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Abstract

This paper considers the estimation of the coefficient vector in a linear
regression model subject to a set of stochastic linear restrictions binding
the regression coefficients, and presents the method of weighted mixed
regression estimation which permits to assign possibly unequal weights to
the prior information in relation to the sample information. Efficiency
properties of this estimation procedure are analyzed when disturbances
are not necessarily normally distributed.

1 Introduction

When a set of stochastic linear constraints binding the regression coefficients in
a linear regression model is available, Theil and Goldberger (1961) have pro-
posed the method of mixed regression estimation; see Srivastava (1980) for an
annotated bibliography. Their method typically assumes that the prior infor-
mation in the form of stochastic linear constraints and the sample information
in the form of observations on the study variable and explanatory variables are
equally important and therefore receive equal weights in the estimation pro-
cedure. In practice, situations may occur where this assumption may not be
tenable. For example, one may conduct a statistical test for the compatibility
of sample and prior information; see (Theil, 1963) for instance. If the statis-
tical test reveals that they are compatible, we may combine the two kinds of
information assigning equal weights and use the method of mixed estimation
accordingly. On the other hand, if the statistical test is indicative of incom-
patibility, the conventional procedure is to ignore the prior information. This
strategy of discarding the prior information outrightly is rather unappealing in
comparison to the one which assigns unequal weights to the prior information
in comparison to the sample information. Some extraneous considerations may
often be suggestive of giving unequal weights. In such circumstances, it may be
imperative to assign not necessarily equal weights during the process of com-
bining the prior and sample information. Appreciating this viewpoint, Schaffrin
and Toutenburg (1990) have developed the method of weighted mixed regression
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estimation. Such a method offers considerable flexibility in the sense that one
can assign possibly different weights to sample information and prior informa-
tion depending upon the degree of belief. Besides this, the method provides a
kind of unified treatment to traditional pure and mixed regression methods.

The purpose of this article is to analyze the efficiency properties of the
weighted mixed regression method. Section 2 describes the model and the
method of weighted mixed regression estimation proposed by Schaffrin and
Toutenburg (1990). A feasible version of it is developed when the disturbance
variance is not known. In Section 3, we discuss the efficiency properties when
disturbances are small but not necessarily normally distributed. The results
related to both bias vector and mean squared error matrix are derived in the
Appendix. Finally, some remarks are offered in Section 4.

2 Model Specification and Some Estimators
Let us postulate the following linear regression model
y=XB+u (1)

where y is a T'x 1 vector of T' observations on the study variable, X is a 7" x p full
column rank matrix of 7" observations on p explanatory variables, 3 is a p x 1
vector of coeflicients associated with them and u is a T'x 1 vector of disturbances
assumed to be distributed with mean vector 0 and variance covariance matrix
0?1 with o2 as unknown quantity and I as identity matrix of order T' x T.

Additionally, it is supposed that a set of stochastic linear restrictions binding
the regression coefficients is available in the form of independent prior informa-
tion:

r=RB+v (2)

where r is a J x 1 vector of known elements, R is a J x p full row rank matrix
with known elements and v is a J x 1 vector of stochastic elements assumed
to be distributed with mean vector 0 and variance covariance matrix ¥ with
known elements. Further, it is assumed that the elements of v are stochastically
independent of the elements of u.

When the sample information given by (1) and the prior information depicted
by (2) are to be assigned not necessarily equal weights on the basis of some
extraneous considerations in the estimation of regression parameters, Schaffrin
and Toutenburg (1990) have proposed the method of weighted mixed regression
estimation. Their model specification is slightly different as they assume that
the variance covariance matrix of u is fully known while we have assumed that
it is not so. However, we follow their technique which essentially comprises the

choice of B such that the sum of squares
1 _
=y =XB)'(y —XpB) + w(r - RE)'¥ '(r —Rp) 3)

is minimum where w is a nonstochastic and non-negative scalar. This leads to
the following solution for 3:

B=XX+wr’R'¥ 'R X'y + wo’R'¥ 'r). (4)



As 0? is assumed to be unknown, we propose to replace it by its unbiased
estimator based on the residual sum of squares without the constraints (2),
namely

5 = (TL_p) y'[l - X(X'X) Xy (5)

so that the weighted mixed regression estimator of 3 is given by
B, = (X'X +ws’R'¥ 'R) " (X'y + ws’R'¥ 'r) (6)

which resembles the f-class of mixed regression estimators proposed by Theil
(1963).
If we put w = 0, the estimator (6) reduces to

By = (X'X) X'y (7)

which is the traditional least squares estimator, for it gives no weight to the
available stochastic linear restrictions.
If we substitute w = 1, we get

B, = (X'X + s’R'T'R)"'(X'y + >R'¥'r) (8)

which is the mixed regression estimator proposed by Theil and Goldberger
(1961). This estimator gives equal weight to sample and prior information.

It is thus seen that a value of w between 0 and 1 specifies an estimator in
which the prior information receives less weight in comparison to the sample
information. On the other hand, a value of w greater than 1 implies higher
weight to the prior information which, of course, may be of little practical inter-
est. Thus the weighted mixed regression estimator provides a useful framework
in which it is possible to incorporate unequal importance to the sample infor-
mation in relation to the prior information depending upon, for instance, the
degree of belief.

3 Efficiency Properties

In order to study the efficiency properties of the weighted mixed regression esti-
mator (6), we simply suppose that the elements of the disturbance vector u have
finite moments up to order four; no specific distribution is assumed as such. Let
0°y1, and 0% (v, +3) be the third and fourth moments of the independently and
identically distributed elements of u with mean 0 and variance 0. Thus ; and
72 respectively measure the excess of skewness and kurtosis of the distribution.
Notice that both +; and - are zero for the normal distribution.

Under the above fairly general specification, no exact results related to bias
vector and mean squared error matrix of the weighted mixed regression estima-
tor can be derived. Although, under the simplified case of normal distribution,
the exact expressions can be obtained but they would be sufficiently intricate
and would not permit the deduction of meaningful inferences; see, e. g., Swamy
and Mehta (1969). We have therefore chosen to employ the small disturbance
asymptotic theory in preference to the large sample asymptotic theory as in-
dicated by Srivastava and Upadhyaha (1975). This makes sense since the new



sample data are typically collected using the best technology presently available
whereas the prior information may stem from obscure sources. We summarize
the following results which are derived in the Appendix.

Theorem 1 When the disturbances are small, the bias vector and the mean
squared error matriz of the weighted mized regression estimator, retaining terms
up to order 0(c*), are given by

bias(3,) = E(B, —#)

— _03 ﬂ ! —1p/h\p—1 ! —1ly/ %
= <T_p> (X'X) 'R IRX'X) ' X/(I+M)1  (9)

MSE(3,) = o2(X'X) ! — c*w(X'X)'[C + ( e > N)(X'X)~!  (10)

T-p
where
M = I-XXX) X (11)
_ 2 Iy —1
C = 2-w(l+ T_p)]R\II R (12)
N = R 'RXX)'X'(I+MX+XI+MXXX)'R¥ 'R
—wtrM(I*M)R’\IfflR (13)
T—p

with * denoting the elementwise Hadamard product operator of matrices and 1
denoting a column vector having all elements unity.

It is observed from (9) that the skewness, and not the kurtosis, of the dis-
tribution of the disturbances influences the bias at least to the order of our
approximation. This bias vanishes when the distribution is symmetric. The
bias also vanishes when X'(I « M)1 is equal to a null vector, i.e., when

T
thjmtt =0 (G=1,...,p) (14)
t=1

where my; is the tth diagonal element of the matrix M.

Looking at the expression (10), it is seen that the variability of the estimator
as measured by the mean squared error matrix to the order of our approximation
is influenced only by the kurtosis of the distribution of the disturbances; the
skewness has no role at least to the order of our approximation.

Comparing the weighted mixed regression estimator with the pure regression
estimator which ignores the prior information completely, we observe from (10)
that

V(By) — MSE(B,,) = o' w(X'X)'[C + <T7_2 p) N)(X'X)~'. (15)

If m and 7 denote the smallest and largest diagonal elements of the idem-
potent matrix M, we have in Lowneris partial ordering of matrices

mlI < (I+M) <ml. (16)



Premultiplying by M and then taking the trace, we get
trM(I«M)
—F—— <m

1
m< (17)
It therefore follows from (13), (16) and (17) that
(2m —wmR' 'R < N < (2 — wm)R'T™'R. (18)

Utilizing this result, we find that the matrix difference (15) is at least a
positive semidefinite matrix when

T —p+vm
2 — f . 1
O<w< [T—p+2+72m] or 12 >0 (19)
T —p+vm
O<w<?2 fo <0 20
v [T—p+2+72m] b (20
T—-p
2| — f =0. 21
0<w< {T—p+2] or 12=0 (21)

As M is an idempotent matrix, its smallest and largest characteristic roots
are 0 and 1 repectively. Thus we have

0<M<KI
and since M is also symmetric it follows that
0<m<m<I1. (22)
Using this, we see that the condition (19) will be satisfied as long as

T-p

I<w<2|——7——
[T—P+2+72

} for 72 >0. (23)

Similarly, the condition (20) will hold true as long as

T—p+

2
O<w< |:T—p+2

} for v, <0. (24)

It is thus seen that the weighted mixed regression estimator dominates the
pure regression estimator according to the criterion of mean squared error matrix
to the order O(o*) under the constraint (19) or (23) for platykurtic distributions
of the disturbances, the constraint (20) or (24) for leptokurtic distributions and
the constraint (21) for mesokurtic distributions such as the normal distribution,
in particular.

Next, let us compare the weighted mixed regression estimator with the con-
ventional or unweighted mixed regression estimator which gives equal weight to
sample and prior information (w = 1).

From (10), we observe that

MSE(B,) — MSE(B,,) = (1 — w)(X'X) 'D,(X'X) ! (25)



where

D, = - (T” ) R'TR(X'X)™ !X (Ix M)X
-p

+X' (I« M)X(X'X)"'R'¢'R]
2 o tr M(I * M)
T—p (T - p)?

Hrw (14 )-2RE R, (20

Assuming that 0 < w < 1 and using (16) and (17), it is easy to see that the
matrix difference (25) is at least positive semidefinite as long as

2—ya(m—m
-2 (720 ) <w<1

for 7, >0 (27)
(T —p) >2—v2m—m)

2+ m—m
-2 (i) <w<1

for v, <0 (28)
(T —p) >2+ v (m—2m)

T—p—2
(szﬁ) <w<1
for 7, =0. (29)

(T —p)>2

Further, utilizing (22), the condition will hold true as long as

T—p—2(1—
(71}_1;_272)) <w<1

for v >0. (30)
(T'=p) >2(1 =)
Similarly, (28) will be satisfied when
(fzm2m) <o
T—p+2+72 for v <0. (31)
(T'=p) > (2+7)

Thus the conditions (27) or (30) for platykurtic distributions, (28) or (31)
for leptokurtic distributions, and (29) for mesokurtic including the normal dis-
tributions specify the cases where providing less weight to the prior information
in comparison to the sample information for the estimation of regression coeffi-
cients would be a better strategy than assigning equal weight.

Next, let us consider the relatively less interesting case in which w exceeds
1, i.e., the prior information is given higher weight than the sample information.
Such a situation may arise, for instance, when the prior information is known
to have high credibility.

Assuming that w > 1, it is observed from (25) that the weighted mixed re-
gression estimator is no more efficient than the mixed regression estimator with
respect to the criterion of mean squared error matrix to the order O(o?) unless
D, turns out to be nonpositive-definite. However, if we compare the weighted



mixed regression estimator with the pure regression estimator, it follows from
(15) that incorporating the dominant prior information via weighted mixed re-
gression is a better strategy than ignoring it alltogether when the condition
(19) or (23) holds for platykurtic distributions, condition (20) or (24) holds for
leptokurtic distributions, and condition (21) holds for mesokurtic including the
normal distributions provided that the upper bound of w as specified by the
respective condition is larger than 1.

4 Some Remarks

Our investigations have brought out some interesting properties of the method
of weighted mixed regression estimation for the coefficients in a linear regression
model when a set of stochastic linear constraints is available to represent the
prior information. For example, it is observed that the weighted mixed regres-
sion estimator is nearly unbiased when the distribution of the disturbances is
symmetric irrespective of the nature of kurtosis. If the distribution is skewed,
the estimator is generally biased. And the magnitude of the bias, to the order
of our approximation, will always be smaller than that of the mixed regression
estimator which gives equal weights to prior and sample information provided
that w is less than one. Of course, the pure regression estimator is exactly
unbiased but it ignores the prior information completely.

Comparing the estimators with respect to the criterion of mean squared error
matrix to the order of our approximation, we have spelled out the conditions
for the dominance of the weighted mixed regression estimator over both the
pure regression estimator and the mixed regression estimator. An interesting
aspect of these conditions is that they are easy to check in any given application
provided that the kurtosis of the distribution of the disturbances is available.

Looking at the expressions for the bias vector and the mean squared error
matrix to the order of our approximation, it is interesting to note that the bias
is influenced by the skewness of the distribution, and not the kurtosis, while the
mean squared error is affected by the kurtosis alone and the skewness of the
distribution has no role. An interesting implication of it is that any conclusions
drawn under the conventional specification of normality of disturbances could
be quite different from those where the distribution is skewed, platykurtic and
leptokurtic.

At this point we are reluctant to draw more specific conclusions beyond the
above as far as the the “best” choice of w (given 72) is concerned. The main
reason is that we here compare the mean squared error matrices themselves, not
just scalar-valued functions of them (like the “trace”, “determinant”, or “largest
eigenvalue”). Moreover, we refer to the geodetic literature, e.g., Schaffrin and
Bock (1994), for questions of practical relevance. It is this context in which we
would like to present a simulation study in the future which would tell us a bit
more about the appropriateness of our small error assumption and the validity
of our approximations based upon it. This is, however, beyond the scope of the
present paper.
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Appendix

In order to derive the small disturbance asymptotic approximations for the bias
vector and the mean squared error matrix of the weighted mixed regression
estimator, we replace u in (1) by ¢Z so that

y=XB+0Z. (32)

Now the elements of Z are independently and identically distributed with
the first four moments as 0,1, 71 and (y2 + 3). Thus we have

E(Z) = 0 (33)

BZZ) = I (34)
E(ZZ'MZ) = ~n(I+M)1 (35)
E(ZZ'MZZ') = ~+(IxM)+ (T —p)I+2M (36)

where * denotes the elementwise Hadamard product operator of matrices and 1
is a T x 1 vector with all elements equal to 1; see Ullah, Srivastava and Chandra
(1983) for the derivation, or alternatively Schaffrin (1983).

Substituting (32) and (2) in (6) and expanding in terms of increasing powers
of o, we find

!
Bw—B) = [X'X+ow <ZTMZ> R'¢'R]™!
—D
!
x[oX'Z + 0w (Z MZ) R'T v
T-p
= ofi+ 0’ fot+ 0’ fs+ 40" fs+ Op(0”) (37)
where
i = X'X)"'X'Z (38)
!
Ro= e (F0)) o0 ety (39)
!
f: = —w <ZTMZ> (X'X)"'R'¥ 'R(X'X)'X'Z (40)
—D
! 2
fi = —w? (?MZ> X'X)T'RPI'RX'X)T'TRE v, (41)
-p

Now utilizing the results (33)—(36) it is easy to see that

B(h) = (X'X)'X'E(Z)
= 0

BR) = () BEMZ)XX) R B)
= 0



E(f;) = —(T—_p> (X'X)'R'® 'R(X'X)'X'E(ZZ'MZ)

- (Tw% ) (X'X)'R'TIR(X/X) X (I« M)1

E(f) = —<TL_p> E(ZMZ)*)(X'X)"'R'T'R(X'X)'RT ' E(v)

= 0.
Employing these results in

bias(B,) = o B(f1) + 0? E(f2) + 0 E(f3) + 0 E(fs), (42)

we obtain the expression (9) stated in Theorem 1.
Similarly, by virtue of the distributional properties of Z and v, it is easy to
see that

E(fif)) = (X'X)7!
E(f2fi) = 0
E(fsf]) = <Tw” >(X’X)1R’\II_1R(X’X)1X’(I*M)X(X’X)1

—w(X'X)'RPTIR(X'X) !
2
v [T—p+2+ (T”p> trM(I*M)]

x (X'X)T'R'TIR(X'X)!

E(f2£3)

(5

Using these expressions and observing that the mean squared error matrix
to the order O(c?) is given by

MSE(B,) = 0” E(f1f{) + 0 E(fofi + fufs) + 0" B(fs fi + fufs + f2f2), (43)

we obtain the result (10) of Theorem 1.
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