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Abstract

The paper deals with sets of distributions which are given by moment

conditions for the distributions and convex constraints on derivatives of their

c�d�fs� A general albeit simple method for the study of their extremal struc�

ture� extremal decomposition and topological or measure theoretical proper�

ties is developed� Its power is demonstrated by the application to bell�shaped

distributions� Extreme points of their moment sets are characterized com�

pletely �thus �lling a gap in the previous theory� and inequalities of Tchebysh�

e� type are derived by means of general integral representation theorems�

Some key words	 Moment sets� Tschebyshe
 inequalities� extremal bell�shaped
distributions

� Introduction

This paper is devoted to the study of sets of distributions on the real line de�ned
by both� moment constraints and convex constraints on derivatives �in the distri�
butional sense�� Of particular interest are their topological and measure theoretical
properties and the characterization of extremal elements� Integral representations
��B� �

R
��B� dp���� where p is a probability measure on the set of �known� ex�

treme points� are of interest� as well� since combined with the characterization of
extreme points they immediately give sharp inequalities of Tchebyshe	 type�

Important examples are moment sets of distributions which are bell�shaped to
some order with �xed turning points� for example unimodal with �xed mode� In
the context of �nite mixture distributions �
����� there is increasing interest in dis�
tributions with more than one interval of modality� as well� Further examples are
distributions which are arbitrary on some interval ���� x�� with n

th concave or con�
vex derivatives on the rest for even or odd n� respectively� or of distributions where
the total variation of the nth derivative is bounded by some prescribed constant
�
��� 
��� 
���� 
��� 
����

In the �rst Part of this paper� the linear map from �nite signed measures to their
nth derivatives is examined since in the present context the analysis of derivatives
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is much simpler than that of the original distributions� The derivatives are char�
acterized as �nite signed measures ful�lling natural moment conditions� the inverse
map is computed and moment conditions on the distributions are transformed into
additional moment conditions on the derivatives� Plainly� everything is based on
integration by parts� but one has to proceed cautiously� since Fubini�s Theorem is
applied to the unbounded Lebesgue measure and signed measures�

In a large class of problems� the derivatives can be transformed into probability
measures by a �ip of the negative part followed by a suitable normalization� This
amounts to the construction of a density s such that s� is a probability measure
for all derivatives � in question� If such a construction works then moment sets of
derivatives are a�nely isomorphic to moment sets in the space of all distributions
which are much easier to handle than the original ones� Such transformations are
studied in the second Part�

The sketched paradigm is illustrated in Part � by way of the example of bell�
shaped distributions with �xed turning points� The extremal ones are explicitely
characterized in the cases of presence or absence of moment conditions� It is shown
that the respective moment sets are even �weakly� homeomorphic and hence well�
known integral representation results for general moment sets can be carried over to
the case of bell�shaped distributions� These in turn yield Tchebyshe	 type inequal�
ities�

Results of this type seem to have appeared �rst in the pioneering paper 
�� by
Mulholland and Rogers ������ although some of the ideas can be found in ear�
lier work� for example 
�� from ����� An integral representation theorem for moment
sets of bell�shaped measures is proved in 
�� by ad hoc methods and a character�
ization of extremal elements is formulated but not veri�ed �cf� Remark ����� this
seems to have been overlooked by various authors quoting this paper� cf� 
��� 
��� 
���

���� The program is carried out for the much simpler set of distributions which have
convex or concave derivatives on the right of some point x� and which are arbitrary
elsewhere in 
��� This set can be transferred to the set of �nearly� all distributions
on the real line� the extreme points of which are the point measures� Therefore the
inverse of the corresponding transformation is even induced by a Markov kernel�
which allows an elegant and simple treatment� kemperman announces an applica�
tion of his method to bell�shaped distributions in 
�� but this seems never to have
appeared� The case of bell�shaped distributions is much more intricate as will be
seen below� basically since there may be several exceptional points and not only one�

We plan to work out some more of the examples mentioned above in future work�
in the �rst place distributions with derivatives of uniformly bounded variation�

� Derivatives and their Moments

In this section� derivatives of distributions are de�ned and � if they exist � charac�
terized by moment conditions� It is more convenient to work with functions than
with measures in this context and we shall do so�
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��� Derivatives of Distributions

Let f be a real function on the real line R� The variation of f is denoted by
R
jdf j and

f is of �nite variation if
R
jdf j � �� Since only the measure de�ned by a function

will be of interest� the following de�nition is reasonable� A real function F on R is
di
erentiable �in the wide sense with �generalized derivative f � F � if there is a
right�continuous real function f � L��dx� of �nite variation such that

F �x� �
Z x

��
f�y� dy for every x � R�

Note that F automatically has �nite variation
R
jdF j �

R
jf�y�j dy �cf� 
��� Thm�

III����� p� ���� and is continuous if F � exists� Set

f�x�� � lim
y�x�y�x

f�y�� f�x�� � lim
y�x�y�x

f�y�

and write f���� for the limits at �� �if the respective limits exist�� Let further
Vb denote the space of right�continuous real functions on R of �nite variation such
that f���� �  andMf the space of �nite signed measures on the Borel����eld B
of the real line� An element ofMf will brie�y be called a measure in the sequel�

Remark ��� The spaces Vb and Mf are linearly isomorphic� the isomorphism and
its inverse induced by

������ x�� � f�x�� x � R�

Plainly� each function f of �nite variation induces some � � Mf by ���x� y�� �
f�y��� f�x��� Moreover� it has an at most countable set of jumps and hence the
right�continuous regularization f���� coincides with f Lebesgue almost everywhere�
Hence we may work with the regularization from the beginning and require f to be
right�continuous� This requirement �and that f vanishes at �� forces the map
f �� � to be one�to�one�

Assume now that f � F � exists and denote the signed measures corresponding to
F and f by � and �� respectively� Let further � � C�c �R� be a test function� Then
integration by parts yields

�
Z
�� d� � �

Z
�� dF � �

Z
f�x����x� dx � �

Z
f d� �

Z
�df �

Z
�d��

Hence the distributional derivative of a measure is again a measure in our setting�

For most parts of this section� right�continuity of derivatives is not essential
except in Section ���� Therefore the formulae will be given in a form which is
correct for functions of �nite variation not necessarily right�continuous� as well�
This requires some extra ����signs but allows notational symmetry in right� and
left�hand limits�

��� Integration by Parts

A technical condition is formulated �rst�
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De�nition ��� A real function f ful�lls condition �R if there is R �  such that
f is monotone on the intervals �����R� and 
R���� respectively� Let f � R if it
is right�continuous� has �nite variation� ful�lls �R and f�x��  as jxj � ��

The following integration by parts formula is convenient in the present context�

Theorem ��� Let f � R� Then for every k � ��

Z �

�
xk df�x� � �k

Z �

�
xk��f�x� dx�

Z �

��
xk df�x� � �k

Z �

��
xk��f�x� dx�

where in each equation both sides may attain the values ��� In particular�Z
xk df�x� � �k

Z
xk��f�x� dx ���

with the usual convention that that either both integrals exist � possibly with values
�� � or both sides do not exist�

The following simple observation is useful�

Lemma ��� If f �  for jxj � � then f�x��� f�x���  if jxj � ��

Proof �of Theorem ����� The measure df either is positive or it is negative on

R���� Since Lebesgue measure dx is positive and ���nite on 
��� the product
measure dydf�x� is de�ned on the rectangle 
� R�� as a �nite signed measure� and
on 
���	 
R��� where it is positive or negative ���nite� Letting I denote one of
these intervals Fubini�s theorem givesZ

I

Z �

�
����x��y�y

k�� dy df�x� �
Z �

�

Z
I
����x��y� df�x� y

k�� dy�

For I � 
� R� both sides are �nite� if I � 
R��� then both sides are �nite or equal
to �� depending on the sign of the product measure� Hence in view of f��� � 
�Lemma �����Z �

�
xk df�x� � k

Z �

�

Z x

�
yk�� dy df�x� � k

Z �

�

Z �

�
����x��y�y

k�� dy df�x�

� k
Z �

�

Z �

�
��y����x� df�x� y

k�� dy � �k
Z �

�
yk�� f�y� dy�

This proves the �rst equation� The second one is veri�ed by the same computation�
If one of the both sides of the third equation exists� then the expressions in the �rst
and second equation are �nite and hence the third identity holds� This completes
the proof�

Remark ��� The only task of requirement �R is to ensure existence of a product
measure and applicability of Fubini�s theorem� The condition f�x� � � jxj � ��
removes additive constants in the integration by parts formula�

Lemma ��	 Let f � R and suppose yk � L��df�y��� Then

xkf�x��� xkf�x�� ��  as jxj � ��
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Proof� Since yk � L��df�y�� one can apply familiar integration by parts on compact
intervals and let the interval boundaries tend to in�nity� In particular�Z x

�
yk df�y� � xkf�x���

Z x

�
f�y� dyk � xkf�x��� k

Z x

�
yk��f�y� dy�

By Theorem ��� the integrals coincide in the limit x��� Hence limx�� xkf�x��
exists and even vanishes� Integration over 
x� � gives xkf�x�� �  for x � ��
This implies the result�

��� Moments of Derivatives

Two simple observations will be useful� The terms �in�� or �decreasing� will be used
in the sense �nonde�� and �nonincreasing�� respectively�

Lemma ��
 If f � F � then

f�x� �� � jxj � ��

Proof� Every real function f on R of �nite variation is bounded and there are real
numbers cl and cr such that

f�x� �� cl� x� �� and f�x� �� cr� x���

In fact� there are bounded increasing functions f� and f� such that f � f� � f�

�choose for instance the minimal functions

f� �
�

�

�Z x

��
jdf j� f�x�

�
� f� �

�

�

�Z x

��
jdf j � f�x�

�
�

called the upper and lower variation �
��� Lemma III������ p� ����� Since
R
f�x� dx

exists� the left and right integrals
R �
�� f�x� dx and

R�
� f�x� dx are �nite� This can

hold only if cl �  � cr�
In the sequel� we are concerned with higher derivatives� De�ne F ��� � F � and�

recursively� F �n� �
�
F �n���

��
for n � � provided the derivatives exist� If F �n�

exists it is called the nth derivative of F and F is called n times di
erentiable� For
convenience of notation set F ��� � F �

Lemma ��� The following holds	
�a If f � F � ful�lls �R then F ful�lls �R as well�
�b If F �n� ful�lls �R then F �k� � R for every k � �� � � � � n�

Proof� If f � for instance� decreases on� say� 
R��� then Lemma ��� implies f � 
on 
R���� Hence for R 
 x � y ���

F �y�� F �x� �
Z y

x
f�z� dz � 

and F increases� The other three cases are treated similarly� The rest follows from
this and Lemma ���

The �rst main result reads�
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Theorem ��� Let n � �� If F is n times di
erentiable and F �n� ful�lls condition
�R then F �n� � R� xk � L��dF �n��x�� for k � � � � � � n and

Z
xk dF �n��x� �  for k � � � � � � n� ��

����n

n�

Z
xn dF �n��x� � lim

x��
F �x�� ���

Remark ��� Since limx��� F �x� �  the total mass
R
F ��x� dx of R is given by

the second equality in ���

Proof� Let n � �� In view of Lemma ���� Theorem ���Z
dF �x� �

Z
F ����x� dx � �

Z
x dF ����x�

and hence x � L��dF ����x��� By induction� xn � L��dF �n��x�� for every n � �� This
in turn implies xk � L��dF �n��x�� for all n � � and k � � � � � � n�

For n � � and k �  the �rst integral in ��� boiles down to
R
dF ����x��

This integral is �nite since F ��� has �nite variation� Hence it may be written as
limx�� F ����x�� � F ����x�� which vanishes by Lemma ��� �b�� Again induction
using Theorem ��� yields

R
xn�� dF �n��x� �  for every n � �� The �rst equation in

��� follows from the just proved result andZ
xk dF �n��x� �

Z
xk d

�
F �n�k���

��k���
�

Similarly� starting with n � � and k � ��

lim
x��

F �x�� lim
x���

F �x� �
Z
dF �x� � �

Z
x dF ����x��

the second identity is veri�ed by induction �note that limx��� F �x� � ��
In the sequel� the symbol g�x�jba will denote g�b���g�b�� if �partial� integration

is carried out over a compact interval 
a� b�� or g�b�� � g�a�� for an open interval
�a� b� and so on� Let us agree that

R b
a denotes integration over 
a� b��

R a�
b� over �a� b�

etc� The following result establishes the inverse of the map F �� F �n��

Theorem ���� Suppose that F is n times di
erentiable for n � � and F �n� ful�lls
�R� Then

F �x� �
�

k �

Z x

��
�x� y�k dF �k��y�� k � �� � � � n�

Proof� By Theorem ��� the integrals
R
�y � x�k dF �k��y��  
 k 
 n� exist� For

k � � the desired identity holds since F ��� � R by Lemma ��� and hence Lemma
��� implies

�
Z x

��
�y � x� dF ����y� � � �y � x�F ����y�

���x
��

�
Z x

��
F ����y� d�y� x� � F �x��

Let now � 
 k 
 n and assume that the identity holds for k� �� Then by the same
argumentsZ x

��
�y � x�k dF �k��y� � �y � x�kF �k��y�

���x
��

�
Z x

��
F �k��y� d�y� x�k

� �k
Z x

��
�y � x�k�� dF �k����y� � F �x��
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This proves the result�
A �nal result allows to transform moments of functions to moments of their

derivatives� The essential range essr�G� of a function G is the set of those points
x � R such that there is �i� y 
 x such that G�y� �� G�x�� and there is �ii� y � x
such that G�y� �� G�x���

Remark ���� �a Plainly� the essential range is an interval where an endpoint be�
longs to the range if and only if G has a jump there�
�b If G � F �n� and the interiour of essr�G� is �a� b� then essr�F � � �a� b�� This fol�
lows from the observations that essr�F � is open since F is continuous� F is constant
on each open interval on which F �n� �  and F �n� vanishes on any open interval on
which F is constant�

Theorem ���� Suppose that F is n times di
erentiable and F �n� ful�lls �R� For
each g � L��dF �x�� the function

g��x� �
����n

�n� ���

Z x

�
g�y��x� y�n�� dy ���

is de�ned for every x in the essential range of F �n� andZ
g�x� dF �x� �

Z
g��x� dF �n��x�� ���

If g is locally integrable w�r�t� Lebesgue measure then g� is de�ned everywhere�

Proof� By the same justi�cation as for Theorem ��� Fubini�s theorem applies�
For x �  one computes

����n

�n� ���

Z �

�

Z x

�
g�y��x� y�n�� dy dF �n��x�

�
����n

�n� ���

Z �

�
g�y�

Z �

y
�x� y�n�� dF �n��x� dy

�
�����n���

�n� ���

Z �

�
g�y�

Z y

��
�x� y�n�� dF �n��x� dy

�
Z �

�
g�y�

�

�n� ���

Z y

��
�x� y�n�� dF �n��x� dy

�
Z �

�
g�y�F ����y� dy �

Z �

�
g�x� dF �x�

where the integrand g��x� in the �rst line exists for dF �n��x� almost every x� The
third identity holds since the integrals w�r�t� dF �n��x� of polynomials of degree less
than n vanish� Addition of the corresponding identity on ���� � gives the desired
formula for F �n� almost all x�

If g��z� exists for one particular value z then it exists for each x inbetween  and
z� Hence the set D�g�� where g��x� exists is an interval containing � If now the
essential range of F �n� is an interval with interiour �a� b�� where b �  then �c� b� is
not a dF �n��x��nullset for each c � b and there is some x � �c� b� such that g��x� is
de�ned� This shows that g��x� is de�ned on 
� b� and even on �� b� if F �n� jumps at
b� Now either a �  � and then we are done � or a �  and then the same arguments
prove the result� Therefore the identity holds on essr�F �n��� The rest is clear�
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Example ���� Of particular interest are the powers g�x� � xr� for natural numbers
r � � For them one computes

g��x� � ����n
r�

�r � n��
xr�n ���

�which is de�ned everywhere� The proof is straightforward� Denote g� by g�n�r to
indicate the order of di
erentiability� Then g���r �x� � �xr��	�r � �� and �usual

integration by parts gives the recursion g�n�r � �g�n���
r�� which proves the identity�

In particular� even if g is bounded then g� in general is not bounded since �� �
����nxn	n��

��� The Inverse

Next higher derivatives of di	erentiable functions are characterized� This amounts
to the inverse of Theorem ����

Theorem ���� Let G � R and suppose that for n � �� xn � L��dG�x�� andZ
xk dG�x� � � k � � � � � � n� ��

Then G is the nth derivative of some F � Vb�

Remark ���	 Let G be of �nite variation only� The moment condition for k � 
amounts to limx���G�x�� � limx��G�x�� �and the existence of these limits�
The requirement G � R implies the normalization limx��G�x�� � �

Proof� Let � 
 k 
 n� By assumption and Theorem ���� integration by parts
applies and givesZ x

a
�y � x�k dG�y� � ��a� x�kG�a��� k

Z x

a
�y � x�k��G�y� dy

for every a � R� One may let a tend to �� which in view of Lemma ��� results inZ x

��
�y � x�k dG�y� � �k

Z x

��
�y � x�k��G�y� dy�

Hence the integrals

Fn���x� � �
Z x

��
�y � x� dG�x� �

Z x

��
G�y� dy

exist� MoreoverZ
xk�� dFn���x� �

Z
xk��G�x� dx �

��

k

Z
xk dG�x�

for k � � � � � � n which implies

����n��

�n� ���

Z
xn�� dFn���x� �

����n

n�

Z
xn dG�x��

Z
xk dFn���x� � � k � � � � � � n���
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Finally�

Fn����� �
Z
G�x� dx � �

Z
x dG�x� �  if n � ��

Fn����� �
Z
G�x� dx � �

Z
x dG�x� if n � ��

In summary� Fn�� � R with the correct moment conditions and derivative G if
n � � and G � F � if n � � where F � F�� Hence �backward� induction works and
the theorem is proved�

Here is a summary of the previously proved results� Let Dn denote the set of
those functions F � Vb which are n�times di	erentiable such that F �n� ful�lls �R��
Let further Dn denote the set of those G � R which ful�ll the moment conditions

xn � L��dG�x���
Z
xk dG�x� � � k � � � � � � n� �� ���

Theorem ���
 The map

� � Dn �� Vb� F ��� F �n��

is a linear isomorphism from Dn onto Dn� Its inverse is given by

��� � Dn �� Dn� G ��� F � ����G�� F �x� �
�

n �

Z x

��
�x� y�n dG�y�

and� moreover�

F ��� �
����n

n�

Z
xn dF �n��

Proof� This is a summary of Theorems ���� ����� ���� and formula ����

� Switching Measures

The characterization of extreme points of a convex set frequently can be reduced to
the construction of an a�ne bijection onto another convex set with known extreme
points� The simple method to be introduced below allows to transform certain
functions of �nite variation to probability measures on some Borel sets S of R�
This is convenient since the extremal probability measures on S just are the Dirac
measures 
x�A� � �A�x�� x � S� where A runs through the Borel sets B�S� of S�

Notation gets simpler if one switches from functions f of �nite variation to the
associated signed measures � and we shall do so�

��� Convex Sets and Extreme Points

The main instrument for the characterization of extreme points will be the purely
geometric Theorem ��� proved in 
���� Some de�nitions will be needed� A subset K
of a linear space L is convex if it contains with any two points x and y the �compact�
line�segment 
x� y� � fz � L � z � �x������y�  
 � 
 �g �other types of intervals
are also de�ned like on the real line�� Suppose now that K is convex� An element
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x � K is an extreme point of K if it is not in the interior �x� y� of a line�segment in
K� the set of extreme points is denoted by exK� K is said to be linearly compact if
its intersection with a straight line in L either is empty or a line�segment compact
in the �order�� topology of the line� Finally� K is a �Choquet� simplex if the cone
C � f� � �x� �� � L 	 R � � � � x � Kg is a lattice cone in its own order �i�e� the
linear space C � C is a vector lattice with nonnegative cone taken to be C� cf� 
���
x����

Theorem ��� Suppose that K is a convex and linearly compact subset of a real
linear space� Suppose further that A � K � R

n is an a�ne map and W is a convex
subset of A
K�� Set H � A���W �� Then

�a H is a convex subset of K and

exH 

�
x � H � x �

mX
i��

�iei� ei � exK� �i � �
mX
i��

�i � ��

fA�e��� � � � � A�em�g a�nely independent� � 
 m 
 n � �g �

�b If in addition K is a simplex and W is a singleton then equality of sets holds in
�a�

Linear compactness is inherited by special subsets� a convex subset F of K is a
face if �x� y� � F �� � for x� y � K implies x� y � F �

Lemma ��� Let F be a face of the convex set K � Then
�a exF � F � exK�
�b If K is linearly compact then F is linearly compact�
�c If K is a simplex then F is a simplex�

Proof� If x � F is contained in an open line�segment I of K then I  F and x
is not extremal in F � Hence each extreme point of F is extremal in K� The rest
of �a� is obvious� To verify �b� denote the intersections of F and K with a �xed
line by I and J � respectively� If I is empty or a singleton there is nothing to prove�
Otherwise there is an inner point in I  J � Since F is a face� I � J and I is
compact since K is linearly compact� For the last part� choose x � F and assume
that �x� �� dominates ��y� ��� y � K� � � � in the own order of C �de�ned above��
This means that there are z � K� � � � such that x � �y � �z� Let h denote the
linear functional on the linear span of C taking the constant value � on K 	 f�g�
Then � � � � h��x� ��� � � and x is a convex combination of y and z� Since F is
a face� y� z � F and� in particular� ��y� �� is an element of the cone generated by
F 	 f�g� Hence this cone inherits the lattice property from C �cf� 
��� and F is a
simplex�

Lemma ��� The image of a linearly compact set under an a�ne isomorphism is
linearly compact�

Proof� Let K be linearly compact� An a�ne isomorphism on K induces an a�ne
isomorphism � between the a�ne spaces a	K and a	��K� generated by K and
��K�� respectively� which restricted to a line is a homeomorphism onto the image
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of the line �in the line�topologies�� Hence the intersection of a line L in a	��K�
with ��K� is compact if and only if the intersection of ����L� with K is compact�
The latter holds by assumption and the assertion is proved�

Let P� � denote the set of probability measures on a measurable space � �F�
and D� � the set of Dirac measures� for K  P� � and a family G of F � B�
measurable functions set

KG � f � K � G  L���g�

Lemma ��� PG� � is a face in P� �� In particular� it is linearly compact and a
simplex� If� moreover� exP� � � D� � then exPG� � � D� ��

Proof� PG� � is a face since  � ��� �� implies i 
 � for some � �  and
hence

R
jf j di 
 �

R
jf j d ��� Linear compactness follows from Lemma ��� since

R� � P� � is a lattice�cone in its own order and hence P� � is linearly compact �
���
condition �� and p� ����� By the same lemma� PG� � inherits the simplex property
from P� �� Plainly� 
x � PG� � for every x �  and hence D� �  exPG� �� The
reverse inclusion follows from Lemma ���

Remark ��� On arbitrary measurable spaces the extreme probability measures are
those taking values � and � only� Fortunately� in most practical cases they are the
Dirac�measures �cf� ����� Examples ���� This holds in particular for subsets  of
Euclidean spaces endowed with the Borel�sigma �eld F � B� ��

��� Switch Functions

A Borel function s will be called a switch function for � � Mf with support S � B
if s � L����� RnS is a ��nullset� s ��  on S and s� � P�S� where s� is given by

s��A� �
Z
A
s d�� A � B�S��

Given s and S let KS be the collection of all � � Mf for which s is a switch
function� Finally� set t � �	s on S� We shall identify measures on S and their
canonical extensions to R if convenient�

Lemma ��	 Let G be a family of Borel functions�
�a KS and KG

S are convex� The map

� � KS �� Pftg�S�� � ��� s�

is an a�ne bijection with inverse

��� � Pftg�S� �� KS�  ��� t�

Moreover� ��KG
S� � P

ftg�G�S��
�b The extreme points of both� KS and KG

S� are the point measures t�x�
x� x � S�
and both sets are linearly compact and simplices�
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Proof� Convexity of sets and a�nity of � are clear� Since s does not vanish on S
and RnS is a null�set for all � � KS� the trivial identities

� �
Z
t � s d��  �

Z
�
s � t d

for � � KS and  � Pftg�S� show that � is bijective� A measurable function h is
��integrable if and only if the restriction of t � h to S is s��integrable� This proves
the equality of sets in �a�� The sets Pftg�S� and Pftg�G�S� are linearly compact and
simplices by Lemma ��� and hence KS and K

G
S as well by Lemma ���� Finally� the

extreme points of Pftg�S� and Pftg�G�S� are the Dirac measures 
x on S by Lemma
��� and Remark ���� These are transformed by ��� to t�x�
x� x � S�

Remark ��
 �a In general� the construction does not yield an a�ne isomorphism
onto P�S� since there may exist  � P�S� for which t is not integrable�
�b Without the condition that S is a nullset� the map � may fail to be one�to�one�
cf� Example �����

	 Bell�Shaped Distributions� Extreme Points

Important special unimodal distributions are the bell�shaped ones� They will be
introduced below and extreme points of their moment sets will be characterized�
The concept in 
�� is embedded into the present setting�

��� De�nition and Basic Properties

Let us introduce a notion of bell�shaped distributions�

De�nition ��� A function F � Dn is bell�shaped to the nth order with turning�
points x� � � � � � xn if F �n� is continuous at x�� � � � � xn and ����rF �n� increases on
�xr� xr���� r � � �� � � � � n� where x� � �� and xn�� ���

Note that bell�shaped functions are bounded since they are of �nite variation� Let
us give some simple examples�

Example ��� We are particularly interested in cumulative distribution functions
�c�d�f� F � C�d�f� of uniform distributions on intervals are bell�shaped to the �rst
order but not to the second one� those with a triangular density are bell�shaped to the
second order but not to the third one� etc� Let d be the well�known Cantor function on

� �� ��devil�s staircase� which is continuous� increasing from d�� �  to d��� � �
and di
erentiable outside Cantor�s discontinuum with vanishing derivative �cf� �����
p����� Let f � �� d on �� ��� f�x� � d�x� �� on 
��� � and f�x� �  o
 
��� ���
This function f is the probability density of a c�d�f� F which is bell�shaped to the
�rst but not to the second order�

Normal c�d�f� F are bell�shaped to any order� This holds since F fng � h �Hn��

where h does not vanish anywhere and Hn is the nth Hermite polynomial �which
has precisely n real roots� All normal distributions with mean x� are bell�shaped to
the �rst order with turning point x�� there is precisely one of the second order with
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turning points x�� x� �having mean m � �x��x��	� and standard deviation x��m
and at most one of order n � � with prescribed turning points x�� � � � � xn�

Let us agree that a �possibly higher� derivative f of a bell�shaped function
changes direction precisely r times if there are real numbers z� � � � � � zr such
that ����kf increases and is not constant in �xk� xk���� where z� � ��� zr�� ��
and  
 k 
 r�

Lemma ��� Suppose that F is bell�shaped to the nth order and is not identically
constant� Then	

�a F �n� changes direction precisely n times�
�b F is bell�shaped to each order � 
 k 
 n�
�c F ��� is �nite and strictly positive� the measure � associated to F is positive

with ��R� � F ����

All arguments in the following proof appear in a similar form in the proofs of Lemma
� and its Corollary in 
���

Proof� Let n � �� Since f � F ��� vanishes at �� and does not vanish
identically bell�shapedness implies that f is strictly positive somewhere� Moreover�
continuity at x� implies f�x�� �  and f�x� �  for some point x � x� and some
point x � x�� Hence f increases on ���� x�� and decreases on �x��� and is not
constant on any of these intervals� This shows that f changes direction precisely
once� Let now n � �� Suppose that f � F �n� changes direction precisely r times�
Plainly� r 
 n and f changes sign at most r � � times� Hence F �n��� changes
direction at most r � � times� Similarly� F ��� changes direction at most r � n � �
times and at least once� Hence r 
 n and r�n�� � � and thus r � n� This proves
�a�� Since derivatives of order k � n are continuous part �b� holds as well� Finally�
F ��� is positive� nonconstant and ful�lls F ��� �

R
f�x� dx which implies �c��

Remark ��� Since ����rF �n� increases on 
xr� xr��� and is right�continuous� the
function ����rF �n��� is convex on this interval� Since F is bell�shaped to the order
one F is convex on some interval ���� �� and concave on ������ Hence it is
unimodal with mode � �for example in the sense of ����

��� Bell�Shaped Distributions Extremal under Constraints

We are going to characterize the extreme points of sets H � H�x�� � � � � xn� of c�d�f�
which are bell�shaped to the nth order with prescribed turning points x� � � � � � xn
and of subsets de�ned by restrictions on their moments� For F � H let � � !�F �n��
be the measure associated to F �n�� J � ! � ��H� and

s�x� �
�

n�

nY
i��

�xi � x�� t�x� �
�

s�x�
� S � Rnfx�� � � � � xng� ���

Lemma ��� The function s is a common switch function for all � � J � More
precisely�

KS � J � f� � KG
S �

Z
f d� � � f � Gg� where G � fxk �  
 k 
 n� �g�
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Proof� Choose F � H and let � � !�F �n��� Since F �n� is continuous at each xi
the turning points form a ��nullset� By Theorem ����� F �n� � Dn with nth moment
equal to ����nn�� Hence s � L���� and

R
s d� � �� By de�nition� the measures

����r� are positive on �xr� xr��� and s has sign ����r on this interval� Since s does
not vanish on S we conclude that s is a switch function for �� This proves J  KS

and the validity of the moment equalities�
To verify the remaining inclusion� choose � � KS satisfying the moment condi�

tions and let G � !������ Plainly xn � L���� and hence G � F �n� for some F � Vb
by Theorem ����� G is continuous at all xi since s�xi� � � By the form of s and
since s� is a positive measure ����rG increases on �xr� xr���� In summary� F is
bell�shaped to the nth order� It is even a c�d�f� since by Lemma ��� the moment
conditions and

R
s d� � � imply F ��� � �����n	n��

R
xn d� � ��

Things can be put together now to characterize extreme points of moment sets
in H� Given H Mf � a collection G of Borel�measurable functions and a subset D
of RG a generalized moment set is de�ned by

H�G� D� �

�
� � H � G  L�����

�Z
g d�

�
g�G

� D

�
�

If G � � then H�G� D� � H� In most applications G is �nite and D a single�
ton representing the prescribed values of moments or � more generally � a productQ

g�G���� ag�� If G � fg�� � � � � gpg and D � f�d�� � � � dp�g we shall write H�G� d� for
H�G� D�� The case G � � is included setting p �  and H��� d� � H�

Theorem ��	 Let G � fg�� � � � gpg and d � �d�� � � � � dp�� Precisely those functions
F in H�G� d� are extremal which are of the form

F �x� �
X
�k	x

�k�x� �k�
n� �� � � � � � �m� �k �� �  
 k 
 m�

n�
�� �k� � � � �

n
k � g

�
���k�� � � � � g

�
p��k�

�
�  
 k 
 m

o
linearly independent�

n 
 m 
 n� p�

Each interval �xi� xi��� contains at least one of the points �k� If some of the moment
conditions are given by inequalities

R
gi d� 
 di then each extremal element has the

stated form�

This is one �and the more heavy� half of Theorem � in 
�� �cf� Remark ������

Remark ��
 �a Plainly� the mass of the measure associated to an extremal c�d�f�
F is concentrated on 
��� �m��
�b The extremal c�d�fs�

F �x� �
nX

k��

�k���k����x��x� �k�
n

are polynomial splines of nth order with knots �k given in terms of the highest order
elements ���k����x��x� �k�

n of the natural base �cf� ����� p� ����

For later use� part of the proof is formulated separately�
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Lemma ��� The map ! � � is an a�ne isomorphism from H�G� D� onto

! � ��H�G� D�� � J �G�� D��

where
G� �

n
�� x� � � � � xn��

o
� fg� � g � Gg � D� � fg 	D  R

n�p�

Proof� By Theorem ���� Z
g d �

Z
g� d�

for each g � L��d� where  � H�G� d�� � � ! � ���� g� is de�ned over essr�����
and given there by ���� Thus g� is de�ned even on

	n
essr����� �  � HfGg

o
�

This implies the assertion�
Proof of the Theorem� The moment set is lifted to the level of nth derivatives

or rather the associated measures� Because of Lemma ��� the proof is a straightfor�
ward application of Theorem ����b� to

K � KG�

S �

A � K �� R
n�p� � ���

��Z
xk d��  
 k 
 n� �

�
�
�Z

g�i d� � � 
 i 
 p
��

�

W � fd�g  R
n�p� H � A���W � � J �G�� d���

The assumptions of Theorem ��� are met by Lemmata ��� and ���� Since by Lemma
����b� the extreme points of K are the point measures t�x�
x the extremal elements
� of J �G�� d�� are characterized by the conditions

� �
mX
k��

�kt��k�
�k� �k � �
mX
k��

�k � �� �� � � � � � �m � S� ���

f
�
�� t��k�� t��k��k� � � � � t��k��

n��
k � g����k�t��k�� � � � � g

�
p��k�t��k�

�
�  
 k 
 mg���

linearly independent�  
 m 
 n� p�

Multiplication by s��k� and taking into account the form of s shows that the
vectors in ��� can be replaced by

f
�
�� �k� � � � � �

n
k � g

�
���k�� � � � � g

�
p��k�

�
�  
 k 
 mg�

By Lemma ��� �a� and bell�shapedness� each of the measures in ��� must charge
each interval �xi� xi��� and hence n 
 m 
 n� p�

The representation of � in ��� can be simpli�ed as well� Each � is of the formPm
k�� �k
�k with real numbers �k �� � On the other hand� such an element of J

can be written in the form ��� setting �k � s��k��k since s is a switch function and
hence s��k��k �  and

P
s��k��k � ��

The corresponding statement for inequality constraints follows in the same way
and application of the inversion formula completes the proof�

Extremal bell�shaped functions �without restrictions� can be characterized ex�
plicitely�
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Theorem ��� A c�d�f� F is an extreme point of H if and only if it is of the form

F �x� �
X
�k	x

�k�x� �k�
n� xk � �k � xk��� �k �

�Q
j 
�k��j � �k�

�  
 k 
 n�

Proof� We shall continue with the proof of Theorem ��� setting G � � and p � �
Plainly� we have m � n� The extreme points of J are precisely those elements in J
which have the form

� �
nX

k��

�k
�k � �k �� � �� � � � � � �m � S� f��� �k� � � � � �
n
k �g linearly independent�

���
Since each interval is charged by �� xk � �k � xk��� The vectors in ��� are auto�
matically linearly independent� since the values �i are mutually distinct and thus the
Vandermonde determinant V �of the Vandermonde matrix

�
�jk
�
� does not vanish�

The condition � � J can be removed as well� For a measure � �
Pn

k�� �k
�k the
moment conditions boil down to the system of linear equations

nX
k��

�k�
j
k � �  
 j 
 n� ��

nX
k��

�k�
n
k � ����

nn ��

Given xk � �k � xk��� Cramer�s rule gives the unique solution

�k � V ������nn �����n���k��
Y

i�j	i�j 
�k

��j � �i� �
n �Q

j 
�k��j � �k�
� ����

In summary� a discrete measure
Pn

k�� �k
�k is in J and even extremal there if and
only if its coe�cents are given by ����� Application of the inversion formula com�
pletes the proof�

Remark ��� For any extreme point � of J and any Borel function h the integral

Z
h d� �

nX
k��

h��k�Q
j 
�k��j � �k�

����

is the nth divided di
erence of h w�r�t� the nodes �k �cf� ����� This is intimately
connected with the moment conditions �� since they mean that the functional de�ned
by ��� is �exact of degree n� ���

Finally� Remark ��� is completed�

Example ���� The map � �� s� is not one�to�one on f� � Mf � s� � Pftg�S�g
since mass in turning points is annihilated� For instance� in the case n � �� let �� �
x�� � � �x�� ���

��
�� and � � �x�� ���
��
�� � ���� x��

��
x�� Then s� � 
�� � s��
On the other hand� t�s�� � � � t�s���
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��� Related Notions

The following de�nition was given in 
�� and adopted by various authors �for in�
stance 
�� or 
���� Classical nth �left� and right�hand� derivatives will be denoted by

F
fng
� � F

fng
� and F fng� respectively� For simplicity of notation let F f�g � F �

De�nition ���� �i� A function F is smooth to the nth�order� n � �� F fng exists

and is continuous� except perhaps in a �nite number of points� and F
fng
� and F

fng
�

exist everywhere and are left� and right�continuous� respectively�
�ii� F is bell�shaped to the nth order in the narrow sense �of ���� with turning�points
x� � � � � � xn if it is smooth to the nth order� F fng is continuous at x�� � � � � xn and
����rF fng

� and ����rF fng
� increase on �xr� xr���� r � � �� � � � � n� where x� � ��

and xn�� ���

In contrast to the previous de�nition the last one allows unbounded functions� Under
the additional requirement of boundedness De�nition ���� is more restrictive than
De�nition ����

Proposition ���� Let F be bell�shaped to the nth order in the narrow sense and
bounded� Then F is n times di
erentiable with F �k� � F

fkg
� for all k � �� � � � � n and

F �n� ful�lls �R� In particular� F is bell�shaped�

For the proof of Proposition ����� Lemma � from 
�� will be borrowed� Note that it
is a �simple� isolated result derived directly from the de�nitions� Note further that
the requirement on F to be a c�d�f� is not needed since boundedness is su�cient
�c�f� p� �� in the same reference��

Lemma ���� Let F be bell�shaped to the nth order in the narrow sense and bounded�
Then	

�a F
fng
� �x��  as jxj � ��

�b F is bell�shaped to the kth order for all k � �� � � � � n�

Proof �of Proposition ������ F
fng
� is piecewise monotone by de�nition� It is bounded

by the smoothness assumption and by Lemma ���� �a�� Hence it is of �nite variation�

By part �b� of the lemma� this property is inherited by each F
fkg
� � For k � n these

functions are continuous and their derivatives exist in all except perhaps a �nite
number of points� Hence they are absolutely continuous and the F

fk��g
� are gener�

alized derivatives� Since all functions in question are right�continuous we conclude
that F

fkg
� � F �k� for all k � �� � � � � n� Finally� F �n� ful�lls �R� by the monotonicity

requirement�
Let now "H denote the set of c�d�f� bell�shaped to the nth order in the sense of

De�nition ���� and H as de�ned on page ��� If a distribution � has a bell�shaped
c�d�f� then � will be addressed as a bell�shaped distribution

Example ���� There are bell�shaped distributions which are not bell�shaped in the
narrow sense� i�e� "H  H� "H �� H� The density constructed from devil�s staircase
in Example ���� for example� violates the di
erentiability conditions�

On the other hand� "H is a pleasant subset of H�



G� Winkler ��

Proposition ���	 "H is a face in H and ex "H � exH�

Proof� By Proposition ����� "H  H� The inclusion exH  "H is obvious� Therefore
and by Lemma ��� it is su�cient to verify that "H is a face in H� To this end� choose
F � "H and assume that F � �G������H for G�H � H and � � �� ��� Since the
derivatives G�k� and H�k� are continuous for k � � � � � � n� �� they are derivatives in
the classical sense� The nth derivative F �n� � F

fng
� exists and is continuous except

on the �nite set J of �nite jumps� At a point x the functions G�n� and H�n� either
are continuous or have a �nite jump since they are of �nite variation� If F �n� is
continuous at x then G�n� and H�n� are continuous at x too since by bell�shapedness
possible jumps of these two functions have the same direction� Hence G�n� or H�n�

may jump at points x � J only� At points x 	� J the function G�n��� thus is
continuously di	erentiable and Gfng�x� � G�n��x�� Suppose now that g � G�n� has

a jump at �� We claim that g��� � G
fng
� ���� There is 
 �  such that g is continuous

on 
�� ���
�� Choose a sequence �n � � in ��� �� 
� and set hn�x� � G�n����x� �n�
and h�x� � G�n����x� ��� Then hn � h on 
� 
� pointwise by continuity of G�n����
Each hn is di	erentiable on 
� 
�� and h

f�g
n �x� � g�x� �n�� g�x� �� uniformly on


� 
� since g is continuous on the compact interval 
�� � � 
�� This proves that g is
the derivative of G�n��� on 
�� ��
� and� in particular� that the right�hand derivative
at � exists and is right�continuous there� The corresponding property of left�hand
derivatives is veri�ed similarly� We conclude that G and also H are elements of "H
and hence this set is a face of H� This completes the proof�

Remark ���
 Mulholland and Rogers ����� ����� claim	
A c�d�f� F � "H is an extreme point of "H if and only if it is of the form

F �x� �
X
�i	x

�i�x� �i�
n� �i� �i � R�  
 i 
 m�

f��� �i� � � � � �
n
i � �  
 i 
 mg linearly independent�  
 m 
 n�

cf� their Theorem �� They prove that every c�d�f� bell�shaped in the narrow sense
is a mixture of c�d�f� having the just speci�ed form� They further claim that all
extreme points of "H are such functions and argue that this can be proved along the
same lines as for ordinary moment sets of c�d�f� Inspection of their respective proof
reveals that they crucially appeal to the fact� that if an extreme point is the barycenter
of a probability measure on the extremal set then this measure is the Dirac measure
in the extreme point� A common su�cient condition for this is measure convexity of
the set in question �cf� Remark ���� On the other hand� "H de�nitely is not measure
convex as will be shown in Remark ���� Hence additional arguments � for instance
those given above � are needed to identify the extreme points�


 Bell�Shaped Distributions� Extremal Decom�

position and Bounds for Moments

Suppose that for each element � of some set H of measures there is a decomposition

��A� �
Z
M
��A� dp����� A � A� ����
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where M is a subset of H� A is the ��algebra on which the measures in H live and
p� is a probability measure on the evaluation ��algebra #�M� on M generated by
the functions � �� ��B�� B � B� Suppose further that for some cost function C on
H

C��� 

Z
M
C��� dp�����

Then
sup
��H

C��� 
 sup
p�P�M�

Z
M
C��� dp��� 
 supfC��� � � �Mg � U�C�

and U�C� is a best upper bound of C on H� Frequently C��� is the mass ��A�
of a set� a moment

R
xk d��x� or a generalized moment

R
g d�� for instance with

g�x� � ��a����x� a�� a �  in the case of stop�loss premiums in insurance �cf� 
�����
By this paradigm best upper and lower bounds for functionals on sets of measures
can be determined�

In the present setting� H is de�ned by moment and by di	erentiability condi�
tions� Integral representations as in ���� will be obtained by a transformation to a
pure moment set i�e� the di	erentiability conditions are transformed into moment
conditions by the previously developed methods� For such moment sets integral
representation results with M � exH exist and can be applied� Combined with the
identi�cation of extremal elements in the previous sections they provide the desired
bounds for functionals�

��� Measure Theoretic Preparations

We shall show now that the map F �� F �n� �� s� where � is the signed measure
induced by F �n�� i�e� in the previously introduced notation

$ � F ��� s� � s�� �! � ��F ���

has the best properties we can hope for�
Some notation is needed� If  is a Borel set of the real line with Borel���algebra

B� � then the functionals � ��
R
� d� with bounded continuous functions � induce

the weak topology on P� �� For any subset H of P� � let ��H� be trace of the weak
topology on H and B�H� the corresponding �Borel����algebra� Further� recall the
de�nition of the switch function s and the set S in ��� and note that measures will
be identi�ed with their c�d�f� where this makes sense and is convenient�

Theorem ��� The map $ is an a�ne weak homeomorphism from H�x�� � � � � xn�
onto

$�H� �

�
� � P�S� �

Z xkQn
i���xi � x�

d� � � k � � � � � � n� �

�
�

�

Proof� By Theorem ���� and Lemma ���� the image $�H� has the asserted
form and $ is one�to�one and onto� To verify continuity of $�� choose a sequence
�n converging weakly to � in $�H� �all spaces in question are metrizable�� The
sequence $����n� converges to $

����� if and only ifZ
� d$����n� ��

Z
� d$������ n���
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for each function � on S with compact support supp��� contained in one of the open
intervals �xi� xi���� By ����Z

� d$����� �
Z nQn

i���x� xi�

Z x

�
��y��x� y�n�� dy d��x�

where � either denotes � or �n� By the special form of � the integrand �� � t
is de�ned everywhere� continuous and has compact support in �xi� xi��� equal to
supp���� HenceZ

� d$����n� �
Z
�� � t d�n ��

Z
�� � t d� �

Z
� d$�����

and thus $�� is continuous�
Now choose �n weakly convergent to � in H and a test function � of the above

type� We may and shall assume that � even is in�nitely often di	erentiable� ThenZ
� d$��� � ����n

Z
�fng � s d��

again with � equal to � or �n� The integrand

"��x� �
�

n�

nY
���

�x� xi� � �
fng�x�

on the right�hand side is bounded and continuous and henceZ
� d$��n� �

Z
"� d�n ��

Z
"�d� �

Z
� d$���

which shows that $ is continuous�

Remark ��� In ���� ������ there is a map T which in a similar but simpler setting
corresponds to our map $��� To verify that T is a homeomorhism erroneously weak
compactness of P�R� is assumed �and the set T �P�R�� corresponding to our set H
is not compact� On the other hand� the proof can be recti�ed by the arguments in
Theorem ���� Unfortunately� the mentioned �minor error has propagated through
the literature� see for example ���� p� ���

Plainly� the set H is not weakly closed in P�R� but it inherits all pleasant topo�
logical and measure theoretical properties from the pure moment set $�H��

Proposition ��� On $�H� and H the evaluation ��algebra and the Borel ��algebra
coincide	

$�H� � #�P�S�� � B�P�S��� #�$�H�� � B�$�H��� #�H� � B�H��

Furthermore� exH is a G� set in H and $ is a�ne and bimeasurable w�r�t� #�$�H��
and #�H��

Proof� The �rst relations were proved in Theorem � of 
���� By the same reference�
the extreme points form a G��set in $�H� and by Theorem ��� the extremal set in
H shares this property� Again by this result and the just mentioned equalities of
��algebras $ is bimeasurable�
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��� Decomposition and Tchebysche	 Inequalities

Extremal decompositions of bell�shaped distributions will be derived now� If H is a
convex set of nonnegative measures and N a Borel set then HN denotes the subset of
those � � H with ��N� � � Since HN is a face in H one has exHN � H � exH� By
Proposition ����� the following result generalizes Theorem � of 
��� In particular�
the proof there is completed �cf� Remark ������

Theorem ��� Suppose that G is a countable set of Borel functions and D a closed
and convex subset of RG� Choose � � H�G� D�� let N denote the complement of
essrF �n� � with the c�d�f� F of � � augmented by the turning points xi and

M � f� � exH�G� D� � ��N� � g �

Then there is a probability measure P on #�M� such that

��B� �
Z
M
��B� dP ���� B � B� ����

A straightforward monotone class argument shows that the barycentrical formula
���� is equivalent to

��h� �
Z
M
��h� dP ���� g measurable and bounded�

where ��h� �
R
h d�� and to

F �x� �
Z
M
G�x� dP �G�� x � R� ����

with the respective c�d�fs� F and G of � and �� The distribution � is called the
barycenter of P and P is said to represent � �on M��

Remark ��� �a In general� H is no �Choquet simplex �cf� page �� or� which is
equivalent� the representing probability measure P of � is not unique ������ Theorem
�� In fact by Proposition ���� H shares this property if and only if $�H� does� A
most simple example can be constructed for n � �� Let x� �  and �� � 
��	� � � �

�	�� �� � � � 
��	� � 
�	�� Then

� �
�

�
� ��� � ��� �

�

�
� 
�� �

�

�
� 
�� �

�

�
� 
� �

�

�
� 
��

But � � �	��� ��	� for � � �
���
��	� and � � �
���
��	�� Since � � H and
�i� i � exH� we have a member of H with two di
erent extremal decompositions�
�b Whereas each P on #�H� has a barycenter in the weak closure of H �since Mf

is a complete and locally convex linear space in the weak topology� cf� ����� Corol�
lary ������� the set H is not measure convex i�e� this barycenter is not necessarily
in H� Assuming n � � and x� � � for example� the measure P �

P�
k�� �

�k
k
where 
k is concentrated in a distribution with rectangular density equal to �k�� on

���k��� ��k��� does not have a barycenter in H�
�c The theorem shows that if there is any bell�shaped distribution ful�lling the mo�
ment conditions then there is also an extremal one doing so�
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The following partial result is of independent interest�

Lemma ��	 Under the hypothesis of Theorem ����

$�H�G� D�� �


 � P�S� � "G  L����

Z
"g d � D�� "g � "G

�
�

where "G � ftg� � g� � G�g� and $ is an a�ne isomorphism from H�G� D� onto this
set bimeasurable w�r�t� the respective evaluation���algebras�

Proof� Combine ���� and Proposition ����
Now the last Theorem can be proved�
Proof �of Theorem ����� Let H be the moment set in Lemma ���� By Lemma

��� and 
���� Corollary �� for each  � H there is a probability measure Q on #�exH�
such that

�B� �
Z
exH

��B� dQ���� B � B�S��

Let now  � $��� and P denote the image measure Q � $ of Q under $�� de�ned
on #�exH�G� D�� by P �A� � Q�$�A��� For any bounded Borel function h the
associated function "h � t � h� with h� from Theorem ���� is de�ned everywhere and
integrable for each � � H� Hence the barycentrical formula holds for "h by 
����
Proposition ���� i�e�

�"h� �
Z
exH

��"h� dQ����

Since
$���exH� � f� � exH�G� D� � ��S� � �g ��M �

this implies

��h� � �"h� �
Z
exH

��"h� dQ�� �
Z
exH

$������h� dQ��� �
Z
M �

��h� dP� ����

Since ��N� �  the identity ���� implies Pf� � ��N� � g � � and P can be
restricted to

exH�G� D�N � H�G� D�N � exH�G� D� �M�

This completes the proof�
A functional C on H�G� D� is called measure a�ne if it is integrable for each

probability measure on #�M� with barycenter � in H�G� D� and ful�lls the barycen�
trical formula

C��� �
Z
M
C��� dP ����

In view of the introductory remarks one has

Corollary ��
 Under the hypothesis of Theorem ��� each measure a�ne functional
ful�lls

inffC��� � � � H�G� D�g � inffC��� � � �Mg�

supfC��� � � � H�G� D�g � supfC��� � � �Mg� ����

This holds in particular if C��� �
R
� d�� where � is a Borel function integrable for

each � � H�G� D��
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Proof� The general part is clear and � �� ���� is measure a�ne by standard
monotone class arguments �
���� Proposition �������

In particular� for F � H�G� D��

L�x� � inffG�x� � G �Mg 
 F �x� 
 supfG�x� � G �Mg � U�x��

and L and U are best possible lower and upper envelops for H�G� D� �cf� 
���� Note
that L and U increase and can be used to estimate fractiles�

Remark ��� Theorem ��� and Corollary ��� hold for bell�shaped distributions with
unspeci�ed turning points as well� In this case the set M has to be replaced by the
set

M � �
	
f� � H�x�� � � � � xn�G� D� � x� � � � �xng

�in self�explaining notation�

If G is �nite and the moment conditions are given by equalities� i�e� D is singleton
fdg then the concrete description of M can be plugged into ���� to obtain more
explicit bounds�

Example ��� By Lemma ���� H�G� D� �� � if and only if

 � P�S� � "G  L����

Z
"g d � D�� "g � "G

�
�� ��

To be more speci�c� consider the standard moment conditionsZ
xr d��x� � dr� � 
 r 
 p� ����

Letting gr�x� � xr� the identity �� gives

"gn�r�x� � t�x��xr�� � ����nt�x�
r�

�r � n��
xr�n �

�
r � n

n


xr�nQn

i���x� xi�
�

Hence there is some �� bell�shaped to the nth order with turning points x�� � � � � xn
and satisfying ���� if and only if there is some �general distribution  satisfyingZ xiQn

i���x� xi�
d�x� � �  
 i 
 n� ��

Z xr�nQn
i���x� xi�

d�x� �

�
r � n

n


dr� � 
 r 
 p�

This generalizes Theorem � in ���� where this result is proved for n � � and x� � �
In this case the above identities boil down toZ

x�� d�x� � �
Z
xr d�x� � �r � ��dr� � 
 r 
 p�

By these observations� the program in ��� could be carried out for arbitrary n and
arbitrary turning points� presumably at the expense of heavy calculations �In this
paper� the condition

R
x�� d �  does not appear� since there a c�d�f� is unimodal

if it is convex on the left and concave on the right of a �xed point� Hence it needs
not to be di
erentiable��

By special methods� Mallows in ��� obtains precise bounds ��� under moment
conditions ��� in the cases �n� r� � �� �q�� ��� �q� and �n� ���

We thank H�v� Weizs%acker for helpful and encouraging discussions and R� Lasser
who provided the economic basis to write this paper�
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