LUDWIG-

ESIXV'Q’:SLI'?;TS' INSTITUT FUR STATISTIK
SONDERFORSCHUNGSBEREICH 386

MUNCHEN

Hahn, Waschulzik:

On the Use of Local RBF Networks to Approximate
Multivalued Functions and Relations

Sonderforschungsbereich 386, Paper 116 (1998)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

On the Use of Local RBF Networks to
Approximate Multivalued Functions and

Relations

Klaus Hahn
Institute of Biomathematics and Biometrics of the GSF - National Research Center
for Environment and Health, Postfach 1129, D-85758 Oberschleilheim, Germany
E-mail: hahn@gsf.de

Thomas Waschulzik
Technology Center Informatics, Intelligent Systems, FB 3,
University of Bremen, Bibliothekstr. 1, D-28359 Bremen, Germany

Abstract

A connectionist model made up of a combination of RBF networks
is proposed; the model decomposes multivalued dependencies into local
single valued functions; theory and applications are presented.

1 Introduction

We present a new network structure which is modelled according to the ”im-
plicit function theorem” [1]. It roughly states that multivalued functions and
relations, which can be described by the zeros of an implicit function, can
locally be represented by single valued functions. In this network, the local
functions are realized by feedforward networks (RBF). They are incorporated
into a global network by a symmetric topological encoding of the in- and out-
put spaces and by a product of error functions. The latter represent separated
classes of local functions. Via a least square training of the global network it
is decided which one of the local networks generalizes best in a special region.
This optimal network is then used for the local generalization of the multival-
ued function.

This construction performs interpolation and classification tasks on the same
automatic control level as standard RBF networks. Moreover, it uses the gen-
eralization quality and the transparent parametrization of feedforward net-
works in the treatment of multivalued functions and relations. A regulariza-
tion (smoothing) term is included in the model. Such networks are relevant
in image smoothing, where discontinuities like edges pose a severe problem to
numerous filters [2]. In addition, the use of least square training allows a pre-
cise treatment of the regression problem. Moreover in the field of non unique
inverse problems, like in spectral analysis - where parameters of the unknown
spectrum are to be determined -, or like in medical image analysis - where e.g.
from the noisy image of a tumour its sharp contour (the regression curve) shall
be reconstructed -, one frequently has to deal with relations.

2 The global network and its local RBF constituents

In this section, the essentials of the construction will be developed. The (local)
single valued mappings used, are for notational simplicity one dimensional:



R — R. In contrast to such single valued functions, which can be described e.g.
as mappings = — y, multivalued functions and relations map z not only to a
single value y, but also to several discrete y values or even to intervals. Thus for
relations, we cannot expect to find an expression like y = network(z, p) which
gives all y-values depending on z, after some training process determining the
parameters p of the generalizing network. To find the y-values given z for a
relation, we therefore use the least square error function which was the basis
of the training process and calculate from this function, error(z,y), the zeros
along the y axes for a fixed = (the case "given y” is treated in a symmetrical
way).

Though relations globally differ from functions, they can locally be described
by functions z — y or y — z, at least if they are not too pathological. Since no
coordinate axis is discriminated the input and output spaces will be encoded in
a symmetric way; i.e. we introduce a x-axis-RBF set {®;(z)|i = 1 to necessary
number of radial basis functions to cover that region of the x-axis which is
occupied by the orthogonal projection of the relation on z}, and a y-axis-RBF
set {O;(y)|...} in an analogous way. This encoding of the in- and output
spaces can be called topological, since adjacent points are described (encoded)
by RBF’s with adjacent centres. A local function z — y may then be described
by the term:

error(e,Y)ssy,; = [Oj(y) — sig(ziwijéi(x))]2 (1)

where the sigmoid, sig(z) = 1/(1 + exp[—4z]), has scaling properties. The
center of O, (y) localizes the neighborhood in the y space, where z — y can be
trained to the data via error(z,y)z—y ;; where O;(y) =~ 0 this neighborhood
has reached its limits. Looking for the zeros of error(z,y)qy,; after training
we find two problems:

a) there are two generalizing solutions, symmetric to the center of O;(y),

b) to reduce the neighborhood not too much, we must use a broad function
O, (y), with the consequence, that the valley of zeros is unpleasantly flat.
These problems can be circumvented by summation over (1)

error(z,y)emy = D [0;(y) = sig( Y wi@i())]” (2)
This represents all local functions in the direction z — y, which are regarded in
some multivalued interpolation problem. Equation (2) can be interpreted as an
implicit function in the sense mentioned in the Introduction. To illustrate this
Ansatz, we show in Fig. 1 an interpolation, where via (2) a multivalued function
x +— y with crossing and discontinuities is approximated by the training points
indicated.

The mappings y — = are summarized by the symmetric expression

error(z,y)y—a = Zk (@1 (2) - Sig(z:z wklOl(y))]z 3)

The advantages of (2) and (3), however, have a price: if the training to the
data cannot be performed perfectly as is usually the case, the error surfaces (2)



Fig. 1 A multivalued function = > y is generalized by (2), (44 training points).

or (3) show no more perfect zeros as solution curves, but a course of minima
somewhat above 0. The precise detection of this course is not trivial and will
be discussed in section 3.

Up to now only multivalued functions can be treated. In order to generalize a
relation (e.g. a spiral), a product of (2) and (3) is used:

y —>

{x<-A}

Fig. 2 The errror surfaces of a relatlon described by four local functlons

An example of a generalizing error function (4) - after training - is given in
Fig. 2, panel B); the valley of minima follows the pattern ”suggested” by
the training points given in panel A). The error functions of the active local
functions in the two factors of (4), in (2) and (3), are shown in panel C). As (2)
generalizes the maps = — y only, clear minima are present only at the top and
bottom of panel C) (in panel A) the coordinate axes are given). To find the
minima of (3) in C) just rotate panel C) by 90°. Panel A) additionally shows
the continuous course of minima of panel B).

Summarizing: the error functions [?implicit functions”] (2), (3) and (4) define
global networks by the course of minima [’zeros”]. These courses generalize
multivalued functions ((2), (3)) and relations (4). The global networks are
composed of RBF’s [”local functions”] which generalize the data locally. As
will be exemplified in Fig. 4, for some interpolation tasks, not only the networks
are finally relevant, but also their extensions to the error surfaces.

3 Training process and ridge detection

In this section, the calculational procedure will be explained. The training
points are the input, the course of minima in the error surface finally is the



output, which must be analyzed by some algorithm. The number of basis
functions is given initially by the recipe: Choose the centres and widths of the
Gaussians ®;(z) and O, (y) heuristically (in case of exact data: width of RBF’s
~center of RBF’s distance ~mean training point distance, in case of noisy
data: width ~center distance ~standard deviation of training point density).
For a relation the weights w;; are obtained by a minimization of (4) plus a
regularization term:

ntrainin,
n}ﬂin [szl g error(zp,,yp) + & Zij (const + w;;)?] (5)
where (z,yp) are training points and « is the regularization strength. For Fig.
1 - Fig. 4 a ~ 0.05 was used, for noisy data, a ~ 0.5; const = 0.5 to achieve a
flat error surface. Via the fit (5), the error function ”decides” where (2) or (3)
is generalizing best (builds a course close to zero), the w-matrix in the other
term causes a bounded factor only. Therefore it is sufficient to use the same
w-matrix in the factors (2) and (3) of (4). In contrast to a Spline interpola-
tion, the training points need not to be ordered, the network generalizes to
the nearest neighbours, sequential learning is possible. In this work a standard
procedure of the NAG numerical library was used to perform the minimiza-
tion. With respect to smoothness of the local RBF-networks as penalty term
the weight-decay regularization was used [3]. Finally a fine tuning of the pa-
rameters can be performed via cross validation.

According to this training process, the error surface is minimized in the training
points, the generalization extends these minima to smooth courses, which con-
stitute the generalizing continua. A strict mathematical definition of courses
or ridges is still an object of controverse debates [4]. However, there exists a
numerical algorithm, which solves the problem of ridge calculation on a finite
grid. To apply a variant of this watershed algorithm, —error(z,y) is com-
puted and discretized. In order to identify the pairs (z,y) which belong to
the modelled multivalued function, the crest lines are extracted [5]. Although
the original watershed algorithm detects only watershed and not crest lines
in general, it can be modified by inserting artificial borders into the original
image, before the watershed is computed. With this modified algorithm, it is
possible to detect crest lines or ridges without adding artefacts. Fig. 3 and Fig.
4 demonstrate further applications of the described method.

4 Noisy data

In case of a quadratic error function, one can show for a continuous set of
noisy training points that training of the weigth matrix w for a standard RBF
network (e.g. for the z — y map) leads to a separation of the error function
into a bias and a variance term. The minimum of the bias defines the network,
which approximates the regression (e.g. (y|z)) [3]. Similar reasoning leads for
(2) and (3) to the same separation, the bias term of (2) is:

errorg sy (z, (ylz)) = Zj [(O;]z) — sig( ZZ wij‘l’i(fv))]2 (6)



Fig. 3 A circle is defined by 30 points, the generalizing course is shown.
Fig. 4 The two spiral problem is treated by (4). Not only the courses are shown,
but a three level colouring of the error surfaces.

where p(y|z) denotes the conditional distribution of training points y for fixed
x and

(fle) = [ F@)p(yle)dy (7)

is a conditional mean of some function f.

2
In case of a Gaussian distribution p(y|z) = e~ (v=sl2)) /(20(””)2)/ 2no(z) , we
find for O;(y) = e~ (W=mi)?/(2s7),

(0;le) = &= (l2)=ms) "/ (F+o@™) gy [ o ()2 (8)

For (3) the bias term is completely symmetric to (6). Since the course of (4) is
defined by the minima of (2) or (3), in case of noisy data, (4) is replaced by the
product of (6) and its symmetric counterpart. To exploit this modification, we
must assume an approximate analytical form for the conditional point densities
p(y|z) and p(z]y) (both densities include the unknown regression parameters
(y|z), (z|y) and the standard deviations o(z),o(y) as known). In regions of
the plane, where (6) is active, the network approximates the regression (y|z),
where the counterpart is active the regression (z|y). The training process is
still performed by (5), which is free of distribution assumptions. In Fig. 5 and
Fig. 6 applications of the described procedure are shown.

5 Summary and outlook

A new variant of a RBF network is proposed. It is applied to the approxi-
mation of multivalued functions and relations and seems to be a reasonable
tool for generalization tasks, for non unique inverse problems and for special
classification problems. The model generalizes exact and noisy data. In case of
noisy data in the calculational procedure (not in training), assumptions about



Fig. 5 The training points in panel A) are derived by a radial Gaussian distribution
for 200 equidistant angles. The calculated curve is an estimator for the generating
circular regression. In panel B) 5000 angles are used to demonstrate consistency.

Fig. 6  The ability of (6) to
approximate noisy discontinu-
ous functions is demonstrated;
thick line: (6), thin line: true
regression, 200 training points
are used [2].

the underlying point distributions enter. The network is defined for relations
up to now by a symmetric Ansatz which originates in the use of two coordinate
systems. In case of noisy data, however, the introduction of more coordinate
systems might reduce the bias of this model. The model is presented in the
plane only. Extensions to more dimensions are straightforward at least for the
case of discontinuous image smoothing, Fig. 6. In case of true relations the con-
struction of the model indicates how extensions to higher dimensions should
be formulated.
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