
Toutenburg, Srivastava, Schaffrin:

Efficiency properties of weighted mixed regression
estimation

Sonderforschungsbereich 386, Paper 122 (1998)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/


E�ciency properties of weighted mixed regression

estimation

H� Toutenburg� V�K� Srivastava�� B� Scha�rinyy

August ��� ����

Abstract

This paper considers the estimation of the coe�cient vector in a linear

regression model subject to a set of stochastic linear restrictions binding

the regression coe�cients� and presents the method of weighted mixed

regression estimation which permits to assign possibly unequal weights to

the prior information in relation to the sample information� E�ciency

properties of this estimation procedure are analyzed when disturbances

are not necessarily normally distributed�

� Introduction

When a set of stochastic linear constraints binding the regression coe�cients in
a linear regression model is available� Theil and Goldberger ������ have pro	
posed the method of mixed regression estimation
 see Srivastava ������ for an
annotated bibliography
 Their method typically assumes that the prior infor	
mation in the form of stochastic linear constraints and the sample information
in the form of observations on the study variable and explanatory variables are
equally important and therefore receive equal weights in the estimation pro	
cedure
 In practice� situations may occur where this assumption may not be
tenable
 For example� one may conduct a statistical test for the compatibility
of sample and prior information
 see �Theil� ����� for instance
 If the statis	
tical test reveals that they are compatible� we may combine the two kinds of
information assigning equal weights and use the method of mixed estimation
accordingly
 On the other hand� if the statistical test is indicative of incom	
patibility� the conventional procedure is to ignore the prior information
 This
strategy of discarding the prior information outrightly is rather unappealing in
comparison to the one which assigns unequal weights to the prior information
in comparison to the sample information
 Some extraneous considerations may
often be suggestive of giving unequal weights
 In such circumstances� it may be
imperative to assign not necessarily equal weights during the process of com	
bining the prior and sample information
 Appreciating this viewpoint� Scha�rin
and Toutenburg ������ have developed the method of weighted mixed regression
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estimation
 Such a method o�ers considerable �exibility in the sense that one
can assign possibly di�erent weights to sample information and prior informa	
tion depending upon the degree of belief
 Besides this� the method provides a
kind of uni�ed treatment to traditional pure and mixed regression methods


The purpose of this article is to analyze the e�ciency properties of the
weighted mixed regression method
 Section � describes the model and the
method of weighted mixed regression estimation proposed by Scha�rin and
Toutenburg ������
 A feasible version of it is developed when the disturbance
variance is not known
 In Section �� we discuss the e�ciency properties when
disturbances are small but not necessarily normally distributed
 The results
related to both bias vector and mean squared error matrix are derived in the
Appendix
 Finally� some remarks are o�ered in Section �


� Model Speci�cation and Some Estimators

Let us postulate the following linear regression model

y � X� � u ���

where y is a T�� vector of T observations on the study variable�X is a T�p full
column rank matrix of T observations on p explanatory variables� � is a p � �
vector of coe�cients associated with them and u is a T�� vector of disturbances
assumed to be distributed with mean vector � and variance covariance matrix
��I with �� as unknown quantity and I as identity matrix of order T � T 


Additionally� it is supposed that a set of stochastic linear restrictions binding
the regression coe�cients is available in the form of independent prior informa	
tion�

r � R� � v ���

where r is a J � � vector of known elements� R is a J � p full row rank matrix
with known elements and v is a J � � vector of stochastic elements assumed
to be distributed with mean vector � and variance covariance matrix � with
known elements
 Further� it is assumed that the elements of v are stochastically
independent of the elements of u


When the sample information given by ��� and the prior information depicted
by ��� are to be assigned not necessarily equal weights on the basis of some
extraneous considerations in the estimation of regression parameters� Scha�rin
and Toutenburg ������ have proposed the method of weighted mixed regression
estimation
 Their model speci�cation is slightly di�erent as they assume that
the variance covariance matrix of u is fully known while we have assumed that
it is not so
 However� we follow their technique which essentially comprises the
choice of � such that the sum of squares

�

��
�y �X����y �X�� � w�r �R�������r�R�� ���

is minimum where w is a nonstochastic and non	negative scalar
 This leads to
the following solution for ��

�� � �X�X� w��R����R����X�y � w��R����r� � ���

�



As �� is assumed to be unknown� we propose to replace it by its unbiased
estimator based on the residual sum of squares without the constraints ����
namely

s� �

�
�

T � p

�
y��I�X�X�X���X��y ���

so that the weighted mixed regression estimator of � is given by

b�w � �X�X� ws�R����R����X�y � ws�R����r� ���

which resembles the f 	class of mixed regression estimators proposed by Theil
������


If we put w � �� the estimator ��� reduces to

b�� � �X�X���X�y ���

which is the traditional least squares estimator� for it gives no weight to the
available stochastic linear restrictions


If we substitute w � �� we get

b�� � �X�X� s�R����R����X�y � s�R����r� ���

which is the mixed regression estimator proposed by Theil and Goldberger
������
 This estimator gives equal weight to sample and prior information


It is thus seen that a value of w between � and � speci�es an estimator in
which the prior information receives less weight in comparison to the sample
information
 On the other hand� a value of w greater than � implies higher
weight to the prior information which� of course� may be of little practical inter	
est
 Thus the weighted mixed regression estimator provides a useful framework
in which it is possible to incorporate unequal importance to the sample infor	
mation in relation to the prior information depending upon� for instance� the
degree of belief


� E�ciency Properties

In order to study the e�ciency properties of the weighted mixed regression esti	
mator ���� we simply suppose that the elements of the disturbance vector u have
�nite moments up to order four
 no speci�c distribution is assumed as such
 Let
����� and �������� be the third and fourth moments of the independently and
identically distributed elements of u with mean � and variance ��
 Thus �� and
�� respectively measure the excess of skewness and kurtosis of the distribution

Notice that both �� and �� are zero for the normal distribution


Under the above fairly general speci�cation� no exact results related to bias
vector and mean squared error matrix of the weighted mixed regression estima	
tor can be derived
 Although� under the simpli�ed case of normal distribution�
the exact expressions can be obtained but they would be su�ciently intricate
and would not permit the deduction of meaningful inferences
 see� e
 g
� Swamy
and Mehta ������
 We have therefore chosen to employ the small disturbance
asymptotic theory in preference to the large sample asymptotic theory as in	
dicated by Srivastava and Upadhyaha ������
 This makes sense since the new
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sample data are typically collected using the best technology presently available
whereas the prior information may stem from obscure sources
 We summarize
the following results which are derived in the Appendix


Theorem � When the disturbances are small� the bias vector and the mean
squared error matrix of the weighted mixed regression estimator� retaining terms
up to order ������ are given by

bias�b�w� � E�b�w � ��
� ���

�
w��

T � p

�
�X�X���R����R�X�X���X��I �M�� ���

MSE�b�w� � ���X�X��� � ��w�X�X����C�

�
��

T � p

�
N��X�X��� ����

where

M � I�X�X�X���X� ����

C � ��� w�� �
�

T � p
��R����R ����

N � R����R�X�X���X��I �M�X�X��I �M�X�X�X���R����R

�
w trM�I �M�

T � p
R����R ����

with � denoting the elementwise Hadamard product operator of matrices and �
denoting a column vector having all elements unity�

It is observed from ��� that the skewness� and not the kurtosis� of the dis	
tribution of the disturbances in�uences the bias at least to the order of our
approximation
 This bias vanishes when the distribution is symmetric
 The
bias also vanishes when X��I �M�� is equal to a null vector� i
e
� when

TX
t��

xtjmtt � � �j � �� � � � � p� ����

where mtt is the tth diagonal element of the matrix M

Looking at the expression ����� it is seen that the variability of the estimator

as measured by the mean squared error matrix to the order of our approximation
is in�uenced only by the kurtosis of the distribution of the disturbances
 the
skewness has no role at least to the order of our approximation


Comparing the weighted mixed regression estimator with the pure regression
estimator which ignores the prior information completely� we observe from ����
that

V �b����MSE�b�w� � ��w�X�X����C�

�
��

T � p

�
N��X�X��� � ����

If m and m denote the smallest and largest diagonal elements of the idem	
potent matrix M� we have in L�owner��s partial ordering of matrices

mI � �I �M� � mI � ����

�



Premultiplying by M and then taking the trace� we get

m �
trM�I �M�

T � p
� m � ����

It therefore follows from ����� ���� and ���� that

��m� wm�R����R �N � ��m� wm�R����R � ����

Utilizing this result� we �nd that the matrix di�erence ���� is at least a
positive semide�nite matrix when

� � w � �

�
T � p� ��m

T � p� � � ��m

�
for �� � � ����

� � w � �

�
T � p� ��m

T � p� � � ��m

�
for �� � � ����

� � w � �

�
T � p

T � p� �

�
for �� � � � ����

As M is an idempotent matrix� its smallest and largest characteristic roots
are � and � repectively
 Thus we have

� �M � I

and since M is also symmetric it follows that

� � m � m � � � ����

Using this� we see that the condition ���� will be satis�ed as long as

� � w � �

�
T � p

T � p� � � ��

�
for �� � � � ����

Similarly� the condition ���� will hold true as long as

� � w � �

�
T � p� ��

T � p� �

�
for �� � � � ����

It is thus seen that the weighted mixed regression estimator dominates the
pure regression estimator according to the criterion of mean squared error matrix
to the order O���� under the constraint ���� or ���� for platykurtic distributions
of the disturbances� the constraint ���� or ���� for leptokurtic distributions and
the constraint ���� for mesokurtic distributions such as the normal distribution�
in particular


Next� let us compare the weighted mixed regression estimator with the con	
ventional or unweighted mixed regression estimator which gives equal weight to
sample and prior information �w � ��


From ����� we observe that

MSE�b����MSE�b�w� � ����� w��X�X���Dw�X
�X��� ����

�



where

Dw � �

�
��

T � p

�
�R����R�X�X���X��I �M�X

�X��I �M�X�X�X���R����R�

���� � w�

�
� �

�

T � p
�

�� trM�I �M�

�T � p��

�
� ��R��

��
R � ����

Assuming that � � w � � and using ���� and ����� it is easy to see that the
matrix di�erence ���� is at least positive semide�nite as long as

��� �
�
�����m�m�
T�p	�	��m

�
� � w � �

�T � p� � �� ����m�m�

��	�
 for �� � � ����

��� �
�
�	���m�m�
T�p	�	��m

�
� � w � �

�T � p� � � � ���m� �m�

��	�
 for �� � � ����

�
T�p��
T�p	�

�
� w � �

�T � p� � �

��	�
 for �� � � � ����

Further� utilizing ����� the condition will hold true as long as�
T�p��������

T�p	�

�
� w � �

�T � p� � ���� ���

��	�
 for �� � � � ����

Similarly� ���� will be satis�ed when�
T�p�����
T�p	�	��

�
� w � �

�T � p� � �� � ���

�
for �� � � � ����

Thus the conditions ���� or ���� for platykurtic distributions� ���� or ����
for leptokurtic distributions� and ���� for mesokurtic including the normal dis	
tributions specify the cases where providing less weight to the prior information
in comparison to the sample information for the estimation of regression coe�	
cients would be a better strategy than assigning equal weight


Next� let us consider the relatively less interesting case in which w exceeds
�� i
e
� the prior information is given higher weight than the sample information

Such a situation may arise� for instance� when the prior information is known
to have high credibility


Assuming that w � �� it is observed from ���� that the weighted mixed re	
gression estimator is no more e�cient than the mixed regression estimator with
respect to the criterion of mean squared error matrix to the order O���� unless
Dw turns out to be nonpositive	de�nite
 However� if we compare the weighted
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mixed regression estimator with the pure regression estimator� it follows from
���� that incorporating the dominant prior information via weighted mixed re	
gression is a better strategy than ignoring it alltogether when the condition
���� or ���� holds for platykurtic distributions� condition ���� or ���� holds for
leptokurtic distributions� and condition ���� holds for mesokurtic including the
normal distributions provided that the upper bound of w as speci�ed by the
respective condition is larger than �


� Some Remarks

Our investigations have brought out some interesting properties of the method
of weighted mixed regression estimation for the coe�cients in a linear regression
model when a set of stochastic linear constraints is available to represent the
prior information
 For example� it is observed that the weighted mixed regres	
sion estimator is nearly unbiased when the distribution of the disturbances is
symmetric irrespective of the nature of kurtosis
 If the distribution is skewed�
the estimator is generally biased
 And the magnitude of the bias� to the order
of our approximation� will always be smaller than that of the mixed regression
estimator which gives equal weights to prior and sample information provided
that w is less than one
 Of course� the pure regression estimator is exactly
unbiased but it ignores the prior information completely


Comparing the estimators with respect to the criterion of mean squared error
matrix to the order of our approximation� we have spelled out the conditions
for the dominance of the weighted mixed regression estimator over both the
pure regression estimator and the mixed regression estimator
 An interesting
aspect of these conditions is that they are easy to check in any given application
provided that the kurtosis of the distribution of the disturbances is available


Looking at the expressions for the bias vector and the mean squared error
matrix to the order of our approximation� it is interesting to note that the bias
is in�uenced by the skewness of the distribution� and not the kurtosis� while the
mean squared error is a�ected by the kurtosis alone and the skewness of the
distribution has no role
 An interesting implication of it is that any conclusions
drawn under the conventional speci�cation of normality of disturbances could
be quite di�erent from those where the distribution is skewed� platykurtic and
leptokurtic


At this point we are reluctant to draw more speci�c conclusions beyond the
above as far as the the �best� choice of w �given ��� is concerned
 The main
reason is that we here compare the mean squared error matrices themselves� not
just scalar	valued functions of them �like the �trace�� �determinant�� or �largest
eigenvalue��
 Moreover� we refer to the geodetic literature� e
g
� Scha�rin and
Bock ������� for questions of practical relevance
 It is this context in which we
would like to present a simulation study in the future which would tell us a bit
more about the appropriateness of our small error assumption and the validity
of our approximations based upon it
 This is� however� beyond the scope of the
present paper
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Appendix

In order to derive the small disturbance asymptotic approximations for the bias
vector and the mean squared error matrix of the weighted mixed regression
estimator� we replace u in ��� by �Z so that

y � X� � �Z � ����

Now the elements of Z are independently and identically distributed with
the �rst four moments as �� �� �� and ��� � ��
 Thus we have

E�Z� � � ����

E�ZZ�� � IT ����

E�ZZ�MZ� � ���I �M�� ����

E�ZZ�MZZ�� � ���I �M� � �T � p�I� �M ����

where � denotes the elementwise Hadamard product operator of matrices and �
is a T �� vector with all elements equal to �
 see Ullah� Srivastava and Chandra
������ for the derivation� or alternatively Scha�rin ������


Substituting ���� and ��� in ��� and expanding in terms of increasing powers
of �� we �nd

�b�w � �� � �X�X� ��w

�
Z�MZ

T � p

�
R����R���

���X�Z� ��w

�
Z�MZ

T � p

�
R����v�

� �f� � ��f� � ��f� ����f� �Op��

� ����

where

f� � �X�X���X�Z ����

f� � w

�
Z�MZ

T � p

�
�X�X���R��

��
v ����

f� � �w

�
Z�MZ

T � p

�
�X�X���R����R�X�X���X�Z ����

f� � �w�

�
Z�MZ

T � p

��

�X�X���R����R�X�X���R����v � ����

Now utilizing the results ���� ���� it is easy to see that

E�f�� � �X�X���X� E�Z�

� �

E�f�� �

�
w

T � p

�
E�Z�MZ��X�X���R���� E�v�

� �

�



E�f�� � �

�
w

T � p

�
�X�X���R����R�X�X���X� E�ZZ�MZ�

� �

�
w��

T � p

�
�X�X���R����R�X�X���X��I �M��

E�f�� � �

�
w

T � p

��

E��Z�MZ����X�X���R����R�X�X���R���E�v�

� � �

Employing these results in

bias�b�w� � � E�f�� � �� E�f�� � �� E�f�� � �� E�f�� � ����

we obtain the expression ��� stated in Theorem �

Similarly� by virtue of the distributional properties of Z and v� it is easy to

see that

E�f�f
�

�� � �X�X���

E�f�f
�

�� � �

E�f�f
�

�� � �

�
w��

T � p

�
�X�X���R����R�X�X���X��I �M�X�X�X���

�w�X�X���R����R�X�X���

E�f�f
�

�� �

�
w�

T � p

��
T � p� � �

�
��

T � p

�
trM�I �M�

�
�

� �X�X���R��
��
R�X�X��� �

Using these expressions and observing that the mean squared error matrix
to the order O���� is given by

MSE�b�w� � �� E�f�f
�

�� � �� E�f�f
�

� � f�f
�

�� � �� E�f�f
�

� � f�f
�

� � f�f
�

�� � ����

we obtain the result ���� of Theorem �
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