consistent in the usual sense� see
Wolter and Fuller ������
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