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Rodents use two distinct neuronal coordinate systems to estimate their
position: place fields in the hippocampus and grid fields in the entorhi-
nal cortex. Whereas place cells spike at only one particular spatial lo-
cation, grid cells fire at multiple sites that correspond to the points of
an imaginary hexagonal lattice. We study how to best construct place
and grid codes, taking the probabilistic nature of neural spiking into ac-
count. Which spatial encoding properties of individual neurons confer
the highest resolution when decoding the animal’s position from the neu-
ronal population response? A priori, estimating a spatial position from a
grid code could be ambiguous, as regular periodic lattices possess trans-
lational symmetry. The solution to this problem requires lattices for grid
cells with different spacings; the spatial resolution crucially depends on
choosing the right ratios of these spacings across the population. We com-
pute the expected error in estimating the position in both the asymptotic
limit, using Fisher information, and for low spike counts, using maximum
likelihood estimation. Achieving high spatial resolution and covering a
large range of space in a grid code leads to a trade-off: the best grid code
for spatial resolution is built of nested modules with different spatial pe-
riods, one inside the other, whereas maximizing the spatial range requires
distinct spatial periods that are pairwisely incommensurate. Optimizing
the spatial resolution predicts two grid cell properties that have been
experimentally observed. First, short lattice spacings should outnumber
long lattice spacings. Second, the grid code should be self-similar across
different lattice spacings, so that the grid field always covers a fixed frac-
tion of the lattice period. If these conditions are satisfied and the spatial
“tuning curves” for each neuron span the same range of firing rates, then
the resolution of the grid code easily exceeds that of the best possible
place code with the same number of neurons.
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1 Introduction

An animal’s position and heading in world coordinates is reflected in
coordinated neural firing patterns within different subnetworks of the brain,
most notably the hippocampus, subiculum, and entorhinal cortex (O’Keefe
& Dostrovsky, 1971; O’Keefe, 1976; Taube, Muller, & Ranck, 1990a, 1990b;
Fyhn, Molden, Witter, Moser, & Moser, 2004; Hafting, Fyhn, Molden, Moser,
& Moser, 2005; Boccara et al., 2010). In rodents, these subnetworks have
evolved at least two distinct representations for encoding spatial location:
in the hippocampus proper, place cells fire only at a single, specific location
in space, whereas in the medial entorhinal cortex (mEC), grid cells build a
hexagonal lattice representation of physical space, such that each cell fires
whenever the animal moves through a firing field centered at a cell-specific
lattice point.

How accurately can an animal determine its location using one of these
two distinct encoding schemes for space? Most neurons in cortex spike
irregularly and unreliably (Softky & Koch, 1993; Shadlen & Newsome,
1998), and cells in the hippocampal-entorhinal loop are no exception
(Fenton & Muller, 1998; Kluger, Mathis, Stemmler, & Herz, 2010). As the
animal moves through space, it spends only a brief moment in each firing
field of a grid cell or the firing field of a place cell, eliciting no more than a
handful of unreliable spikes. Grid cells, for instance, often spike only once
or twice during a single pass through a firing field (Reifenstein, Stemmler,
& Herz, 2010). Hence, for both codes, precise information about position
can be gained only from a population of grid and place cells, respectively. If
all grid cells share the same lattice length scale, the same pattern of spikes
across the population corresponds to different locations in space, leading
to catastrophic errors in estimating position. How different lattices can be
combined to resolve the ambiguity introduced by the multiplicity of firing
fields is crucial for navigation and might explain the variation of the spatial
periods along the dorso-ventral axis for the mEC (Brun et al., 2008).

The goal of this letter is to answer the question of how grid codes should
be constructed and relate these to the resolution of population codes. Single-
peaked place fields are analogous to the tuning curves for orientation in
visual and motor cortices, for which the questions of neuronal coding and
optimal tuning widths have been investigated extensively (Paradiso, 1988;
Seung & Sompolinsky, 1993; Brunel & Nadal, 1998; Zhang & Sejnowski,
1999; Pouget, Deneve, Ducom, & Latham, 1999; Bethge, Rotermund, &
Pawelzik, 2002; Brown & Bäcker, 2006; Bobrowski, Meir, & Eldar, 2009).
Theoretical studies on the coding properties of grid cells (Burak, Brook-
ings, & Fiete, 2006; Fiete, Burak, & Brookings, 2008) have dealt with the
spatial range encoded by populations of grid cells, without assuming an
explicit noise model. Here, our focus will be on neither the spatial range nor
how gridlike firing patterns arise (Fuhs & Touretzky, 2006; McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006; Burgess, Barry, & O’Keefe, 2007;



2282 A. Mathis, A. Herz, and M. Stemmler

Kropff & Treves, 2008; Burak & Fiete, 2009; Remme, Lengyel, & Gutkin,
2010; Zilli & Hasselmo, 2010; Mhatre, Gorchetchnikov, & Grossberg, 2010),
nor how grid fields can lead to place fields (Fuhs & Touretzky, 2006; Solstad,
Moser, & Einevoll, 2006; Rolls, Stringer, & Elliot, 2006; Franzius, Vollgraf, &
Wiskott, 2007; Si & Treves, 2009; Cheng & Loren, 2010). Rather, we extract
general observations about grid and place cells from experimental findings
and relate these to the resolution of population codes. In addition to com-
paring grid and place codes quantitatively, we derive optimal parameter
regimes for both codes. Using the hypothesis that neuronal populations
code efficiently (Attneave, 1954; Barlow, 1959), we can then make predic-
tions about grid cell properties in the mEC.

The comparison will be carried out in the framework of Poisson rate
coding for the position of an animal along a one-dimensional path, typi-
cally a linear track (Hafting, Fyhn, Bonnevie, Moser, & Moser, 2008; Brun et
al., 2008). A place cell is characterized by a single firing field with a given
spatial center and width; for grid cells, one measures the spatial period
and phase of the regularly spaced lattice of firing fields. These parameters
define families of tuning curves for population models of spatial coding.
Based on maximum likelihood decoding, we estimate the distortion, or
average error, in recovering the animal’s position. Asymptotically, given
enough neurons and a long enough time to observe the firing rate, the
distortion becomes analytically calculable. The Cramér-Rao bound states
that the inverse of the Fisher information yields the minimum achievable
square error, provided the estimator is unbiased; furthermore, maximum
likelihood decoding attains this bound (Lehmann & Casella, 1998). In the
context of neural population coding, many authors have calculated the
Fisher information (Paradiso, 1988; Seung & Sompolinsky, 1993; Brunel &
Nadal, 1998; Zhang & Sejnowski, 1999; Pouget et al., 1999; Eurich & Wilke,
2000; Wilke & Eurich, 2002; Bethge et al., 2002; Brown & Bäcker, 2006). How-
ever, it is also known that no such estimator will attain the lower bound
if the neurons have Poisson spike statistics and the expected number of
spikes is low, even when a neuron is firing at its maximal rate (Bethge
et al., 2002). In other words, if the product of the firing rate fmax and the
time window T for counting spikes obeys fmaxT ≈ 1, the Fisher informa-
tion greatly exaggerates the true spatial resolution of the population code.
If one takes the time window for readout to be one cycle of the ongoing
7 Hz to 12 Hz theta rhythm during movement, the natural timescale for
grid and place cells is short compared to the typical firing rates in these
cells. Under these conditions, the asymptotic error and the true error can
diverge, so that the parameters for an optimal grid code can be found only
numerically. Maximum likelihood decoding is computationally expensive,
so we treat the case of populations encoding a one-dimensional stimu-
lus in detail. Multiple stimulus dimensions correspond to a product space
in the mathematical sense; under ideal conditions, the errors across stim-
ulus dimensions add. Hence, studying the one-dimensional case will be
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(a) (b)

Figure 1: Firing patterns for a place and grid cell. (a) A place cell spikes only
when the animal is within a single region of space called the place field. Gray
lines depict the trajectory of a rat in a square arena. The superimposed black
dots mark the rat’s location when this CA1 cell in hippocampus fired a spike.
(Figure adapted from Jeffery, 2008, with permission.) (b) In contrast, a grid cell
from entorhinal cortex fires at multiple spatial locations, which form a hexagonal
lattice. Three neighboring firing fields span a nearly equilateral triangle. (Figure
adapted from Hafting et al., 2005, with permission.)

illustrative for how general grid codes should be constructed, as we will
discuss.

Some of the results here have been presented in a briefer format in
Mathis, Stemmler, and Herz (2010).

2 Grid Code Schemes

The place code is a classical instance of a population code (Wilson &
McNaughton, 1993), wherein each position in space is represented by the
activity of a large number of place cells (see Figure 1a) with intersecting
place fields. The set of well-localized place fields forms a dense cover of the
explored space, so that the set of simultaneously active place cells yields an
accurate estimate of the animal’s position. Additional precision in estimat-
ing the position can be gained from the spatial profile of how individual
place cells map position into a firing rate—the place cell’s “tuning curve”
(Paradiso, 1988; Seung & Sompolinsky, 1993; Zhang & Sejnowski, 1999).
Early models considered cells with single fields and a standard tuning
curve for each cell. Yet the width of the place fields grows along the dorso-
ventral axis (Kjelstrup et al., 2008), and ventral CA3 cells are more likely to
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have more than one place field (Leutgeb, Leutgeb, Moser, & Moser, 2007;
Fenton et al., 2008). As we will show, both of these properties can improve
the resolution, but only marginally.

A grid code, in contrast, is harder to read out. The firing of a single
grid cell (see Figure 1b) implies that the animal could be at any one of
a range of different locations, without specifying which one. A clear-cut
estimate of position becomes possible by taking into account the properties
of neighboring grid cells, each characterized by a regular lattice of locations
at which the cell fires. For neighboring grid cells, the lattices share similar
spatial periods and orientations but are spatially translated (Hafting et al.,
2005; Sargolini et al., 2006; Doeller, Barry, & Burgess, 2010). A single grid
cell thus signals the spatial phase of the animal’s location relative to the
lattice. Taking a subset from the local grid cell population that spans all
phases is tantamount to discretizing the spatial phase and forms the basis
for defining a grid module: an ensemble of grid cells that share the same
lattice properties but have different spatial phases. Along the dorsolateral
axis of the mEC, the typical spatial period grows from values of around 20
centimeters up to several meters (Fyhn et al., 2004; Giocomo, Zilli, Fransén,
& Hasselmo, 2007; Brun et al., 2008), while the ratio of grid field width to
spatial period remains constant (Hafting et al., 2005; Brun et al., 2008).

The range and precision of the grid code’s representation of space cru-
cially depend on how the spatial periods of different modules are arranged.
In the most extreme case, the combination of spatial periods could yield
a population code with a high resolution but a short range, or vice versa.
Many grid codes will have mixed properties, implying no hard trade-off
between range and precision. Let us, nevertheless, first compare two ex-
tremes of grid coding. In the first, the spatial periods themselves span a
wide range, effectively subdividing space; in the second, the spatial pe-
riods are similar yet incommensurate, so that the phases represented in
the population response are unique for each position across a wide range
of space. We call the first scheme the nested interval scheme, illustrated in
Figure 2a. Imagine that the spatial periods λi are ordered, λ1 > λ2 > · · · > λL.
For each λi, assume that there are M grid cells that share this spatial period
but have lattices that are shifted relative to each other. The M cells will
represent the equidistant phases 2π j/M with j ∈ {0, 1, . . . , M − 1}. Such a
grid encodes positions smaller than λ1 precisely and effectively in a step-by-
step fashion. Module 1 provides only coarse information about the position
estimate, with a resolution of λ1/M. Module 2, although itself ambiguous
within the range [0, λ1], adds resolution within each of the M subintervals
of length λ1/M. Likewise, module 3 adds further precision, and so forth. An
analog clock works the same way: within a 12 hour span, the minute and
second hand are ambiguous per se. While the hour hand could, in principle,
encode the time of the day down to microsecond precision, there is a limit
to the angular resolution of the human eye, whereas the combination of
all hands is easy to read. Similarly, the nested interval scheme can resolve
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Figure 2: (a) Nested interval scheme. Example with three clearly different spa-
tial periods and three discrete phases each. The first module gives coarse spatial
information that is further refined by the other two modules. By themselves, the
other modules provide ambiguous spatial information on the range; together,
they effectively subdivide the unit interval. (b) Modular arithmetic scheme. The
two periodic variables depicted by the circles with different spatial periods λ1
and λ2 can lead to an elongation of the coding range. Geometrically this can be
seen by considering a particle wandering with the same increment in each vari-
able on the Cartesian product of the two circles, which is a torus. The trajectory
of this particle will close after length lcm(λ1, λ2), the least common multiple, as
described in the text.

the position with high accuracy, even though the individual modules lack
either spatial precision or spatial range. Unlike the clock, the periods λi are
not necessarily integer multiples of each other, that is, λi � λi−1. In this case,
the range, which is the longest distance that is unambiguously coded by
the modules, can be much larger than the largest spatial period λ1. Extend-
ing the range beyond the largest spatial period is the key idea behind the
modular arithmetic scheme (Fiete et al., 2008), which is the alternative to
nested interval coding.

Consider two one-dimensional modules with spatial periods 12 and 17.
One can represent each module as a circle S1, whose circumference matches
the period. Geometrically, spatial positions are mapped onto the product
of these two circles, which is a torus T2 = S1 × S1. The mapping of spatial
position is unique up to the point at which

� : [0,∞)→ T2

x �→ (mod(x, 12), mod(x, 17)) (2.1)

closes in on itself for the first time (i.e., minx>0 �(x) = �(0)). As the integers
12 and 17 have no common divisor, the period is 204 = 12 · 17, the least
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common multiple of the two spatial periods.1 This principle is illustrated
in Figure 2b. By induction, one can show that the range of a sequence of
spatial periods {λ1, λ2, . . . λL} is given by the least common multiple of this
sequence lcm(λ1, λ2, . . . λL).

At best, an ideal, noiseless grid code with integer periods has a range that
is the product of the spatial length scales (Fiete et al., 2008). A small change
in the periods, however, can lead to a dramatic reduction in the range. For
instance, changing the periods from 12 and 17 to 12 and 18 reduces the
range from 204 to merely 36, the least common multiple of 12 and 18. In
general, for two positive real numbers representing the spatial periods, the
combined period is given by

lcm(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞ x/y �∈ Q

n · x x/y ∈ Q with x = m
n

· y,

for m, n ∈ N, without common divisor.

(2.2)

This function is highly discontinuous. For every pair of periods (λ1, λ2) ∈ Q,
one can find an arbitrarily close pair of rational spatial periods with an
arbitrarily large lcm. In contrast, within any vicinity (λ1, λ2), a smallest least
common multiple exists.

An even more severe problem than the sensitivity of the range lurks. For
the spatial periods from the example above, λ1 = 12 and λ2 = 17, changing
the modular coordinates from (0, 0) to (1, 0) implies a jump in position
from 0 to 85, which is almost half of the range. Small errors in the phase can
thus lead to huge mistakes in the position estimate. Choosing more closely
spaced periods limits the magnitude of such an error, yet a unit step in
any one coordinate represents a shift in the position by at least one spatial
period.

In principle, the grid lattice need not be regular, nor need a grid cell share
the same lattice spacing with other grid cells. We will not consider the most
general case here but make the prior assumption of both periodicity and
modularity, two features that could facilitate the downstream readout of
the neuronal population’s response. We will construct nested interval and
modular arithmetic codes by sampling from the space of different possible
spatial periods in these ways:

� Deterministic ensembles. Given N cells, assign an equal number of cells
to a set of modules whose spatial periods are defined as follows:
starting with an initial module with spatial period λ = 1, let each

1In contrast to the watch example, the two periods should not have a common divisor.
Since a second divides a minute and a minute divides an hour, a standard analog watch
does not represent more than the maximal 12 hour period.
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successive module have a smaller period, such that λn+1 = sλn, where
s < 1 is a constant contraction factor. The set of spatial periods forms
a geometric sequence. Such grid codes consist of nested intervals by
design and are unsuited for modular arithmetic.

� Stochastic ensembles. For N cells, a divisor L|N is chosen randomly.
Then the spatial periods are drawn identically from one of two
distributions: in the first case, from the uniform distribution [0, 1];
in the second case, from the uniform distribution [(1 − A) · s, A +
(1 − A) · s], where s is a random shift variable and A a random
amplitude, both drawn uniformly from [0, 1]. Thereby 70% of the
realizations were drawn from [0, 1] (first case). The second case re-
sults in more densely spaced spatial periods, all of which lie within
±(1 − A) · s of the period with length A, which tends to favor de-
coding based on modular arithmetic. In general, drawing from the
stochastic ensemble can yield spatial periods that fit either the nested
interval or a modular arithmetic scheme. The resulting grids embody
generic modular codes consisting of periodically spaced tuning curve
peaks.

The choice of spatial periods for the grid affects both the range and the
resolution of the code. In the absence of noise, a well-designed grid code
could simultaneously span large distances and discriminate fine differences
in position; however, intrinsic variability introduces trade-offs between
these two properties of the code. While the modular arithmetic scheme
does not require closely spaced spatial periods a priori, the close spacing
becomes important in the presence of noise. Hence, the nested interval and
the modular arithmetic schemes become distinct if one insists that the spa-
tial range in the latter scheme be robust. We now submit both schemes
to the crucial test: Can one reliably estimate the position by counting the
spikes from a finite set of neurons within a limited time window? We start
by contrasting the resolution of grid and place codes for populations of
neurons.

3 Population Coding Model

We consider a population of N stochastically independent Poisson neurons
(similar to Paradiso, 1988; Seung & Sompolinsky, 1993; Salinas & Abbott,
1994; Bethge et al., 2002; Pouget, Dayan, & Zemel, 2003; Huys, Zemel,
Natarajan, & Dayan, 2007, for instance). The firing rate of each neuron
depends on the one-dimensional position x on the unit interval X = [0, 1].
A priori, each position is equally likely, resulting in a flat prior P(x) = 1.

The firing rate of neuron i is described by its tuning curve {αi(x)}i≤N.
Given a position x ∈ [0, 1], the conditional probability of observing the
N-dimensional spike pattern K = (k1, . . . , kN) ∈ NN in a time interval of



2288 A. Mathis, A. Herz, and M. Stemmler

length T is

P(K|x) =
∏

i≤N

Poisson(ki, T · αi(x)) =
∏

i≤N

(T · αi(x))k

k!
· exp(−T · αi(x)).

(3.1)

The maximal firing rate fmax = maxx∈X,i≤N(αi(x)) is assumed to be con-
stant across the population. Periodic tuning curves αi(x) correspond to grid
codes, whereas single-peaked, aperiodic αi(x) correspond to place codes.

The tuning curves of place cells are taken as gaussian functions with
centers distributed equidistantly over X = [0, 1]:

αi(x) = fmax · exp

(

− (x − i
N−1 )2

2σ 2

)

with 0 ≤ i < N. (3.2)

The free parameters are the maximal firing rate fmax, the tuning width σ ,
and the number of neurons N. Figure 3a illustrates this family of tuning
curves for N = 12 cells with tuning width σ = 0.1.

In contrast, the tuning curves for grid cells are defined as periodic func-

tions with gaussian-like bumps of the type exp(− (− λ
2 +mod( λ

2 +x,λ))2

2σ 2 ). Here
mod(z, λ) stands for the remainder after dividing z by the spatial period λ.

To construct a family of grid cell tuning curves, we vary the spatial
periods and the spatial phases. Each spatial period {λl}l<L defines a grid
module; each of the L modules contains M = N/L equidistantly arranged
phases within its periodic domain. Hence, for each module λi, with 0 ≤ i <

L, there are equidistant spatial phases ϕ j = j·λi
M , 0 ≤ j < M, per module λi

and tuning curves:

αi, j(x) = fmax · exp

⎛

⎝−
( − λi

2 + mod
( λi

2 + x − ϕ j, λi

))2

2σ 2
i

⎞

⎠ . (3.3)

Figure 3b illustrates a grid code for 12 cells with two spatial periods.
After fixing fmax and N, the only remaining free parameter for the place
code is the spatial tuning width σ , whereas for the grid code, the set of
spatial periods {λ1, . . . , λL} needs to be specified.

Both coding schemes should enable real-time readout of the rat’s position
while it is moving. During active exploration of the environment, 7 Hz to
12 Hz theta oscillations course through the parahippocampal loop, acting
as a Zeitgeber (Buzsaki, 2006). Within this natural time frame of roughly
T = 80–140 ms, the maximal expected spike count of a grid or place cell
is generally low. With measured peak firing rates of place and grid fields
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(a)

(b)

Figure 3: Families of tuning curves. (a) Family of place cell tuning curves:
Different grayscales represent different cells. Tuning curves of 12 place cells
with σ = 0.1 and maximum firing rate fmax = 3. (b) Family of grid cell tuning
curves for two different spatial periods. Different grayscales represent different
cells. Tuning curves of 12 grid cells with spatial periods λ1 = 0.32 and λ2 = 0.83,
6 phases per module, and maximum firing rate fmax = 3. In this model, the
tuning width of the grid cells scales with the spatial period, as suggested by
experimental data (Brun et al., 2008).

in the range of 10 Hz to 30 Hz (Hafting et al., 2005; Leutgeb, Leutgeb,
Treves, Moser, & Moser, 2004), fmax · T ≈ 1–4 within one theta cycle. For
our analysis, we choose fmax · T = 3.

By observing the spike counts from a population of N neurons, one can
build an estimator x̂ of the position x. The average mean square error is
(Salinas & Abbott, 1994; Bethge et al., 2002)

χ2 = E((x − x̂)2) =
∑

K∈NN

∫ 1

0
(x − x̂(K))2 · P(K|x)p(x) dx. (3.4)
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The χ2 error generally depends on the estimator x̂. For instance, given a
particular population response K, the most likely stimulus that gave rise to
it is

x̂MLE(K) = max
x∈[0,1]

P(x|K), (3.5)

which is known as the maximum likelihood estimate (MLE). The corre-
sponding mean maximum likelihood estimate square error (MMLE) is de-
fined as χ2

MLE = E((x − x̂MLE )2). We compute the MMLE as described in the
appendix by Monte Carlo methods. As the MMLE is numerically expen-
sive to compute for large population sizes, we compare it against a reference
that can be computed analytically. The MLE is both statistically efficient and
consistent (Lehmann & Casella, 1998), which means that χ2

MLE asymptoti-
cally approaches the mean asymptotic square error (AE) for an increasing
number of independent and identically distributed (i.i.d.) observations:

χ2
AE = E (1/J(x)) , (3.6)

as shown in Bethge et al. (2002). Here J(x) stands for the Fisher information:

J(x) = E

((
∂

∂x
ln(P(K|x))

)2)

. (3.7)

However, for low numbers of spikes and a single observation and low
spike counts, the true χ2 can exceed χ2

AE , as reported by Bethge et al. (2002)
for the minimum mean square error. For this reason, we employ χ2

AE as a
practical benchmark that gives us scaling rules for grid and place codes. We
then investigate how a population code can be cleverly constructed so that
maximum likelihood decoding of the population response comes close to
this benchmark, even for low, realistic spike counts.

The Fisher information, equation 3.7, for a population model with inde-
pendent, Poisson neurons has a simple structure (compare Paradiso, 1988;
Seung & Sompolinsky, 1993, for instance):

JPopulation model (x) =
N∑

i=1

T
(
∂αi(x)/∂x

)2

αi(x)
, (3.8)

so that the asymptotic error is

χ2
AE =

∫ 1

0

⎛

⎝
∑

i≤N

T
(
∂αi(x)/∂x

)2

αi(x)

⎞

⎠

−1

dx. (3.9)



Optimal Population Codes for Space 2291

This quantity depends only on the tuning curves and their first derivatives.
Following the tradition of comparing neuronal codes on the basis of the
Fisher information (Zhang & Sejnowski, 1999; Eurich & Wilke, 2000; Wilke
& Eurich, 2002; Brown & Bäcker, 2006), we ask: Based on the error measures
χ2

MLE and χ2
AE , can a grid code outperform a place code? In particular, which

spatial periods should be present in the grid code? What should the width
of the firing field be relative to the spatial period?

3.1 Average Fisher Information and Asymptotic Resolution. For the
families of place code (PC) and grid code (GC) tuning curves defined by
equations 3.2 and 3.3, the Fisher information, equation 3.7, of a single cell
is given by

JPC,i(x) = T fmax ·
(
x − i

N−1

)2

σ 4 · exp

⎛

⎝−
(
x − i

N−1

)2

2σ 2

⎞

⎠ (3.10)

and

JGC,i j(x, ϕ j) = T fmax ·
( − λi

2 + mod
( λi

2 + x − ϕ j, λi

))2

σ 4
i

· exp

⎛

⎝−
( − λi

2 + mod
( λi

2 + x − ϕ j, λi

))2

2σ 2
i

⎞

⎠ . (3.11)

For the Fisher information of a population of cells, with J(x) = ∑
i j Ji j(x),

Jensen’s inequality implies

χ2
AE =

∫ 1

0

1
J(x)

dx ≥ 1
∫ 1

0 J(x)dx
. (3.12)

The closer J(x) comes to being a constant, so that it is independent of the
position x, the tighter the inequality is. Therefore, the asymptotic error is
easy to calculate in the following limits: for place codes, when the equidis-
tant tuning curves tile the full range densely, or, for grid codes, when the
phase-shifted tuning curves tile each spatial period densely.

In these limits, the Fisher information for the population approaches N
times the average Fisher information per cell. The asymptotic error is simply
the inverse of the Fisher information conveyed by the population. For the
place code, we first compute the average Fisher information for a tuning
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curve centered at c ∈ [0, 1] and then average over all possible centers c:

JPC =
∫ 1

0

∫ 1

0
fmaxT · (x − c)2

σ 4 exp
(

− (x − c)2

2σ 2

)

dxdc. (3.13)

= fmaxT ·
(√

2π

σ
erf

(
1√
2σ

)

+ 4 · exp
(

− 1
2σ 2

)

− 4

)

∝
√

2π fmaxT
σ

for σ  1. (3.14)

This result (Brown & Bäcker, 2006) shows that the average Fisher infor-
mation of one place cell is inversely proportional to the tuning width σ—the
narrower the tuning curve, the better (see Figure 4a); this finding coincides
with the result for stimuli that are not restricted to a compact subset of R

(Zhang & Sejnowski, 1999). If the tuning curves for place cells cover the
span [0, 1] sufficiently densely and uniformly, then the resolution of the
place code, as measured by the MLE, will approach the Cramér-Rao bound
(N · JPC)−1. For fixed N, the tuning width cannot be reduced indefinitely
while maintaining uniform coverage of the unit interval. Indeed, for fixed
N and for any ε > 0, there will be a σ (ε) > 0 and subintervals K ⊂ [0, 1] of
fixed length l, such that for all σ < σ (ε) and x ∈ K: JPC,N(x) < ε. By Jensen’s
inequality, equation 3.12, χ2

AE =≥ l
ε
, and hence χ2

AE (PC, N) → ∞ for σ → 0.
This means that there is an optimal σ for finite ensembles. For instance, for
N = 100, the smallest asymptotic error is attained for σ ≈ 4.1 · 10−3, lead-
ing to a resolution of χ2

AE ≈ 6 · 10−6. This value is used as a benchmark for
comparison with grid codes.

In general, a population of place cells will have

JPC,N ∝ fmaxT ·
N∑

i=1

1
σi

≈ fmaxT · N
〈

1
σi

〉

, (3.15)

if we do not assume that all tuning curves have equal width. In some cases,
place cells have multiple peaks, although the average number of peaks is
close to one (Leutgeb et al., 2007; Fenton et al., 2008). If there are γ peaks per
place cell and the tuning widths are optimized, then the Fisher information
at best scales as (γ N2) in the number of neurons. If the tuning widths are
not simultaneously scaled, in contrast, the Fisher information scales linearly
in N.

By comparison, the spatial map of a grid cell has multiple bumps, by
definition. If the Fisher information for each bump scales as σ−1, just as in
a place cell, and there are λ−1 bumps in the unit interval, then the mean
Fisher information in a grid cell scales as (λσ )−1. This is indeed correct, as the
following more formal argument shows. For the mean Fisher information
of a grid cell, we have to average the Fisher information, equation 3.11, over
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(a) (b)

Figure 4: (a) Average Fisher information versus spatial period λ and tuning
width σ , both normalized to the unit span [0, 1]. The average Fisher information
of a grid cell JGC scales as λ−2, whereas the average Fisher information of a
place cell JPC scales as σ−1. For σ ≈ 1, the tuning curve becomes wider than the
stimulus space, leading to a more rapid fall-off in the average Fisher information
of the place cell than σ−1. (b) Mean maximum likelihood estimate square error
χ 2

MLE and mean asymptotic square error χ 2
AE for a grid code on a one-dimensional

unit interval with two modules of M = 25 neurons each. We use Monte Carlo
methods to compute χ 2

MLE , whereas the analytical Fisher information is used
for the asymptotic estimate. The first module is nonperiodic and comprises 25
equidistantly arranged gaussian tuning curves with tuning width σ = 1/(5

√
2)

and a 10 Hz peak firing rate, integrated over T = 1 second. This corresponds to
a peak spike count of 10, much larger than fmax · T ≈ 1 in Bethge et al. (2002).
The second module also comprises 25 equidistantly arranged cells with tuning
curves that are periodically extended versions of the tuning curves of the first
module with spatial period λ2. The numerically determined χ 2

MLE closely follows
the asymptotic error given by the inverse Fisher information χ 2

AE for spatial
periods of λ2 > 0.18. This is roughly 10 · 1/

√
J0, that is, 10 times the square root

of the inverse Fisher information of module 1. If the periodicity of the next
module falls below the typical range of errors made by the first module, the
Fisher information ceases to capture the MLE error.

all possible spatial phases ϕ. Due to periodicity, it suffices to average over
phases from 0 to the spatial period λ:

JGC = 1
λ

·
∫ λ

0

∫ 1

0
JGC(x, ϕ)dxdϕ. (3.16)

For λ  1,
∫ 1

0 JGC(x, ϕ)dx ≈ 2
λ

· ∫
λ
2

0 JGC(x, 0)dx, because of the periodicity of
JGC(x, ϕ) in x. Hence,

JGC ≈ 2 fmaxT
λ

∫ λ/2

0

x2

σ 4 exp
(

− x2

2σ 2

)

dx

∼
√

2π
fmaxT
λ σ

, (3.17)



2294 A. Mathis, A. Herz, and M. Stemmler

for σ  λ. The derivation of the exact formula is given in the appendix.
The tuning width σ can be expressed as a product of the spatial period λ

and the relative tuning width per spatial period, which we call the area
ratio rA. We define the tuning curve’s width by the firing rate relative to
the maximum firing rate. If f ≥ β fmax delineates a firing field, then the
following relationship holds:

σ = rA · λ

2
√

log(1/β2)
. (3.18)

Consequently, we have JGC ∼ fmaxT
λ2rA

. In Figure 4a, the average Fisher infor-
mation of a grid and a place cell is compared. Both parameters, the spatial
period and the tuning width, are expressed in terms of the normalized
stimulus range and are varied between 0 and 1. Whereas the average Fisher
information of a place cell is inversely proportional to the tuning width σ ,
the average Fisher information of a grid cell is inversely proportional to the
square of the spatial period λ. As the tuning curve width σ narrows, the
mean firing rate in a place code decreases, whereas a grid cell maintains
a constant mean firing rate as λ changes, by construction. On a per spike
basis, the scaling of the average Fisher information with σ is identical for
place cells and grid cells.

By rescaling the lattice length scale λ, the local resolution of a grid cell
population can improve. Yet periodicity also introduces ambiguity, such
that a typical neuronal response for a single grid cell maps onto �2/λ�
possible values of x. Adding neurons with shifted tuning curves of the
same spatial period and considering the population response still leads
to ambiguity. So the error made in decoding can be large, even though
the Fisher information indicates otherwise. Indeed, for λ  1, the expected
error approaches the variance of x over the uniform distribution on the
interval [0, 1]:

χ2
AE = 1/JGC ∼ 1/λ2 

λ→0
E((x − x̂)2) = 1/12. (3.19)

Hence, χ2
AE can be much less than χ2

MLE , for instance; the asymptotic estimate
falls far short of what can realistically be achieved using any decoder. The
solution lies in using different length scales in parallel, which allows one
to exploit the higher resolution at short length scales. This observation also
emphasizes that the MASE analysis has to be supplemented by numerical
studies of the MMLE for grid codes.

3.2 Modular Codes, Self-Similarity, and Power Law Scaling. As poin-
ted out above, the asymptotic error (AE) may never be achieved by maxi-
mum likelihood estimation (MLE) or any other estimator, as a grid code’s
periodicity causes ambiguity, even in the absence of noise: if we consider
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the population response as a code word, there will be distinct stimuli that
give rise to the same code word. Therefore, we now construct a class of
grid codes, called nested grid codes, that will contain no recurring code-
words for stimuli on the interval [0, 1]. For such codes, MLE can attain the
asymptotic error, as we show later.

A nested modular code consists of dividing the population of N neurons
into L subgroups of Mi neurons, whose tuning curves are periodic on the
same length scale λi. Each subgroup is called a module. The range of stim-
uli that such a nested grid code represents is at least as long as the longest
lattice length scale max(λi), and possibly much longer. But for simplicity,
take max(λi) > 1, as some of the ideal modular grid codes with optimal
resolution derived below will have a range that is exactly max(λi). Fur-
thermore, we make the a priori assumption that each module can be read
out individually, i.e., that a spatial phase relative to the length scale λi can
be determined from the population response of this module. According to
equation 3.17, the Fisher information of a given module scales as

Ji ∼ Mi

λi〈σi〉
, (3.20)

in which 〈σi〉 is the average width parameter for the tuning curves in the
module (see the appendix for the precise statements). Within one spatial
period, the grid cells code position the same way place cells do. Hence, as
is the case for place cells, the optimal tuning width scales as

〈σi〉 ∼ λi

Mi
. (3.21)

So the Fisher information for the module scales as

Ji = C2
1M2

i

λ2
i

, (3.22)

when the tuning curve widths are optimized. Here C2
1 is a constant, which

we write using a power of two for later convenience. Summing over all
modules, the Fisher information of the grid code can be written as

JGC,N = C2
1

∑

0≤i≤L−1

M2
i

λ2
i

. (3.23)

Within any grid code, the spatial periods can always be ordered so that
λ0 > λ1 > · · · > λL−1. In a nested grid scheme, two types of error can occur
during decoding. Imagine a grid code with two modules and periods λ0 >

λ1. The module with the shorter spatial scale λ1 refines the representation at
the coarser scale λ0, such that the period λ1 “discretizes” the period λ0 (note



2296 A. Mathis, A. Herz, and M. Stemmler

that we do not assume that λ0 is an integer multiple of λ1). If x̂ is an estimate
of the position x based on module λ0, then there is a finite probability
that |x̂ − x| > λ1. In such an event, which we call a discretization error, the
module with period λ1 cannot improve the estimate of x. The second type
of error is the local error, which is less catastrophic and is bounded by the
inverse of the Fisher information.

To limit the probability of a discretization error per module to less than
ε, we will insist that

D(ε)
/√

Ji ≤ λi+1 ≤ λi, (3.24)

where D(ε) is a safety factor. This safety factor can be computed from
the probability distribution of the deviation between the (efficient) esti-
mate x̂ and the true value x, based on the population spike count from
a single module. In the asymptotic limit (Mi � 1 and fmaxT � 1), this
probability distribution can be modeled by the Laplace approximation
p(x − x̂) ∝ exp[−(x − x̂)

2Ji/2]; hence,

D(ε) =
√

2 erfc−1 (ε) . (3.25)

For instance, a safety factor D(ε) = 4 guarantees that the discretization
error probability is less than 10−4. Given such a constraint, the Fisher in-
formation, equation 3.23, is maximized when the lower bound in equation
3.24 is attained. This implies that

λi = λ0 ·
⎛

⎝
∏

j<i

C1

D(ε)
Mj

⎞

⎠

−1

. (3.26)

Defining M̃ j = √
C1/D(ε)Mj, the population Fisher information, equa-

tion 3.23, becomes

JGC,N = C1D(ε)

λ2
0

∑

0≤i≤L−1

∏

j≤i

M̃2
j . (3.27)

Maximizing the Fisher information in equation 3.27 for integer Mi subject
to the constraint

∑L−1
i=0 Mi = N leads to

Mi ≈ N/L, (3.28)

as long as L  √
C1/D(ε)N. For instance, if

√
C1/D(ε) ∼ O(1), then the

condition for Mi ≈ N/L reads N/L ≥ 3. Otherwise, Mi = 3 for i ≤ �N/3� and
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Mi = 0 for i > �N/3� leads to the maximal Fisher information. Therefore,
we should assign an equal number M of grid cells to each grid module, so
that all modules are self-similar. As a corollary, the area ratio rA between
mean field width and the spatial period should be constant across modules.
This prediction is consistent with experimental data from Brun et al. (2008).
The experimentally determined ratio of field width to period is rA ≈ 0.3.2

This ratio remains approximately constant along the dorso-ventral axis of
mEC even as the spatial period λ varies.

For constant M, equation 3.24 indicates that the sequence of length scales
λi should form a geometric progression. In this case, the population’s Fisher
information becomes

JGC,N = M2C2
1

λ2
0

·
L−1∑

i=0

M̃i = M2C2
1

λ2
0

M̃2L − 1

M̃2 − 1

≥ C1D(ε)

λ2
0

(
M̃2)N/M

. (3.29)

Hence, the Fisher information for a nested grid code obeys a power law
in the number of neurons N for fixed module size M. Such a coding scheme
therefore outperforms a place code that scales at best as N2, which happens
when the tuning width scales as N−1.

We need to resort to numerical simulations to test whether JGC,N, as given
by equation 3.29, reliably predicts the true error in decoding x from the
neuronal response measured over short time windows. Figure 4b reveals
that the error in the maximum likelihood estimate is close to the asymptotic
error as long as the safety factor D(ε) is sufficiently large.

In summary, for a modular grid code to achieve high spatial resolution,
the grid lattices should form a geometric progression in the spatial periods,
and each module should be self-similar. Only relatively few distinct spatial
phases are needed at each length scale, but they should generally number
at least three. If the number of encoded phases is low, the spatial tuning
width should be broad to ensure that the animal’s position is uniformly
and isotropically represented, even when observing only a finite subset of
neurons.

4 The Spatial Resolution of Maximum Likelihood Decoding

Within a fixed time window T, neurons will fire a finite number of spikes,
yielding a population vector K of spike counts. As the animal moves, this
time window needs to be short to create a running estimate x, which will

2Experimentally defined as the median of the set of pairwise grid field to grid field
spacings.
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(a) (b)

Figure 5: Mean maximum likelihood estimate square error (χ 2
MLE) and mean

asymptotic square error (χ 2
AE) of place codes and of nested grid codes with 100

neurons, fmaxT = 3. (a) Double logarithmic plot of the mean maximum likeli-
hood estimator square error χ 2

MLE as a function of the spatial width σ compared
with the mean asymptotic square error χ 2

AE for place code comprising 100 cells
and fmaxT = 3. (b) The mean maximum likelihood estimate square error χ 2

MLE
for geometric progressions of grid lattice spacings with contraction factor s,
compared to the mean asymptotic square error χ 2

AE . The factor s determines the
spatial periods as λi = si−1 for 1 ≤ i ≤ 10. Each module comprises 10 equidis-
tantly arranged spatial phases.

rely only on a few spikes. Maximum likelihood (ML) decoding requires
performing numerical calculations (see the appendix) and returns the most
likely position x given K. Such estimates will be subject to both local and
global errors; the Fisher information predicts only the local error in the limit
as fmaxT → ∞. Therefore, the ML error χ2

MLE may diverge from the asymp-
totic error χ2

AE , and the optimal parameter settings will change. We will use
ML to study both grid codes for which the spatial periods are asymptot-
ically optimal and grid codes drawn from random ensembles. Randomly
selecting the spatial periods will reveal how generic the properties of good
grid codes are.

4.1 Maximum Likelihood Decoding: Simulation Results. We calcu-
lated the spatial resolution by maximum likelihood methods, again for a
population of 100 grid and place cells, respectively, and fmaxT = 3. To ex-
amine the error made in reading out the place code, we varied the width σ

of the tuning curves.
The simulations show that the mean maximum likelihood error (χ2

MLE) of
a place cell diverges substantially from the mean asymptotic square error
(χ2

AE) for small tuning widths sigma, that is, for narrow place fields (see
Figure 5a). In particular, the spatial width that minimizes the asymptotic
error is 10 times smaller than the width that minimizes the MLE.
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The grid codes differ not in the relative tuning width of the spatial firing
rate profiles, but in the number of spatial periods and the length scales
that describe the grid lattice spacing. Asymptotic theory (see section 3.2)
predicts that these length scales should form a geometric sequence. By
choosing the largest spatial period λ1 to be unity and then creating grid
codes characterized by different ratios for the successive periods, we in-
vestigate the concordance between the maximum likelihood error (MMLE)
and the asymptotic error (see Figure 5). If the modules are nested so that
the contraction factor 0.5 < s < 1, the MLE approaches the asymptotic error.
For factors s < 0.5, the MMLE exceeds the asymptotic error; the asymptotic
error keeps decreasing forever, whereas the MMLE will eventually increase.
The MMLE is not convex, however, in s. When the contraction factor s is
close to an even divisor of unity, such as s = 1/2, 1/3, . . . , the MMLE di-
verges more strongly from the asymptotic error. In such exceptional cases,
all modules attain a maximum close to x = 1, which, by the periodicity of
the tuning curves, can be wrapped around to join the maximum at x = 0. In
these cases, positions close to the boundaries of the unit interval, i.e., close
to either zero or one, elicit similar patterns of spikes. Mistaking a position
x = ε, where ε  1, for a position close to 1 − ε, however, corresponds to
a huge error. Hence, the MMLE is higher. Moreover, as the contraction fac-
tor becomes smaller, fewer intermediate modules remain. These modules
with intermediate lattice spacings allow maximum likelihood estimation to
correct for errors in the spatial phase represented by coarser modules. For
s  1/2, the increasing lack of compensation for errors causes the MMLE
to rise, whereas the asymptotic error becomes ever smaller. Additionally,
as s → 0, any contraction factor becomes close to 1/n for some n. These are
the exceptional cases mentioned above that have high MMLE. Note that
these exceptional cases can be avoided by taking λ1 to be slightly larger
than unity.

Hence, for grid codes whose modules are staggered in a geometric se-
quence, the resolution is much higher than in a place code (see Figure 5). Is
this result generic? In other words, if one were to randomly put together a
grid code with different spatial periods, would the resolution still be higher?
To answer this question, we created randomly sampled grid codes as de-
scribed in section 2, for which we estimated the MMLE. The histogram in
Figure 6 shows the distribution of MMLEs for the ensemble. The grid codes’
MMLE can then be compared to the MMLE for the optimal place coding
scheme with the same number of neurons, depicted as a dashed reference
line in Figure 6. Some grid codes are worse than the optimal place code:
choosing a narrow span of spatial periods leads to poor spatial resolution
(see the second highlighted example in Figure 6).

Closely spaced spatial periods should confer on the grid code the ability
to uniquely represent an extended range of positions, going far beyond the
unit interval (Fiete et al., 2008). Nonetheless, here we compare not the ranges
of different grid codes but the ability of the codes to resolve positions within
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Figure 6: Histogram of mean maximum likelihood estimate square error (χ 2
MLE)

for grid codes with 100 neurons, fmaxT = 3. Histogram of MMLE for 885 sim-
ulated grid codes, which were randomly drawn according to the method de-
scribed in section 2 and contrasted with the optimal place code MMLE displayed
as a dashed line. The inset shows the spatial periods of the three example grid
codes; the corresponding MMLE for these examples is marked on the histogram
by a vertical line. Note that closely spaced spatial periods, such as in example 2,
lead to poor spatial resolution.

the fixed unit interval. For some grid codes, the unit interval corresponds
to only a fraction of the full theoretical range.

Around three-quarters of the randomly drawn grid codes have better
MMLE than the best place code; hence, it is likely that a generic grid code,
one with unrestricted range, will lead to a higher spatial resolution than the
best place code.

What common properties do the better grid codes have? One key feature
is that their spatial periods span a large range. For Figure 7, we binned the
smallest and largest period of each grid code in the ensemble and depict the
highest resolution for each binned pair of (mini λi, maxi λi). The resolution
increases in both the direction of smaller mini λi and, to a lesser degree, in
the direction of larger maxi λi. Each grid code is determined by the spatial
periods of its modules. Figure 8a depicts the set of spatial periods for the 10
best grid codes in the random ensemble. As suggested by the asymptotic
analysis, the grid codes with the lowest MMLE have in common that the
smallest spatial period, mini λi, is close to zero. In many cases, the largest
spatial period, maxi λi, nearly covers the entire unit interval represented by
the code. The random sampling of spatial periods was unbiased: the a priori
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Figure 7: Mean maximum likelihood estimate square error (χ 2
MLE) as a function

of the minimal and maximal spatial period. After dividing the spatial periods
into bins, the smallest MMLE present in the random ensemble of grid codes
is color-coded for each combination of smallest and largest spatial period. The
results show that grid codes with similar smallest and largest spatial periods
result in a large MMLE. Decreasing the smallest period while keeping the largest
period fixed strongly improves the resolution; in contrast, keeping the smallest
period fixed and increasing the largest period leads to a smaller improvement.
The highest resolution is obtained when the smallest and largest period are far
apart.

distribution of spatial periods is almost uniform (see Figure 8b). In the best
grid codes, the smaller spatial periods are overrepresented. Selecting the
100 spatial periods from the best grid codes in the sample strongly shifts
the distribution of spatial periods to the lower range (see Figure 8b).

Unlike the asymptotic error, which monotonically decreases with the
smallest spatial period, the MMLE reaches an optimum. In the randomly
sampled ensemble, going below mini λi ≈ 10−2 typically confers no ad-
vantage. A direct comparison between MMLE and the asymptotic error
is shown in Figure 9. In some cases, the MMLE is much higher than the
asymptotic error; throughout all cases, the MMLE never drops below 10−7

relative to the unit interval, whereas the asymptotic error can be orders of
magnitude lower. One should note also that deterministically generating
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(a)

(b)

Figure 8: (a) Spatial periods of samples with highest mean maximum likelihood
estimate square error (χ 2

MLE). Scatter plot of spatial periods of the 10 best grid
codes in simulations and their corresponding MMLE, arranged from small to
large MMLE. (b) Distribution of spatial periods with highest mean maximum
likelihood estimate square error (χ 2

MLE). Histogram of the spatial periods in all
simulated grid codes and the 100 samples with the lowest MMLE. The overall
distribution has no substantial preference, whereas the distribution of the 100
spatial periods from the best grid codes is strongly skewed.

sequences of grid modules using equation 3.24 yields a considerably lower
MMLE than even the lowest MMLEs in the random ensemble that we
tested.
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Figure 9: Comparison of mean maximum likelihood estimate square error
(χ 2

MLE) and mean asymptotic square error (χ 2
AE) for grid codes. Double loga-

rithmic plot of MMLE versus asymptotic error for grid code plotted against the
smallest spatial period. Smaller periods refine the unit interval more, yielding
better spatial resolution. The asymptotic error decreases, on average, quadrati-
cally as the minimum spatial period becomes smaller, serving as a lower bound
for the MMLE. Grid modules that are not properly nested lead to a much
higher error than predicted asymptotically. Furthermore, the lower bound is no
longer tight for mini λi < 10−2. No generic grid code from the random ensemble
achieved an MMLE lower than 10−8, even though the asymptotic error values
drop to 10−12.

5 Discussion

The neural representation of position in world coordinates is always sub-
ject to distortion due to the noisy, spiking nature of neurons. Just as pho-
tographing an athlete in motion rules out a long shutter time, capturing the
instantaneous position as an animal explores its environment precludes av-
eraging over long times—no matter whether single neurons fire at labeled
positions (place cells) or at triangular lattice points in space (grid cells),
noise will limit the resolution an animal needs to orient itself and navigate.

By considering stochastic models for neuronal populations, we have
shown that grid cells can achieve higher spatial resolution than any possible
arrangement of the same number of place cells. We computed the resolution
for both coding schemes by decoding the most likely position in space from
the number of spikes across the population within a short time window.
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The average divergence between the true and estimated position is bounded
from below by the inverse of the average Fisher information, an analytically
calculable measure of the asymptotic local coding precision: whereas the
average Fisher information scales inversely with the tuning width for place
cells, it scales inversely with the square of the tuning width for grid cells.
Grid cells gain this advantage by firing at multiple locations in space; place
cells, in contrast, inherently exhibit sparser neuronal discharge. But for a
grid code to show improved spatial resolution over a place code, the grid
lattices must be strategically arranged; many randomly constructed grid
codes are actually worse than the best place codes.

Distortion theory predicts how well grid codes should be constructed.
First, grid lattices should exist at different spatial scales, yet short-length
scales should predominate. Each scale constitutes an independent module,
comprising grid cells with a common spatial period λi but different spatial
phase offsets (Hafting et al., 2005, for instance). After constructing an en-
semble of grid codes by randomly sampling λi, we found that good grid
codes strongly skewed the distribution of λi’s to small values, such that
larger spatial periods are fewer yet still present: the full spatial range and
the largest spatial period were typically of the same length scale and not an
order of magnitude apart. Brun et al. (2008) recorded the spatial periods of
different grid cells along the dorsoventral axis of the mEC; the histogram
of spatial periods is similar in its skew (Brun et al., 2008). Some grid cells
had spatial periods of more than 8 meters on an 18 meter linear track. The
typical lattice spacing of grid cells grows along the dorsoventral axis, yet
reported grid cells were recorded along the first 75% of this axis, imply-
ing that longer-length scales may yet be found, particularly if it becomes
feasible to record from rodents foraging on a football field. Our theoretical
results also predict that the spatial periods should be plastic and adapt to
the largest length scale in the local environment to achieve high spatial
resolution. Indeed, grid lattices in mEC rescale when a familiar enclosure is
artificially expanded or shrunk by a moderate factor, such that the relative
positions of landmarks is maintained (Barry, Hayman, Burgess, & Jeffery,
2007).

Second, achieving high spatial resolution with a fixed number of grid
cells favors scaling the size of the firing fields with the spatial period of the
grid module; furthermore, we can predict the ratio of firing field width to
the spatial period. A grid module with spatial period λi consists of several
grid cells whose spatial lattices are shifted relative to each other. Hence, a
grid code represents the spatial phase in firing field-sized bins, yielding a
discretized phase.

If one distinguishes only whether a cell is active, one observes the follow-
ing. Given M grid cells that tile the range [0, 1) in a nonoverlapping manner,
the phase resolution is at least ϕ = 1/M. If the next module recursively
tiles each phase of the preceding module into M bins, such a scheme would
have a resolution of ( 1

M )N/M, where N is the number of cells. The highest
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spatial resolution is reached by trading off the number of spatial periods
per module with the number of grid modules.

For discrete encoding, three grid cells per module are ideal, with the fir-
ing field of each grid cell covering one-third the spatial period. Each module
associated with one spatial period will be perfectly nested inside another
module. Nesting naturally gives rise to a strongly skewed distribution of
spatial periods on a linear scale.

Some of the conclusions from the binary coding case considered above
carry over to the continuous coding case, in which one discerns different
firing rates. Maximizing the Fisher information of the population code re-
veals that the grid code should still stagger the modules’ spatial periods in a
geometric progression, λn+1 = sλn. The contraction factor in the geometric
series s = λi+1/λi depends on the relative resolution of each module and
hence crucially on the number of neurons per module and the peak firing
rate. Because having more modules at the expense of phases per module is
advantageous, the ratio of field width to spatial period should be compar-
atively large; in fact, the optimal ratio will approach the minimum allowed
by the number M of distinct phases. The ideal number M is no longer neces-
sarily three, but rather depends on the tolerable level of risk for catastrophic
error during decoding. The greater M is, the lesser this risk.

The design principles for grid codes were derived from asymptotic the-
ory, which assumes that the time window for observing the neuronal pop-
ulation’s response is sufficiently long. While the (asymptotic) Fisher infor-
mation reveals how the error scales with tuning curve parameters (Zhang
& Sejnowski, 1999; Brown & Bäcker, 2006), it could severely underesti-
mate the true error (Bethge et al., 2002). We therefore pursued a systematic
comparison between the asymptotic theory and the true maximum likeli-
hood error, which was evaluated numerically by simulating the neuronal
response over short time windows. For instance, one can construct a grid
code with two modules for which the asymptotic error goes to zero as
one lets the smallest spatial period become infinitely small. An analysis of
the mean maximum likelihood error (MMLE), however, revealed that the
minimal spatial period is in fact bounded. Likewise, the asymptotic error
systematically underestimates the optimal tuning width for a place code.
Yet the MMLE also confirmed some of the scaling properties of grid codes
predicted by the Fisher information. For instance, the resolution of grid
codes still scales exponentially in the number of neurons, implying that
grid codes are superior to place codes, even under realistic conditions.

Our analysis suggests that even with noisy, spiking grid cells, the roughly
105 neurons in the mEC (Mulders, West, & Slomianka, 1997) should be able
to encode the animal’s position in space with exquisite precision. Four
factors limit the effective resolution:

� The smallest spatial period cannot be arbitrarily small.
� Not all neurons in mEC contribute to encoding the position.
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� A realistic decoding mechanism will not achieve the resolution of an
ideal observer.

� A putative decoder network may not have access to the whole en-
semble of grid cells.

If we read out the spikes within one cycle T of the ongoing theta oscil-
lation while a rodent is running near its peak speed of about 150 cm/s
on a linear track, the minimal spatial period has to be bounded by
λmin > T/vmax ≈ 20 cm. Otherwise the animal will traverse multiple grid
lattice points within a single theta cycle. The spatial resolution for an ideal
grid code scales with the square of the smallest period. Moreover, the spa-
tial resolution will increase with the square root of the number of neurons
that share this spatial period, but the effective number might be fewer than
gross anatomy suggests. While place cells in the dentate gyrus and area
CA3 of hippocampus are targets of layer II of mEC, such neurons will pre-
sumably not be strongly connected to all neurons in mEC but to just a few.
In general, a downstream neuron that decodes the animal’s position might
have access to only a restricted number of grid cell inputs; predicting the
size of grid fields also required us to assume that the number of grid cells
is finite. Several theoretical models propose that the ensemble firing of grid
cells gives rise to single, isolated place fields in hippocampus by superposi-
tion (Fuhs & Touretzky, 2006; Solstad et al., 2006; Rolls et al., 2006; Franzius
et al., 2007; Si & Treves, 2009; Cheng & Loren, 2010); arbitrary or all-to-all
connections between grid and place cell layers, however, often give rise to
multiple firing fields (Solstad et al., 2006). The average of measured firing
field to period ratios lies around 0.3 (Brun et al., 2008), which is consistent
with both the theoretical prediction and the hypothesis that each place cell
in DG and CA3 is strongly innervated by only a small subsample of grid
cells from each grid module along the dorsoventral band (Solstad et al.,
2006).

A key assumption in this analysis was that the spike counts obey a Pois-
son distribution. The fine temporal pattern of spike trains in both place
and grid cells is anything but Poisson, as ongoing hippocampal-entorhinal-
cortical rhythms imprint their structure on the timing of spikes (Deshmukh,
Yoganarasimha, Voicu, & Knierim, 2010; Quilichini, Sirota, & Buzsaki, 2010;
Bragin et al., 1995). These rhythms might indeed be essential for generat-
ing the spatially localized firing fields in these cells (Burgess et al., 2007;
Hasselmo, Giocomo, & Zili, 2007; Burgess, 2008; Remme et al., 2010; Geisler
et al., 2010). For instance, Geisler et al. correlate the frequency shift between
intrinsic firing and the 7 Hz to 12 Hz theta oscillation in the local field
potential with the size of the firing field in CA1 of hippocampus. Like-
wise, the spatial period and neural resonance properties correlate along
the dorsoventral axis of the mEC (Garden, Dodson, O’Donnell, White, &
Nolan, 2008; Giocomo et al., 2007). We used the timescale of the theta oscil-
lation to define the time window in which to count spikes but discount the
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fine structure of spike timing within this time window. Rapid oscillations
largely average out in the sum that represents the probability of the spike
count. The detailed temporal structure of hippocampal place cell firing can
be captured by multiplying or linearly convolving the oscillations with the
spatial tuning curve (Itskov, Pastalkova, Mizuseki, Buzsaki, & Harris, 2008);
repeated traversals of the firing field are accompanied by different phases of
the oscillations, which adds to the variance of the spike count. Preliminary
analysis of linear track data (Hafting et al., 2005) for grid cells indicates
that the spike counts generally are close to Poisson (Kluger et al., 2010),
notwithstanding the fact that the fine temporal structure is not Poisson. For
place cells, Fenton and colleagues (Fenton & Muller, 1998) find that place
cells fire even more variably than would be predicted by a Poisson model;
the excess variance is attributable to attention (Fenton et al., 2010) or non-
spatial signals that modulate the firing rate but not the location of place cell
firing (Leutgeb, Leutgeb, Moser, & Moser, 2005; Jackson & Redish, 2007).
The spatial resolution of a place code should suffer when the position sig-
nal is conflated with other signals, providing one more reason that the grid
code in mEC might be better suited for integrating path information than
the place code in CA1. Both place cells and grid cells encode position not
only in the firing rate but also in the timing of spikes relative to the ongoing
theta oscillation (O’Keefe & Recce, 1993; Hafting et al., 2008). A temporal
phase code at the single cell or population level is potentially more precise
in resolving spatial location than counting spikes; decoding such a code,
however, was beyond the scope of this study.

Estimating the most likely spatial location relies on having full knowl-
edge of the place and grid field firing rate profiles at each location. For the
grid code, the lattices need not be perfectly regular to achieve high spatial
resolution. What is required is simply a disjunctive union of intervals at suc-
cessively finer spatial scales; the periodicity of the intervals is irrelevant. For
instance, applying different lateral shifts to different firing fields of within
one module would disrupt the periodicity but not change the resolution.
Moreover, the existence of modules, defined as subpopulations of neurons
whose grid fields have the same spacing, is not truly required. Each grid
cell can possess its own lattice spacing, drawn from the entire continuum of
possible length scales. As long as all length scales are densely represented,
maximum likelihood decoding of the population response will be highly
accurate and subject to low error.

On the other hand, both periodicity and modularity are crucial for the
modular arithmetic scheme. The spatial range, defined as the maximum
distance that is uniquely represented by the set of all modules, is unbounded
in the absence of noise, leading to the remarkable property that a huge
spatial range, on the order of kilometers, could be supported by modules
with λi’s ranging from 30 to 70 centimeters (Fiete et al., 2008). To extend
the spatial range beyond the maximum grid period, Fiete et al. proposed
that the spatial periods should not be multiples of each other or, more
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generally, have common divisors. Such a constraint can be satisfied aptly
by a set of close spatial periods; indeed, the largest spatial range will be
obtained when the periods cluster near the maximal period. In the presence
of noise, though, narrow spatial periods make the grid code excruciatingly
prone to error, leading to a dramatic loss of spatial resolution. In principle,
these problems can be overcome by adding redundancy, using modules
with very low errors and fine correction algorithms, yet this is a nontrivial
challenge. In addition, the grid modules should be highly stable over time
for such computations to be feasible. Experimental results indicate that
the spatial periods rescale in response to changing the geometry of the
environment (Derdikman et al., 2009) or the context (Fyhn, Hafting, Treves,
Moser, & Moser, 2007), and in general exhibit a high variability between
trials (Brun et al., 2008; Kluger et al., 2010; Reifenstein et al., 2010). While
variability may greatly diminish the effective spatial range of a grid code,
the local resolution can still be sufficiently high, as we have shown. In this
interpretation, the entorhinal cortex’s function is to locally represent the
animal’s position with high resolution, using grid-based coordinate maps
that are continually reset and calibrated by landmarks or spatial memory
via the hippocampus (McNaughton et al., 2006).

Grid coding maintains its advantage over place coding even in higher-
dimensional stimulus spaces. For up to forty grid or place cells encoding a
two-dimensional environment, Guanella and Verschure were able to show
that the position reconstruction error is smaller for the grid code than the
place code, as long as one of the following conditions is met: either both
the phases and orientations of the grid must vary, or the phasings and
spacings (Guanella & Verschure, 2007). For a grid cell encoding more than
one stimulus dimension, the average Fisher information of the population
scales as λ−2 in each dimension. Indeed, if the tuning curve is separable into
its individual components (i.e., dimensions), then the Fisher information of
grid cell is simply related to the Fisher information of a place cell with a
comparable tuning curve width:

JGC ∼

⎛

⎜
⎜
⎜
⎜
⎝

1
λ1

0

. . .

0 1
λN

⎞

⎟
⎟
⎟
⎟
⎠

· JPC.

In general, the Fisher information is a matrix, which is diagonal in simple
cases. The more general case, for tuning curves that are periodic on arbi-
trary lattices in more than one dimension, is treated by Mathis, Herz, and
Stemmler (2012); Mathis, Stemmler, and Herz (2011).

Given that the grid code can be orders of magnitude better than the
place code, based on the mean maximum likelihood error (MMLE), why
are both codes used? Hippocampus may have 10 times as many neurons as



Optimal Population Codes for Space 2309

medial entorhinal cortex (Mulders et al., 1997) but achieves the same spatial
resolution based on these arguments. Yet grid codes and place codes may
well serve different purposes. Entorhinal cortex draws on head-direction
and velocity inputs (Sargolini et al., 2006), integrating over the path of
motion. Grid lattice representations of the external world are well suited
for dead reckoning during navigation. As the hippocampus is essential for
forming new episodic memories (O’Keefe & Nadel, 1978), we speculate
that place fields are needed for associating specific events with specific lo-
cations. Synaptic plasticity and long-term potentiation occur between pairs
of cells, so that if the firing of a single cell already represents a unique loca-
tion, synapses can easily adapt to the conjunction of location and sensory
information. A distributed representation of location, as in a grid code, is
less suited for forming such associations.

Appendix: Analytical Derivation and Numerical Methods

A.1 Fisher Information of Grid and Place Cell. The average Fisher
information of a place cell JPC, was defined in equation 3.13, which stated:

JPC =
∫ 1

0

∫ 1

0
fmaxT · (x − c)2

σ 4 exp
(

− (x − c)2

2σ 2

)

dxdc. (A.1)

Here the details of the computation are given. The inner integral from
equation A.1 can be simplified by applying integration by parts:

∫ 1

0

(x − c)2

σ 4 exp
(

− (x − c)2

2σ 2

)

dx

=
[

− x
σ 2 exp

(

− x2

2σ 2

)

+
√

2π

σ
· erf

(
x√
2σ

)]1−c

−c

=

= c − 1
σ 2 exp

(

− (c − 1)2

2σ 2

)

− c
σ 2 exp

(

− c2

2σ 2

)

−
√

2π

2σ
·
(

erf
(

c − 1√
2σ

)

− erf
(

c√
2σ

))

. (A.2)

In order to obtain equation A.1, one has to integrate the result over c ∈ [0, 1].
For the first two terms of equation A.2, since − exp(− x2

2σ 2 ) is a primitive for



2310 A. Mathis, A. Herz, and M. Stemmler

x
2σ 2 · exp(− x2

2σ 2 ), we obtain

[

− exp
(

− (c − 1)2

2σ 2

)

+ exp
(

− c2

2σ 2

)]1

0
= 2 ·

(

exp
(

− 1
2σ 2

)

− 1
)

,

(A.3)

and for the second part again by integration by parts:

−
√

2π

2σ
·
∫ 1

0

(

erf
(

c − 1√
2σ

)

− erf
(

c√
2σ

))

dc

=
√

2π

2σ
·
√

2σ ·
(∫ 0

− 1√
2σ

−erf(s) ds +
∫ 1√

2σ

0
erf(s) ds

)

= √
π · 2 ·

∫ 1√
2σ

0
erf(s) ds

= 2
√

π ·
[

s · erf(s) + 1√
π

exp
(−s2)

] 1√
2σ

0

= 2
√

π

(
1√
2σ

erf
(

1√
2σ

)

+ 1√
π

exp
(

− 1
2σ 2

)

− 1√
π

· exp (0)

)

=
√

2π

σ
erf

(
1√
2σ

)

+ 2 · exp
(

− 1
2σ 2

)

− 2. (A.4)

When equations A.3 and A.4 are summed, the average Fisher information
of a place cell, equation A.1, is

JPC = fmaxT ·
(√

2π

σ
erf

(
1√
2σ

)

+ 4 · exp
(

− 1
2σ 2

)

− 4

)

. (A.5)

The second and third terms together behave like a staircase function that
is zero for large σ and quickly approaches −4 for small values. The first
term is the leading term, where erf( 1√

2σ
) ≈ 1 for σ < 1. Hence, the average

Fisher information scales as ∝ 1
σ

for small σ . The other terms change the
behavior slightly, contributing a bend to the curve for σ > 0.1 in Figure 4a.
This result is reported in the main text in equation 3.14.

The average firing rate of a place cell can be calculated as follows:

fPC =
∫ 1

0

∫ 1

0
fmax exp

(

− (x − c)2

2σ 2

)

dxdc. (A.6)
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Analogous to the average Fisher information, this integral can be computed
by

fPC =
√

2σ fmax

∫ 1

0

∫ 1−c√
2σ

− c√
2σ

exp
(−t2) dtdc

=
√

2σ fmax

∫ 1

0

√
π

2

(

−erf
(

c − 1√
2σ

)

+ erf
(

c√
2σ

))

dc

= fmax

(√
2πσerf

(
1√
2σ

)

+ 2σ 2 · exp
(

− 1
2σ 2

)

− 2σ 2
)

, (A.7)

where the last equation followed from equation A.4.
Next, we present the computation of the average Fisher information of

a grid cells JGC, as defined in equation 3.16, which stated:

JGC = 1
λ

·
∫ λ

0

∫ 1

0
JGC(x, ϕ) dxdϕ. (A.8)

Due to the periodicity of JGC(x, ϕ) in x, JGC need be integrated over only half
of the periodic domain, followed by multiplication with 2/λ. Furthermore,
for small periods, averaging over different phases is not necessary, again
due to the periodicity. Hence, for small λ, the case we are actually interested
in is

JGC = 1
λ

·
∫ λ

0

∫ 1

0
JGC(x, ϕ) dxdϕ ≈ 2 fmaxT

λ

∫ λ/2

0

x2

σ 4 exp
(

− x2

2σ 2

)

dx.

(A.9)

The last integral can be computed by similar means as above:

∫ λ/2

0

−x
σ 2 · −x

σ 2 exp
(

− x2

2σ 2

)

︸ ︷︷ ︸

=
(

exp
(
− x2

2σ2

))′

dx

=
[−x

σ 2 exp
(

− x2

2σ 2

)]λ/2

0
+ 1

σ 2 ·
∫ λ/2

0
exp

(

− x2

2σ 2

)

dx

= −λ

2σ 2 exp
(

− λ2

8σ 2

)

+
√

2
σ

·
∫ λ

2
√

2σ

0
exp

(−t2) dt

= −λ

2σ 2 exp
(

− λ2

8σ 2

)

+
√

2π

2σ
erf

(
λ

2
√

2σ

)

. (A.10)
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Thus, equation A.8 becomes

JGC = fmaxT

(√
2π

σλ
erf

(
λ

2
√

2σ

)

− 1
σ 2 exp

(

− λ2

8σ 2

))

. (A.11)

In terms of the area ratio rA from equation 3.18, that is, σ = rA·λ
2
√

−2 log(β)
,

we can write

JGC

= fmaxT
rA · λ2

(

2
√

−4π log(β)erf

(√−log(β)

rA

)

− 8 log(β)

rA
exp

(
log(β)

r2
A

))

︸ ︷︷ ︸
=: f (rA,β)

.

(A.12)

For the parameters we are interested in, β = 0.05 and rA < 0.5, the right
term is negligible and the first term is effectively constant in for rA < 0.5.

Therefore, JGC ∝ fmax
rA·λ2 (see equation 3.17).

Here we derived an approximation for small spatial periods. For larger
spatial periods, there will be boundary effects when averaging over the
spatial periods. However, numerical comparison showed that the derived
formula for JGC gives a good approximation, even for spatial periods close
to one.

For the grid cell, the average rate is defined by

fGC = 1
λ

∫ λ

0

∫ 1

0
α(x, ϕ)dxdϕ, (A.13)

with α being the firing rate as defined in equation 3.3, but with spatial
phase ϕ. Analogous to the average Fisher information, this value can be
approximately computed by

fGC ≈ 2
λ

∫ λ
2

0
fmax · exp

(

− x2

2σ 2

)

dx = 2
√

2 fmaxσ

λ

∫ λ

2
√

2σ

0
·exp

(−t2) dt

=
√

2π fmaxσ

λ
erf

(
λ

2
√

2σ

)

= fmax ·
√

2πrA

2
√−2 log(β)

erf

(√− log(β)

rA

)

.

(A.14)

Whereas the average firing rate for a place cell is characterized by linear
growth in σ , the average firing rate of a grid cell remains constant for
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changing spatial periods, because the firing field size is determined by the
spatial period. This manifests itself in that the average Fisher information
per average firing rate falls with the inverse square of λ and σ for grid and
place cells, respectively.

A.2 Monte Carlo Integration and MMLE. The mean maximum likeli-
hood error (MMLE) is best computed by Monte Carlo integration. Each set
of parameters governing a grid or place code determines a joint probabil-
ity distribution P(K, x), from which we realized samples (xl, Kl )1≤l≤R with
R ≥ 105. From these realizations, we compute

χ2
MLE ≈ 1

R

R∑

l=1

(xl − x̂MLE (Kl ))
2 =: χ̂2

MLE (R). (A.15)

The right-hand side converges with 1√
R

toward the MMLE. The Monte Carlo
integration is stopped if

|χ̂2
MLE (R) − χ̂2

MLE (R + 104)| < 1.001 · χ̂2
MLE (R + 104). (A.16)

In other words, convergence is said to be reached when the χ̂2
MLE changes by

less than 10−3 over the last 10000 iterations. A similar convergence criteria
was used in Bethge et al. (2002). As an additional test, we corroborate the
error estimates by bootstrapping methods.
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