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Abstract

A connectionist model made up of a combination of RBF networks
is proposed� the model decomposes multivalued dependencies into local
single valued functions� theory and applications are presented


� Introduction

We present a new network structure which is modelled according to the �im�
plicit function theorem� ���� It roughly states that multivalued functions and
relations� which can be described by the zeros of an implicit function� can
locally be represented by single valued functions� In this network� the local
functions are realized by feedforward networks 	RBF
� They are incorporated
into a global network by a symmetric topological encoding of the in� and out�
put spaces and by a product of error functions� The latter represent separated
classes of local functions� Via a least square training of the global network it
is decided which one of the local networks generalizes best in a special region�
This optimal network is then used for the local generalization of the multival�
ued function�
This construction performs interpolation and classi�cation tasks on the same
automatic control level as standard RBF networks� Moreover� it uses the gen�
eralization quality and the transparent parametrization of feedforward net�
works in the treatment of multivalued functions and relations� A regulariza�
tion 	smoothing
 term is included in the model� Such networks are relevant
in image smoothing� where discontinuities like edges pose a severe problem to
numerous �lters ���� In addition� the use of least square training allows a pre�
cise treatment of the regression problem� Moreover in the �eld of non unique
inverse problems� like in spectral analysis � where parameters of the unknown
spectrum are to be determined �� or like in medical image analysis � where e�g�
from the noisy image of a tumour its sharp contour 	the regression curve
 shall
be reconstructed �� one frequently has to deal with relations�

� The global network and its local RBF constituents

In this section� the essentials of the construction will be developed� The 	local

single valued mappings used� are for notational simplicity one dimensional




R � R� In contrast to such single valued functions� which can be described e�g�
as mappings x �� y� multivalued functions and relations map x not only to a
single value y� but also to several discrete y values or even to intervals� Thus for
relations� we cannot expect to �nd an expression like y � network	x� p
 which
gives all y�values depending on x� after some training process determining the
parameters p of the generalizing network� To �nd the y�values given x for a
relation� we therefore use the least square error function which was the basis
of the training process and calculate from this function� error	x� y
� the zeros
along the y axes for a �xed x 	the case �given y� is treated in a symmetrical
way
�
Though relations globally di�er from functions� they can locally be described
by functions x �� y or y �� x� at least if they are not too pathological� Since no
coordinate axis is discriminated the input and output spaces will be encoded in
a symmetric way� i�e� we introduce a x�axis�RBF set f�i	x
ji � � to necessary
number of radial basis functions to cover that region of the x�axis which is
occupied by the orthogonal projection of the relation on xg� and a y�axis�RBF
set fOj	y
j � � �g in an analogous way� This encoding of the in� and output
spaces can be called topological� since adjacent points are described 	encoded

by RBF�s with adjacent centres� A local function x �� y may then be described
by the term


error	x� y
x ��y�j �
�
Oj	y
� sig

�X
i
wij�i	x


���
	�


where the sigmoid� sig	x
 � ��	� � exp���x�
� has scaling properties� The
center of Oj	y
 localizes the neighborhood in the y space� where x �� y can be
trained to the data via error	x� y
x��y�j � where Oj	y
 � � this neighborhood
has reached its limits� Looking for the zeros of error	x� y
x��y�j after training
we �nd two problems

a
 there are two generalizing solutions� symmetric to the center of Oj	y
�
b
 to reduce the neighborhood not too much� we must use a broad function
Oj	y
� with the consequence� that the valley of zeros is unpleasantly �at�
These problems can be circumvented by summation over 	�


error	x� y
x��y �
X

j
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This represents all local functions in the direction x �� y� which are regarded in
some multivalued interpolation problem� Equation 	�
 can be interpreted as an
implicit function in the sense mentioned in the Introduction� To illustrate this
Ansatz� we show in Fig� � an interpolation� where via 	�
 a multivalued function
x �� y with crossing and discontinuities is approximated by the training points
indicated�
The mappings y �� x are summarized by the symmetric expression

error	x� y
y ��x �
X

k

�
�k	x
 � sig
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l
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The advantages of 	�
 and 	�
� however� have a price
 if the training to the
data cannot be performed perfectly as is usually the case� the error surfaces 	�




Fig
 � A multivalued function x �� y is generalized by ���� ��� training points�


or 	�
 show no more perfect zeros as solution curves� but a course of minima
somewhat above �� The precise detection of this course is not trivial and will
be discussed in section ��
Up to now only multivalued functions can be treated� In order to generalize a
relation 	e�g� a spiral
� a product of 	�
 and 	�
 is used


error	x� y
 � errorx��y	x� y
 � errory ��x	x� y
 	�


Fig
 � The errror surfaces of a relation described by four local functions

An example of a generalizing error function 	�
 � after training � is given in
Fig� �� panel B
� the valley of minima follows the pattern �suggested� by
the training points given in panel A
� The error functions of the active local
functions in the two factors of 	�
� in 	�
 and 	�
� are shown in panel C
� As 	�

generalizes the maps x �� y only� clear minima are present only at the top and
bottom of panel C
 	in panel A
 the coordinate axes are given
� To �nd the
minima of 	�
 in C
 just rotate panel C
 by ���� Panel A
 additionally shows
the continuous course of minima of panel B
�
Summarizing� the error functions ��implicit functions�� 	�
� 	�
 and 	�
 de�ne
global networks by the course of minima ��zeros��� These courses generalize
multivalued functions 		�
� 	�

 and relations 	�
� The global networks are
composed of RBF�s ��local functions�� which generalize the data locally� As
will be exempli�ed in Fig� �� for some interpolation tasks� not only the networks
are �nally relevant� but also their extensions to the error surfaces�

� Training process and ridge detection

In this section� the calculational procedure will be explained� The training
points are the input� the course of minima in the error surface �nally is the



output� which must be analyzed by some algorithm� The number of basis
functions is given initially by the recipe
 Choose the centres and widths of the
Gaussians �i	x
 and Oj	y
 heuristically 	in case of exact data
 width of RBF�s
�center of RBF�s distance �mean training point distance� in case of noisy
data
 width �center distance �standard deviation of training point density
�
For a relation the weights wij are obtained by a minimization of 	�
 plus a
regularization term


min
w

�Xntraining

p��
error	xp � yp
 � �

X
ij
	const� wij


�
�

	�


where 	xp� yp
 are training points and � is the regularization strength� For Fig�
� � Fig� � � � ���� was used� for noisy data� � � ���� const � ��� to achieve a
�at error surface� Via the �t 	�
� the error function �decides� where 	�
 or 	�

is generalizing best 	builds a course close to zero
� the w�matrix in the other
term causes a bounded factor only� Therefore it is su�cient to use the same
w�matrix in the factors 	�
 and 	�
 of 	�
� In contrast to a Spline interpola�
tion� the training points need not to be ordered� the network generalizes to
the nearest neighbours� sequential learning is possible� In this work a standard
procedure of the NAG numerical library was used to perform the minimiza�
tion� With respect to smoothness of the local RBF�networks as penalty term
the weight�decay regularization was used ���� Finally a �ne tuning of the pa�
rameters can be performed via cross validation�
According to this training process� the error surface is minimized in the training
points� the generalization extends these minima to smooth courses� which con�
stitute the generalizing continua� A strict mathematical de�nition of courses
or ridges is still an object of controverse debates ���� However� there exists a
numerical algorithm� which solves the problem of ridge calculation on a �nite
grid� To apply a variant of this watershed algorithm� �error	x� y
 is com�
puted and discretized� In order to identify the pairs 	x� y
 which belong to
the modelled multivalued function� the crest lines are extracted ���� Although
the original watershed algorithm detects only watershed and not crest lines
in general� it can be modi�ed by inserting arti�cial borders into the original
image� before the watershed is computed� With this modi�ed algorithm� it is
possible to detect crest lines or ridges without adding artefacts� Fig� � and Fig�
� demonstrate further applications of the described method�

� Noisy data

In case of a quadratic error function� one can show for a continuous set of
noisy training points that training of the weigth matrix w for a standard RBF
network 	e�g� for the x �� y map
 leads to a separation of the error function
into a bias and a variance term� The minimum of the bias de�nes the network�
which approximates the regression 	e�g� hyjxi
 ���� Similar reasoning leads for
	�
 and 	�
 to the same separation� the bias term of 	�
 is


errorx��y

�
x� hyjxi

�
�
X

j

�
hOj jxi � sig

�X
i
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���
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Fig
 � A circle is de�ned by �� points� the generalizing course is shown


Fig
 � The two spiral problem is treated by ���
 Not only the courses are shown�

but a three level colouring of the error surfaces


where p	yjx
 denotes the conditional distribution of training points y for �xed
x and

hf jxi �

Z
f	y
p	yjx
dy 	�


is a conditional mean of some function f �

In case of a Gaussian distribution p	yjx
 � e�
�
y�hyjxi

�
�

�
�
���x��

�
�
p
���	x
 � we

�nd for Oj	y
 � e��y�mj�
����s�j �


hOj jxi � e�
�
hyjxi�mj

�
�

�
�
��s�j���x�

��
�
sj�
q

s�j � �	x
� 	�


For 	�
 the bias term is completely symmetric to 	�
� Since the course of 	�
 is
de�ned by the minima of 	�
 or 	�
� in case of noisy data� 	�
 is replaced by the
product of 	�
 and its symmetric counterpart� To exploit this modi�cation� we
must assume an approximate analytical form for the conditional point densities
p	yjx
 and p	xjy
 	both densities include the unknown regression parameters
hyjxi� hxjyi and the standard deviations �	x
� �	y
 as known
� In regions of
the plane� where 	�
 is active� the network approximates the regression hyjxi�
where the counterpart is active the regression hxjyi� The training process is
still performed by 	�
� which is free of distribution assumptions� In Fig� � and
Fig� � applications of the described procedure are shown�

� Summary and outlook

A new variant of a RBF network is proposed� It is applied to the approxi�
mation of multivalued functions and relations and seems to be a reasonable
tool for generalization tasks� for non unique inverse problems and for special
classi�cation problems� The model generalizes exact and noisy data� In case of
noisy data in the calculational procedure 	not in training
� assumptions about



Fig
 � The training points in panel A� are derived by a radial Gaussian distribution

for ��� equidistant angles
 The calculated curve is an estimator for the generating

circular regression
 In panel B� ���� angles are used to demonstrate consistency


Fig
 � The ability of ��� to
approximate noisy discontinu�
ous functions is demonstrated�
thick line� ���� thin line� true
regression� ��� training points
are used ���


the underlying point distributions enter� The network is de�ned for relations
up to now by a symmetric Ansatz which originates in the use of two coordinate
systems� In case of noisy data� however� the introduction of more coordinate
systems might reduce the bias of this model� The model is presented in the
plane only� Extensions to more dimensions are straightforward at least for the
case of discontinuous image smoothing� Fig� �� In case of true relations the con�
struction of the model indicates how extensions to higher dimensions should
be formulated�
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