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Abstract

In this paper, individual differences scaling (INDSCAL) is revisited, considering

INDSCAL as being embedded within a hierarchy of individual difference scaling

models. We explore the members of this family, distinguishing (i) models, (ii) the

role of identification and substantive constraints, (iii) criteria for fitting models and

(iv) algorithms to optimise the criteria. Model formulations may be based either

on data that are in the form of proximities or on configurational matrices. In its

configurational version, individual difference scaling may be formulated as a form

of generalized Procrustes analysis. Algorithms are introduced for fitting the new

models. An application from sensory evaluation illustrates the performance of the

methods and their solutions.
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1 Setting the scene

As its name implies, Individual Differences Scaling is concerned with analysing and com-

paring the difference between multidimensional scaling (MDS) solutions pertaining to the

same n stimuli observed for K individuals. For further information about MDS, see Borg

and Groenen (2005) and Cox and Cox (2001). There are many ways in which individual

MDS may be compared but all summarise the individual scalings by some kind of group

average, which may be represented and visualised by a set of n points, in a similar way

as for individual MDS. Different approaches depend on how the group average is related

to the individual scalings and we shall discuss some of these in the following. First, to fix

ideas, we shall rehearse the original approach of Carroll and Chang (1970).

1.1 Individual differences scaling – Carroll and Chang (1970)

Originally developed in the psychometric literature to explain the relationship between

subjects’ differential cognition of a set of stimuli, INdividual D ifferences SCALing (IND-

SCAL) has found applications in various disciplines, ranging from the social sciences to

chemometrics. In this paper, we use INDSCAL both to denote the method of Carroll and

Chang (1970) and to distinguish it from other methods of individual differences scaling.

We consider K given n × n matrices of distances or dissimilarities Dk (k = 1, . . . , K).

INDSCAL is a method that aims to represent the matrices D1, . . . ,DK , one for each indi-

vidual, in terms of a group average matrix G, defining coordinates of the n stimuli on each

of R pre-specified dimensions, together with diagonal weight matrices Wk (k = 1, . . . , K).

The weights Wk (often called saliences) refer to each of the R dimensions and vary over

the K individual sets. Carroll and Chang (1970) first put the distances or dissimilarities

into inner-product form by the double centring operation (Torgerson, 1958, pp. 254-259):

Bk = −1

2
Jn(Dk ¯Dk)Jn , (1)

where ¯ denotes the elementwise (Hadamard) matrix product and Jn = In − n−1En is

the n× n centring matrix with En being an n× n matrix of ones. The INDSCAL model

approximates each centred matrix Bk by

Bk ≈ GW2
kG

> .
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Specifically, the INDSCAL problem seeks for (G,W2
1, . . . ,W

2
K) such that the model fits

the data in a least squares sense. That is, INDSCAL minimises

K∑

k=1

||Bk −GW2
kG

>||2 , (2)

where ||A|| =
√
trace(A>A), G ∈ Rn×R has full column rank R and W2

k are diagonal

and non-negative R × R matrices. The restriction to non-singular weights ensures that

the INDSCAL model has the property that solutions cannot be rotated without changing

the solution in an essential way. However, note that GWk = (GL)(L−1Wk) for any

appropriate diagonal matrix L. That is, if G is stretched by L and the weights in Wk

are subjected to the inverse transformation, the product remains the same. To handle

this indeterminacy, one can assign one of the following identification constraints without

substantively changing the problem:

K∑

k=1

W2
k = KIR (3)

or

diag(G>G) = IR , (4)

i.e. requiring G to be an oblique matrix. Thus, if GWk does not already satisfy (3) or

(4), we can always choose L accordingly.

Minimizing (2) has no direct analytical solution. The standard numerical solution is

given by an alternating least squares (ALS) algorithm, called CANDECOMP (Carroll

and Chang, 1970). The two appearances of G in (2) may be represented by different

matrices, say G and H. Then, (2) is called the CANDECOMP function. Optimization is

carried out on G and H independently, along with W2
1, . . . ,W

2
K . The belief is that after

convergence of CANDECOMP we have G = H as is required by the model. This is known

as the “symmetry requirement” and usually seems to be satisfied in practice, although

there is no general proof of the claim. On the contrary, it has been shown by ten Berge

and Kiers (1991) that the CANDECOMP algorithm can produce asymmetric INDSCAL

solutions (G 6= H) even for positive semi-definite data Bk. Also, one must hope that

the solutions obtained for W2
1, . . . ,W

2
K have non-negative diagonal elements throughout.
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This is not always the case in practice. ten Berge et al. (1993) avoided negative saliences

by imposing non-negativity constraints and preserved the symmetry of the solution by

developing an algorithm named SYMPRES.

In the loss function (2), G is assumed to be of full column rank. The parameter set of

all n × R matrices G with full column rank R is a non-compact set (Absil et al., 2008).

Optimisation over a non-compact set may cause computational problems. For example,

Stegeman (2007) has pointed out that in certain cases the least squares criterion (2) to

be minimized in INDSCAL does not have a minimum, but only an infimum, within the

parameter space. In such situations, CANDECOMP is bound to produce a sequence

of updates of parameters which is degenerate in the sense that some columns of G are

highly correlated and some of the diagonal elements of W2
k are arbitrarily large. These

degenerate solutions are hard to interpret. As a remedy, one is tempted to minimise (2)

subject to

G>G = IR . (5)

The column-wise orthonormal matrix G forms a compact set and then the INDSCAL

minimisation problem (2) has an attainable solution. Indeed, Krijnen et al. (2008) have

shown that if one considers an INDSCAL model which constrains the group stimulus

space to be column-wise orthonormal, then there is no degeneracy problem. Imposing

G>G = IR is also computationally more efficient (Takane et al., 2010). Kroonenberg

(1983) calls the method that minimises (2) subject to (5) “orthonormal INDSCAL”. The

orthonormal INDSCAL model has been considered by several authors (ten Berge et al.,

1988; Kiers, 1989; Trendafilov, 2004, 2012; Takane et al., 2010).

However, G>G = IR is a substantive constraint and not just an identification constraint

as are (3) or (4). Despite its superficial similarity to (4), (5) is a strong constraint that

substantially alters the model. In fact, minimising (2) subject to G>G = IR turns

INDSCAL into a least squares version of common components analysis (Flury, 1988). We

have reservations on the wisdom of applying substantive constraints on model parameters

just for the purpose of algorithmic convenience. Moreover, if a degenerate solution does

arise, it suggests to us that one should not be fitting an INDSCAL type model in the first

place - the data are not compatible with the model. In favour of the use of (5), Takane et al.
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(2010) give empirical evidence that the original INDSCAL and orthonormal INDSCAL for

some applications give (i) very similar results and (ii) the original INDSCAL model yields

nearly orthogonal solutions on G without explicitly requiring the orthogonality. But it

seems that this observation is quite a good argument for not imposing the constraint -

i.e. usually (5) is not a constraint of any consequence. It seems that many, perhaps all, of

these difficulties are related to Heywood cases; that is, when parameter estimates of some

saliences occur on the boundary of the feasible region, so generating infimum solutions.

Other difficulties may be properties of using a least squares criterion. Yet others may be

failings in the INDSCAL model itself when fitting to degenerate data; after all even linear

least squares will fail with reduced-rank data. We have already seen that CANDECOMP

may arrive at asymmetric solutions; an algorithm that does not have inbuilt asymmetry

could only deliver symmetric results and may do better in other respects. Our feeling is

that while it is interesting to investigate aberrant behaviour, rather than searching for

fixes, it is often more rewarding to seek why an aberration has occurred in the first place.

In summary:

(i) Distinguish between the model, the fitting criterion and the algorithm for optimising

the fit.

(ii) Identification constraints are benign but substantive constraints need justification,

because they are a fundamental part of the model.

(iii) If algorithms fail with some data, the problem may lie with the data - informative

diagnostics may be more useful than fixes designed to deal with aberrant behaviour.

1.2 Other Individual Differences Scaling models

In the above discussion of INDSCAL we have introduced the dissimilarity matrices Dk

forming the data, the derived inner-product matrices Bk and the group average G. The

reasons for using the inner-products Bk in INDSCAL rather than the more fundamental

data Dk are probably because (i) Bk has better algebraic properties than does Dk and

(ii) Bk provides a firm link with classical scaling. In Section 2 of this paper we discuss

direct analysis of Dk.
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Even more directly, we may regard the data as configuration matrices Xk ∈ Rn×R

(k = 1, . . . , K) of n points with coordinates in R dimensions. The configurations Xk

may be given directly, as for example by measuring landmark coordinates in shape stud-

ies. Alternatively, they may be derived from MDS. Or a set of data matrices Yk ∈ Rn×p

(k = 1, . . . , K) for n cases on p variables may be transformed to similarity matrices and

then converted into configurations Xk by using any MDS method (possibly nonmetric).

Whatever the derivation of the configurations, they may be compared directly with a

group average G, thus viewing individual differences as a form of generalized Procrustes

analysis (see e.g. Gower and Dijksterhuis, 2004). The Procrustean analogue of INDSCAL

has robust potential as it is formulated in terms of first-order matrices Xk rather than

second-order matrices Bk. In the Procrustean version of individual scaling, rotational

indeterminacy in the configurations can be accommodated by considering XkQk, where

Qk are orthogonal matrices. We introduce algorithms to provide estimates for the model

unknowns G, Qk and Wk.

As we have seen, the CANDECOMP algorithm plays a prominent part in Carroll and

Chang’s (1970) development of INDSCAL. Harshman (1978, 1982) developed an equiva-

lent algorithm, DEDICOM, explicitly for fitting models eitherARB> orARA>, whereA

and B are n×R matrices and R, of order R×R, is usually a non-diagonal asymmetric ma-

trix. The background is in factor analysis. The symmetric form ARA> includes the IND-

SCAL model GW2G>. The algebraic properties and algorithms for fitting a three-mode

decomposition of the form zijk =
∑P,Q,R

p,q,r aipbjqckr (i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , K)

have generated a substantial literature (Kroonenberg, 2008). This decomposition sub-

sumes a variety of models, including INDSCAL, that might be fitted to data. However,

as we have seen, INDSCAL fits rather awkwardly into this framework, because (i) we

are dealing with symmetric matrices and (ii) of the problem of guaranteeing symmetric

solutions. With configurational matrices, Xk, a greater problem is that there is no reason

why equivalent columns of e.g. X1 refer to the same dimensions as those in X2, as would

be admissible with data matrices. With all these difficulties, we prefer to work directly

with K symmetric matrices or K configuration matrices, which ever is the case.

The remainder of the paper is organized as follows. In Section 2, the INDSCAL model is
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viewed as being embedded within a hierarchy of models, each layer with possible formula-

tions based on proximity and configuration matrices. Algorithms for fitting the orthogonal

Procrustean analogue of INDSCAL are considered in Section 3. A configuration version of

INDSCAL with projection matrices is considered in Section 4. In Section 5, the methods

developed in this paper are applied to food science data. Concluding comments are given

in Section 6.

2 A hierarchy of models

We have discussed above the main features of individual differences scaling models, where

K sets of data are presented either as K distance matrices Dk, K inner-product matrices

Bk or K sets of configuration matrices Xk (k = 1, . . . , K). The data for the K individu-

als are modelled in terms of a common group average G, possibly modified by dimension

weightsWk (the saliences) and possibly G is constrained to be an orthogonal matrix. The

rows of G give the coordinates that generate the matrix ∆ of squared distances, which

we shall denote by G → ∆. The least squares criteria that stem from the combination of

different forms of data and different models are summarised in Table 1. Several provisos

Table 1: The relationship between (i) individual differences models (ii) types of data and

(iii) least squares criteria.

Criteria

Model Inner-product Distance Procrustean

1. G
∑K

k=1 ||Bk −GG>||2 ∑K
k=1 ||Dk −∆||2 ∑K

k=1 ||XkQk −G||2

2. GWk

∑K
k=1 ||Bk −GW2

kG
>||2 ∑K

k=1 ||Dk −∆k||2
∑K

k=1 ||XkQk −GWk||2

3. GWk, G
>G = I

∑K
k=1 ||Bk −GW2

kG
>||2 ∑K

k=1 ||Dk −∆k||2
∑K

k=1 ||XkQk −GWk||2

and variants that pertain to this table have to be considered and are briefly reviewed

immediately below and, when appropriate, are referred to in the subsequent text.

Proviso 1. Of course, we need not use least squares and, when we do, we may prefer to use

weighted least squares. Either the rows and/or columns of the matrices may be weighted.

Such weights are unrelated to the salient weights Wk, which require estimation.

Proviso 2. Usually the weights Wk are required to be diagonal with positive values.
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Sometimes they may be positive definite symmetric matrices, when they are termed id-

iosyncratic.

Proviso 3. The fitted matrices ∆ and ∆k may contain distances or squared distances.

Proviso 4. Many algorithms to fit the criteria exist. Apart from the simple model G using

the inner-product criterion, all need some kind of iterative procedure.

Proviso 5. Often the data will have been subjected to some form of prescaling. For ex-

ample, observed data Yk may be transformed to Xk or derived from a multidimensional

scaling. This can be a convenient way of reducing dimensionality before individual differ-

ences are assessed.

Proviso 6. The dimensionality R of the group average G is often specified as part of the

model. In other cases in Layer 1 of Table 1 a full p dimensional group average matrix is

found and approximated in R dimensions, usually by using Principal Components. An-

other possibility discussed below is to replace the orthogonal matrices Qk by column-wise

orthonormal projection matrices Pk with R columns.

Proviso 7. The orthogonal matrices Qk that occur in the Procrustean criteria, are in-

tended to allow for the arbitrary orientations that are automatically subsumed by the

distance and inner-product criteria. This allowance is essential to account for the arbi-

trary relative orientations of sets of individual scaling solutions Xk, which we refer to as

configurations, which do not match across columns. When the columns of Xk refer to

repeated observed variables, rather than configurations, then the orthogonal matrices Qk

may have a factor structure interpretation. Alternatively, Qk may be deleted altogether

from the Procrustean criteria.

The models discussed in Table 1 form a sequence of layers each with formulations based

on inner-products, proximity and configuration matrices. The layers are ordered so that

each is a constrained version of its predecessor. These models are discussed in turn.

First layer (Model G)

In this model, every individual is referred to the same group average, so strictly speaking

this layer does not model individual differences. The inner-product version of this most
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simple model (see Table 1) is to solve

min
K∑

k=1

||Bk −GG>||2 . (6)

Since
∑K

k=1 ||Bk −GG>||2 =
∑K

k=1 ||Bk − B̄||2 +K||B −GG>||2, the solution to (6) is

determined solely by minimising ||B −GG>||2, which is classical scaling of B, with the

usual R-dimensional approximation.

In the distance matrix version of the most simple model G, we have to solve

min
K∑

k=1

||Dk −∆||2 . (7)

Since
∑K

k=1 ||Dk−∆||2 = ∑K
k=1 ||Dk−D||2+K||D−∆||2, the solution to (7) is determined

solely from the least squares scaling of the average dissimilarity matrix over the K sets,

minimizing STRESS:
∑K

k=1 ||D − ∆||2 over G → ∆, where G is specified to have R

dimensions. Recall that least squares scaling satisfies an analysis of variance ||D||2 =

||∆||2 + ||D −∆||2, so that ||∆||2 is maximal. A majorization algorithm is available in

the SMACOF program (De Leeuw, 1977; De Leeuw and Mair, 2009). The corresponding

criterion where distances/dissimilarities are treated as squared distances/dissimilarities

is known as SSTRESS, which is minimized by the ALSCAL program (Takane et al.,

1977), now satisfying an analysis of variance on squared distances. In both cases, the

correspondingG is known up to an arbitrary orthogonal transformation. For identification

purposes, G can be represented relative to its principal axes, though normally this will be

superfluous because SMACOF and ALSCAL will have provided R-dimensional solutions

suitable for visualisations without any further modification.

In the Procrustean version of the most simple model G, we have generalized orthogonal

Procrustes analysis (see e.g. Gower and Dijksterhuis, 2004), which iteratively solves:

min
K∑

k=1

||XkQk −G||2 , (8)

where Qk are orthogonal R × R matrices (k = 1, . . . , K). In (8), G = 1
K

∑K
k=1XkQk

is the average configuration of the initial matrices X1, . . . ,XK after transformation by

Q1, . . . ,QK . The optimization problem (8) is equivalent to minimizing ||XkQkQ−GQ||2
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for arbitrary orthogonal R × R matrices Q, so raises an identification issue. Again, this

is usually settled by choosing Q so that GQ is referred to its principal axes (see e.g.

Gower and Dijksterhuis, 2004) This approach allows the simultaneous visualisation in r

dimensions of the individual configurations, together with their group average.

Second layer (Model GWk)

The inner-product version of this weighted Euclidean model (Borg and Groenen, 2005) co-

incides with that of Carroll and Chang (1970), which we have already discussed in Subsec-

tion 1.1 of this paper. Carroll and Chang (1972) generalized the weighted Euclidean model

to a generalized Euclidean model, which they named IDIOSCAL (Individual DIffererences

in Orientation SCALing) model. In IDIOSCAL the matrix G is defined as in INDSCAL,

but the Wk are symmetric positive definite or semi-definite matrices. Whereas INDSCAL

provides unique axes, the IDIOSCAL model allows for rotations of the group stimulus

space. When Wk is restricted to be diagonal, IDIOSCAL reduces to INDSCAL.

The distance version of the model GWk seeks a solution to the following optimization

problem:

min
K∑

k=1

||Dk −∆k||2 . (9)

The routine SMACOF for individual differences solves (9) by using a majorization ap-

proach (De Leeuw and Heiser, 1980; De Leeuw and Mair, 2009) to find a group space G

and dimension weights Wk associated with K dissimilarity matrices Dk (k = 1, . . . , K).

The weighted Euclidean model can be implemented in several ways. An elaborated

overview of algorithms is given in Chapter 22 of Borg and Groenen (2005).

The configurational version of GWk solves the following Procrustes problem (Gower and

Dijksterhuis, 2004, p. 171):

min
K∑

k=1

‖XkQk −GWk‖2 , (10)

expressing that each (rotated) configuration approximates the weighted group average,

subject to the constraint (3) or (4). In this Procrustean formulation, the matrices Xk

may be given or will have been derived from some form of MDS. In that case, one pos-

sibility is to use classical scaling of double centred inner-product matrices Bk but this
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would detract from the robust potential of (10) in working in terms of first order matrices

Xk rather than second order matrices Bk. Therefore, to reinforce robustness it would be

better to use a more robust form of metric MDS such as least squares scaling, deriving

the configuration Xk from the K distance or dissimilarity matrices Dk, by minimizing

STRESS.

In the term XkQk − GWk, the orthogonal matrix Qk preserves the distances approxi-

mated by whatever MDS method has been used to generate the configuration matrices

Xk, so conforming with the notion of fitting configurational distance matrices. The di-

mension scaling (i.e. saliences) is attached to the group average matrix and this conforms

with the INDSCAL usage. This formulation is equivalent to a model term Xk−GWkQ
>
k

where the scaled group average is rotated to fit the configurations. This differs from the

simple variant Xk − GQ>
k Wk where the group average is rotated before the scaling is

applied but it is hard to see the justification and interpretation of weighting a group aver-

age after rotation. Many similar model variations may be envisaged but, for the reasons

given above, we prefer the one we have adopted in (10).

In Layer 1 we used principal component analysis (PCA) to give an R-dimensional approx-

imation to the Procrustean group average G. This remains a possibility in Layer 2 but

the component rotation would destroy the diagonal property of the saliences Wk. When

p = 2, component rotation is superfluous, supporting the use of initial two-dimensional in-

dividual scaling solutions Xk, but in other cases we would have to reconcile using saliences

in the group-average space in combination with a rotated group average. Perhaps this is

not as bad as it may seem, because it is difficult to visualise three or more dimensional

spaces in any set of circumstances, including INDSCAL. However, another way of dealing

with the difficulty is to replace Qk by projection matrices Pk as is described in Section 4.

The previous paragraph may be put into algebraic form as follows. Firstly we write the

Procrustean criterion (Layer 1) as

K∑

k=1

||XkQk||2 =
K∑

k=1

||XkQk −G||2 +K||G||2 . (11)

Then we express G in R dimensions as G = G(I− PP>) +G(PP>), where P is an or-

thonormal matrix with R columns corresponding to the R leading eigenvalues of G>G. It
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is the rows of G(PP>) or, equivalently in R dimensions, GP that give the R-dimensional

principal components approximation for plotting the group average. With Layer 2, we

may still use GP to give a principal components approximation to G but the question is

what to do about Wk? We could base an R-dimensional plot on GPP>Wk giving GP as

before and WkP as the saliences. The problem with this is that the transformed saliences

are not diagonal and then it is hard to compare the R-dimensional saliences across the K

groups.

Therefore, we try replacing the orthogonal matrices Qk by R-dimensional orthonormal

matrices Pk to give

K∑

k=1

||XkPk||2 =
K∑

k=1

||XkPk −G||2 +K||G||2 . (12)

The orthogonal analysis of variance (11) implies that

min
Qk

K∑

k=1

||XkQk −G||2 and max
Qk

||G||2

are attained for the same Qk (k = 1, . . . , K). That is, for Procrustes INDSCAL with

orthogonal matrices Qk, the minimal within variance occurs for the same orthogonal

matrices as for the maximal group variance G = 1
K

∑K
k=1XkQk (see (8)). Unfortunately,

this is not true for orthonormal matrices. Indeed,

min
Pk

K∑

k=1

||XkPk −G||2 and max
Pk

||G||2

occur for different settings of Pk(k = 1, . . . , K). However, although we have been inter-

preting our criteria in terms of least squares, because of the othogonality in (11) it is

equally valid to interpret them in terms of maximising the group average ||G||2. This

interpretation is attractive and arguably better than least squares. Moreover it remains

valid for projection matrices (cf. Section 4). Therefore we also include the criterion of

maximising ||G||2, where G = 1
K

∑K
k=1XkPk. Note that reduction to R dimensions is

built into the criterion, so that there is no need for PCA. Also, there is no need to include

Qk, to accommodate arbitrary rotations of the configurations, because QkPk is itself an

orthonormal matrix.
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Note that the Procrustean analogue of INDSCAL differs from the well-known Procrustean

INdividual DIfferences Scaling (PINDIS) family (Lingoes and Borg, 1978) in the sense

that in the latter one always assumes that the group average is given or derived externally

from, say, generalized Procrustes analysis. In the Procrustes problem (10), G is a matrix

of model unknowns. Not only does (10) provide estimates of the group average G together

with dimension weights Wk, as with INDSCAL, but also individual configurations XkQk

rotated into the position where they best match a scaled group average. As with IND-

SCAL itself, the estimated group average may not be rotated; indeed optimal rotations

are included in the model and incorporated into the final estimates.

Third layer (Model GWk, G orthonormal)

Finally, the orthonormal INDSCAL model imposes orthogonality constraints on the group

average matrix in the form G>G = IR. This is a severe substantive constraint and the

resulting model is substantively modified as was described in Section 1. Indeed, if the prox-

imities were covariance or correlation matrices, then the orthonormal INDSCAL model

may be identified as one of the variants of common principal component analysis (Flury,

1988; Pham, 2000), where the columns of G are the common eigenvectors of B1, . . . ,BK

and W2
1, . . . ,W

2
K are the corresponding eigenvalues that vary from group to group.

However, in its configurational version, differences exist between common components

analysis and the Procrustean methods (Gower and Dijksterhuis, 2004, pp. 181-182). In

Procrustes analysis, the rows do match, that is, the cases are common to all the K config-

urations. In contrast, the columns of Xk do not match. Then, the configuration version

of orthornormal INDSCAL aims to match the K configurations to the best rank R con-

figuration, that is, we minimize
∑K

k=1 ||Xk − X̂||2, for specified X̂ of rank R. In common

components analysis the emphasis is on variables, rather than configurations, coupled with

no requirement for row-matching. Common components analysis tries to find principal

components of data matrices Y1, . . . ,YK that share the same variables. This suggests to

us that one could carry out common components analysis directly on the data matrices,

where the Xk in the Procrustean criterion (10) are replaced by Yk (k = 1, . . . , K).
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3 The orthogonal Procrustean analogue of INDSCAL

The (orthogonal) Procrustean analogue of INDSCAL is based on n × R configuration

matrices Xk (k = 1, . . . , K) and minimizes the criterion (Gower and Dijksterhuis, 2004,

p. 171):

g(G,Q1, . . . ,QK ,W1, . . . ,WK) =
K∑

k=1

‖XkQk −GWk‖2 , (13)

whereQ>
k Qk = QkQ

>
k = IR for k = 1, . . . , K,G denotes an n×Rmatrix andW1, . . . ,WK

are R×R diagonal matrices. The aim is to minimize the objective function (13) subject

to one of the identification constraints (3) or (4). The configuration matrices Xk may

be given, but, more likely, they will have been derived using some form of MDS. One

possibility is to use classical scaling but for robustness, one may prefer to use other MDS

methods such as least squares scaling by minimizing STRESS.

3.1 Finding the group average

Making use of the identification constraint (3), expanding (13) gives:

g =
K∑

k=1

||Xk||2 +KtraceGG> − 2trace

(
K∑

k=1

XkQkWk

)
G>. (14)

Differentiation of g with respect to G gives:

G =
1

K

K∑

k=1

XkQkWk . (15)

This is a fundamental result, that shows that the estimated G is a simple group average

of the individual rotated and weighted configurations. Note that this is not a condition

imposed by the criterion (14) but is a consequence. The orthogonal rotations XkQk

conform with the inner-products and Euclidean distances of the initial configurations,

while the weights are unique and are not emenable to further rotation as they would

be in a convential Procrustes analysis. These properties parallel the usual geometrical

visualisations and interpretations both of Generalised Procrustes analysis and of IND-

SCAL itself. Further, (14) and (15) satisfy the orthogonal analysis of variance (ANOVA):
∑K

k=1 ||Xk||2 = g+Ktrace(GG>). Note that minimising g is the same as maximising the

group average ||G||2 (cf. Section 4).
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3.2 ALS algorithm

We now consider an ALS algorithm for estimating G, Qk and Wk. Equation (15) shows

that G is easily estimated from the current values of Qk and Wk. The rotations Qk that

minimize (14), keeping the unknowns G and Wk fixed, are estimated as Qk = VkU
>
k ,

where UkΣkV
>
k is the SVD of WkG

>Xk.

In common with Generalised Procrustes Analysis with isotropic scaling, there is an option

for estimating anisotropic scales Wk either as an eigenvalue problem or incremently.

Gower and Dijksterhuis (2004) present a step to find an estimate of Wk that involves

solving R eigenvalue problems. Here we give the details of an incremental alternative.

Inserting the group average (15) into (14) gives:

g =
K∑

k=1

||Xk||2 − trace

(
K∑

k=1

XkQkWk

)
G>

=
K∑

k=1

||Xk||2 −
K∑

k=1

trace[diag(G>XkQk)Wk] . (16)

Estimating Wk requires R Lagrange multipliers associated with the R diagonal elements

of the constraint (3). We imagine these to be collected in the diagonal of a matrix L.

Differentiating the Lagrangian gL:

gL = g + trace

(
L

(
K∑

k=1

W2
k −KIR

))
(17)

with respect to Wk gives

Wk = L−1diag(G>XkQk) . (18)

Inserting (3) into (18) gives:

K∑

k=1

diag2(G>XkQk) = L2
K∑

k=1

W2
k = KL2 . (19)

Thus, the required matrices of weights Wk are given by

Wk = L−1diag(G>XkQk) =
√
Kdiag(G>XkQk)

(
K∑

k=1

diag2(G>XkQk)

)−1/2

, (20)

provided that the diagonal matrix
∑K

k=1 diag
2(G>XkQk) is not singular.

One could simply start the algorithm with allWk = Qk = IR. This amounts to startingG
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as the average of the Xk. The first step is then to transform the current values of XkQk

to fit GWk. Then with the new XkQk evaluate G>XkQk and then from (20) derive

Wk. Finally, recompute G. Consolidating these results, suggests an ALS algorithm

incorporating the following steps:

1. Set convergence criterion ε to some small value, say 10−6. Initialize Wk, Qk (k =

1, . . . , K) and G as Wc
k, Q

c
k and Gc, respectively. Set the iteration counter c = 0.

2. Compute gc = g(Gc,Qc
1, . . . ,Q

c
K ,W

c
1, . . . ,W

c
K).

3. For fixedWc
k andGc, evaluate SVD(Wc

kG
c>Xk) = UkΣkV

>
k and setQc+1

k = VkU
>
k

for k = 1, . . . , K.

4. For fixed Qc+1
k and Gc, evaluate Gc>XkQ

c+1
k and (20) to find an update Wc+1

k for

k = 1, . . . , K.

5. For fixed Qc+1
k and Wc+1

k , set Gc+1 = 1
K

∑K
k=1(XkQ

c+1
k Wc+1

k ).

6. Compute gc+1 = g(Gc+1,Qc+1
1 , . . . ,Qc+1

K ,Wc+1
1 , . . . ,Wc+1

K ).

7. If |gc−gc+1| > ε, set c = c+1 and go to step 3; else consider the algorithm converged.

Experience with Generalised Procrustes Analysis suggests that there are a myriad of

minor algorithmic variants that might be investigated when we include isotropic scaling.

We have already mention the choice between incremental and eigenvalue estimates of the

weighting matrices. Another possibility is, at appropriate points, to use k-excluded group

averages (i.e. where the k-th group is excluded from the averaging process - see Gower

and Dijksterhuis (2004)). Yet another possibility is to choose to update G whenever

Wk and/or Qk are changed, or to leave the updating to the end of a cycle. Various

advantages have been claimed for all variants but the practical differences seem slight; we

would expect this to continue to be the case when anisotropic scaling is used.
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4 A configurational version of INDSCAL with pro-

jection matrices

In the previous section we pointed out that although n × R configuration matrices Xk

may be given, more likely, they will have been derived from n× p data matrices Yk (with

p > R) by using some form of MDS. With classical scaling, big matrices will have been

orthogonally projected onto fewer dimensions and a similar effect is gained by using other

methods of MDS. An advantage of using MDS is that the resulting configurations Xk will

be small and so will the orthogonal matrices Qk of Section 4.

However, we may wish to operate directly on the bigger matrices Yk, as when n× p raw

data matrices Y1, . . . ,YK are available with all p variables in the K sets being measured

in the same units, so then Xk = Yk (k = 1, . . . , K) with R = p. In this case, minimizing

(14) may lead to a high-dimensional optimization problem with large orthogonal matrices

Qk. One is tempted to solve the following Procrustes problem instead:

min
K∑

k=1

‖XkPk −GWk‖2 , (21)

where Pk (k = 1, . . . , K) are p× R column-wise orthonormal matrices. The matrices Pk

are often called projection matrices (Gower and Dijksterhuis, 2004), because they have

an interpretation of rotating an orthogonal projection of the p-dimensional configuration

Xk to match an R-dimensional configuration GWk.

Nevertheless, the attractiveness of the similarity of the criterion in (21) to (13) is deceptive.

This can be seen by considering the matrices Xk = [A Bk] (k = 1, . . . , K), that is, Xk is

partitioned into an n×R matrixA and an n×(p−R) matrix Bk. For this example, setting

Pk =


 IR

Op−R


 gives XkPk = A and Wk = IR for k = 1, . . . , K. Then G = A and

the residual sum of squares of the criterion in (21) is zero. The fit is perfect even though

the projected configurations may have very bad residual fits B1, . . . ,Bk to the initial

configurations. This may be an artificial example but it is not a pathological example,

except in that it might be described as being pathologically well-behaved. In general (21)

aims to minimise the sum of squares of the projected error and this seems not compatible

to giving good approximations of the individual scalings in INDSCAL. As pointed out
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at the end of Section 3, minimising the sum-of-squares (13) is equivalent to maximising

the group average; this equivalence does not carry over to the projection criterion (21),

because the orthogonal analysis of variance is no longer available. Instead, we propose

to maximise the projected group average configuration, following the suggestion of Peay

(1988).

4.1 Maximising the group average configuration

Consider maximising the following objective function:

h(P1, . . . ,PK ,W1, . . . ,WK) =

∥∥∥∥∥
K∑

k=1

XkPkWk

∥∥∥∥∥

2

, (22)

subject to P>
k Pk = IR (k = 1, . . . , K) and the identification constraint

∑K
k=1W

2
k = KIR.

Maximising (22) amounts to maximising the squared sum of the elements of the group

average KG =
∑K

k=1XkPkWk. Searching for the maximal group average configuration

was introduced by Peay (1988) in projection Procrustes analysis. Subsection 4.2 describes

an ALS algorithm for maximising (22).

4.2 Algorithm

Expanding (22) gives:

h = K2||G||2 = K2trace
(
GG>)

=
K∑

k1=1

K∑

k2=1

trace
(
Xk1Pk1Wk1Wk2P

>
k2
X>

k2

)

=
K∑

k1=1

K∑

k2=1

trace[Wk1Wk2diag(P
>
k2
X>

k2
Xk1Pk1)]

=
K∑

k1=1

K∑

k2=1

v(Wk1)
>[v(P>

k2
X>

k2
Xk1Pk1)¯ v(Wk2)] , (23)

where v(A) denotes the vector containing the main diagonal of the square matrix A, i.e.

if A is n× n then v(A) = (A¯ In)1n with 1n being a column vector of n ones.

Estimating Wk requires R Lagrange multipliers associated with the R diagonal elements

of the constraint (3). We imagine these to be collected in the diagonal of a matrix L.
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Differentiating the Lagrangian hL:

hL = h+ trace

(
L

(
K∑

k=1

W2
k −KIR

))
(24)

with respect to Wk gives

K∑

l=1

diag(P>
k X

>
k XlPl)Wlv(Σ

(kl))¯ v(Wj) = Lv(Wk) , (25)

where Σ(kl) = P>
k X

>
k XlPl. Equation (25) can be rewritten as

K∑

l=1

v(Σ(kl))¯ v(Wl) = v(Wk)¯ v(L) . (26)

Note that v(Σ(kl)) = [XkPk ¯XlPl]
>1n, that is, there is no need to calculate the matrix

P>
k X

>
k XlPl. Let σ

(kl)
r denote the rth element of v(Σ(kl)), and w

(k)
r and lr be the rth

elements of Wk and L (r = 1, . . . , R), respectively. Then, for each Lagrange multiplier lr

the optimality condition (26) implies the following eigenvalue problem:




σ
(11)
r σ

(12)
r . . . . . . σ

(1K)
r

σ
(21)
r σ

(22)
r . . . . . . σ

(2K)
r

...
...

. . .
...

...
...

. . .
...

σ
(K1)
r σ

(K2)
r . . . . . . σ

(KK)
r







w
(1)
r

w
(2)
r

...

...

w
(K)
r




= lr




w
(1)
r

w
(2)
r

...

...

w
(K)
r




. (27)

Thus, the K weight matrices Wk are found by solving R eigenvalue problems defined in

(27). Note, that in most applications R = 2 or R = 3. If the normalized eigenvectors of

(27) form a K ×R matrix, then the kth row of this matrix gives the diagonal elements of

Wk. Instead of solving R eigenvalue problems, one may modify the incremental method

described in the previous Section to find the weight matrices Wk (k = 1, . . . , K).

To find an update for Pk (k = 1, . . . , K), consider our Projection INDSCAL criterion (22)

rewritten as

h = ||XkPkWk + (K − 1)Gk||2 , (28)

where Gk = 1/(K − 1)
∑K

i6=k XiPiWi is the k-excluded group average, which gives the

mean of all the current XiPiWi excluding XkPkWk. Thus, for fixed Wk (k = 1 . . . , K),
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the problem of maximising (22) is transformed into the two-set problem of maximising

(28) for which all matrix parameters are known except for the column-wise orthonormal

projection matrices Pk (k = 1, . . . , K). One can update each Pk sequentially, based on

an algorithm of Koschat and Swayne (1991) developed in a different context, as follows.

We consider writing (28) in the form

||XkPkWk + (K − 1)Gk||2 =

∣∣∣∣∣∣

∣∣∣∣∣∣


 XkPk

X0Pk


Wk −


 −(K − 1)Gk

X0PkWk



∣∣∣∣∣∣

∣∣∣∣∣∣

2

(29)

and choose X0 such that X>
k Xk +X>

0 X0 = ρ2Ip so that WkP
>
k (X

>
k Xk +X>

0 X0)PkWk =

ρ2W2
k because P>

k Pk = IR. Then, in the (c + 1)th iterative step for estimating Pk, we

have only to maximise trace(Wk[−(K − 1)G>
k Xk +WkP

c>
k X>

0 X0]P
c+1>
k ), where Pc>

k is

regarded as fixed. Thus, we form

Z = Wk[−(K − 1)G>
k Xk +WkP

c>
k (ρ2Ip −X>

k Xk)] (30)

and then from the SVD Z = UΣV> derive Pc+1
k = VU> from U and the first R columns

of V, which correspond to the R non-zero singular values of the R×p matrix Z. One may

choose ρ2 = ||Xk||2 or ρ2 = λ, the maximal eigenvalue of X>
k Xk (Gower and Dijkster-

huis, 2004). Thus, we iterate on Pc
k until convergence; proof of convergence of a similar

algorithm is given in Gower and Dijksterhuis (2004). This procedure is carried out for all

Pk (k = 1, . . . , K). Then, with the new Pk one finds new matrices Wk. This alternating

procedure is repeated until a pre-specified convergence criterion is met. Finally, once the

algorithm has converged one can compute G. Consolidating these results, suggests an

ALS algorithm incorporating the following steps:

1. Set convergence criterion ε to some small value, say 10−6. Initialize Wk and Pk

(k = 1, . . . , K) as Wc
k and Pc

k, respectively. Set the iteration counter c = 0.

2. Compute hc = h(Pc
1, . . . ,P

c
K ,W

c
1, . . . ,W

c
K).

3. For fixed Pc
k solve the R eigenvalue problems defined in (27) to find Wc+1

k for

k = 1, . . . , K.

4. For fixed Wc+1
k find an update Pc+1

k for k = 1, . . . , K as follows:
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(a) Set ρ2 = ||Xk||2 and P1 = Pc
k.

(b) Form Z = Wk[−(K − 1)G>
k Xk +WkP

>
1 (ρ

2Ip −X>
k Xk)].

(c) Compute the SVD of Z = UΣV> and set P = VU>.

(d) If ||P − P1||2 is greater than some threshold set P1 = P and go to step (b).

Otherwise set Pc+1
k = P.

5. Compute hc+1 = h(Pc+1
1 , . . . ,Pc+1

K ,Wc+1
1 , . . . ,Wc+1

K ).

6. If |hc − hc+1| > ε, set c = c + 1 and go to step 3; else consider the algorithm

converged.

5 Application to food science data

5.1 Description of the data

In this Section, the methods developed in this paper are illustrated with an application

from sensory evaluation, a scientific discipline that applies principles of experimental de-

sign and statistical analysis to the use of human senses (sight, smell, taste, touch and

hearing) for the purposes of evaluating consumer products. Sensory analysis requires

panels of human assessors, on whom certain products are tested, and recording the re-

sponses made by them. By applying statistical techniques to the results it is possible

to make inferences and insights about the products under test. Here, a sensory panel of

tasters assesses several properties of food items. The data arose from one sensory profiling

session, the last of a range of seven. The seven sessions took place in an experiment to

develop a sensory vocabulary to describe warmed-over flavour in meat patties. For details

of this study, the reader is referred to Byrne et al. (2001).

A panel of K = 8 assessors scored their perceived intensities of 20 properties, such as

fresh pork meat-like-flavour, roasted like odour or sweet taste, of n = 6 different pork

meat patties. Five properties, which take constant values for some judges, were removed,

hence p = 15. That is, eight (6× 15) data matrices Yk (k = 1, . . . , 8) are given with the

six food items in its rows and the fifteen attributes in its columns. This data structure

is a three-mode structure and it is presupposed that all the K assessors use the same p
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attributes, and that these are presented in the same order for each Yk. An INDSCAL

matrix decomposition model with R = 2 dimensions is considered in the following. Con-

figuration matrices Xk ∈ R6×2 are derived from distance matrices Dk (k = 1, . . . , 8) by

means of metric MDS. These configuration matrices Xk are the data to which the orthog-

onal Procrustean analogue of INDSCAL was applied. For the configurational version of

INDSCAL with projection matrices, the matrices Yk = Xk (k = 1, . . . , 8) of dimension

6×15 were taken as input data. For comparison, inner-product matrices, derived from the

spectral decomposition Bk = XkX
>
k , were analysed using the original INDSCAL method

of Carroll and Chang (1970).

Computations were carried out using MATLAB Version 7.10.0 (R2010a) (The Math-

Works, 2010) on a PC operating with an Intel Pentium 4 CPU having 2.4 GHz clock

frequency and 1GB of RAM. All computer codes used in the experiments are available

upon request.

5.2 Results

Figure 1 (upper graph) presents the group average configuration for the six food items (A,

B, C, D, E, F) for both INDSCAL given by Carroll and Chang (1970) and the orthogonal

Procrustean analogue of INDSCAL.

* * * Figure 1 about here * * *

Although the exact positions for the food items differ, the configurations are very similar.

In INDSCAL, the relationships of the individual configurations to the group average are

summarised by weights to be attached to the axes of the upper graph of Figure 1; these are

shown in the lower graph of Figure 1. The largest weights are those of assessors 1 and 5,

associated with the horizontal axis, and assessor 2 and 3, associated with the vertical axis

of the INDSCAL group stimulus space. With respect to the second underlying dimension

representing the attributes the two sets of results diverge most for assessors 3, 4, and 7.

Whereas in the solution for the configurational version the subject weights for assessors

4 and 7 are much larger with respect to the second dimension, the INDSCAL solution

obtained by Carroll and Chang (1970) shows larger weights for the same dimension for

assessor 3. Inspections of the correlations of the individual attributes with the dimensions
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of the group average for approaches revealed that the assessors differ in their use of certain

attributes. Results for the configurational version with projection matrices (not shown)

are very similar to the ones displayed in Figure 1 for the orthogonal Procrustean analogue

of INDSCAL.

It is interesting to compare the goodness-of-fit obtained by the Procrustes version of

INDSCAL with the one obtained by Carroll and Chang (1970). As the fitting criteria (2)

and (13) are different, their minima are not directly comparable. Instead, the relative error

of fit is used to compare the standard INDSCAL solution with the solution obtained by

the orthogonal Procrustean analogue, where relative error of fit is defined as the minimum

fit obtained for the corresponding problem divided by the Frobenius norm of the fitted

data. Thus, for the two alternative methods of three-way individual differences scaling,

the following discrepancy of fit measures are compared:

K∑

k=1

||Bk −GW2
kG

>||2
||Bk||2

(31)

for the inner-product-version and

K∑

k=1

||Xk −GWkQ
>
k ||2

||Xk||2
(32)

for the orthogonal Procrustean analogue of INDSCAL. The value of the loss function

(31) is 3.2082 and the value of the loss function (32) is 2.1721 (using rational starts for

the unknown matrix parameters). The latter decreases to 0.0083 if one uses Xk = Yk

(k = 1, . . . , K) as input matrices and applies the configuration version with column-wise

projection matrices Pk instead of using Qk (k = 1, . . . , K). This shows that the config-

uration versions give a better fit to the data than the inner-product version. This is not

surprising as the Procrustean versions are formulated in terms of first-order matrices Xk

rather than second-order matrices Bk.

The model parameter matrices Qk and Pk (k = 1, . . . , K) are initialized randomly,

whereas for the weight matrices Wk = IR for k = 1, . . . , K are used. To avoid local

optima, the algorithm was run twenty times and it was stopped when successive function

values differed by less than ε = 10−4. For R = 2, the procedure for fitting the orthog-

onal Procrustean analogue of INDSCAL required on average 184 iterations to converge,
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taking about 0.15 seconds. For the configuration version with column-wise orthonormal

15×2 matrices Pk (k = 1 . . . , K) the algorithm required on average 130 iterations, taking

about 1.5 seconds. Recall that the configuration version of INDSCAL with projection

matrices requires R eigenvalue calculations at each iteration for finding an update for Wk

(k = 1, . . . , K). The twenty runs led to the same function value, up to the second decimal

place, which was deemed adequate. Using a higher accuracy criterion such as ε = 10−6

needed considerably more CPU time but did not change the quality of the solution.

To give some insight into the iteration process, for two of the twenty randomly started runs

the function value has been plotted against the iteration number in Figure 2 for the con-

figuration version of INDSCAL with orthogonal matrices and column-wise orthonormal

(projection) matrices, respectively.

* * * Figure 2 about here * * *

It can be seen that for both algorithms the decrease (increase) of the objective function is

rather gradual. In the left (right) plot of Figure 2, the monotonically decreasing (increas-

ing) function value stabilizes after 184 iterations (85 iterations) at a value of 804.7727

(194723.1113).

6 Discussion

In this paper, INDSCAL is considered as being embedded within a hierarchy of individual

difference scaling models. We explore the members of this family, distinguishing models,

the role of identification and substantive constraints, criteria for fitting models and algo-

rithms to optimise the criteria. Our approach extends previously published methodology

on INDSCAL through adding new model variants, which are based on data in the form of

configurational matrices. We introduced configurational versions of INDSCAL based on

orthogonal and column-wise orthonormal (projection) matrices, respectively. Algorithms

are introduced for fitting the new models. We illustrated our methods with a typical ap-

plication in sensory evaluation. For this particular example, the obtained group average

and saliences are similar to what we obtained using the classic approach to INDSCAL

of Carroll and Chang (1970), but the Procrustean versions resulted in a better fit to the
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data than the inner-product version. In fact, the two sets of results, although similar, do

show some quite large differences in the individual space.

There are three broad limitations to our approach. The first two limitations, which are

shared with other methods of individual differences scaling, are due to issues inevitably

associated with the INDSCAL model. While INDSCAL is based on a model, this model

could be described as deterministic rather than stochastic, in the sense that no distri-

butional assumptions are made about the error terms. Consequently, a drawback of the

INDSCAL decomposition models with fixed matrix parameters is that it is not possi-

ble to test them by statistical methods. Nevertheless, the notions of convergence of the

algorithms, stability of solutions, and goodness-of-fit continue to apply. Furthermore,

INDSCAL assumes that the same fundamental dimensions govern all subjects’ percep-

tions of the set of stimuli, with just the weight allocated to each dimension differing

between subjects. Whether the INDSCAL assumption is plausible in analysing different

people’s perception of the similiarities between various consumer products such as food

items, is certainly open to question. The third limitation is that the loss functions of the

Procrustean versions of INDSCAL are different from those of the inner-product version

or the ones that operate directly on distance matrices. Thus, if we are going to compare

models, we should make sure that we are comparing like with like, and comparing mod-

els is a minefield that many authors seem prepared to cross. Therefore, we focused on

comparing some common aspects of the two models, such as the group average solution

or individual weights. We believe that statements based on such a comparison are rea-

sonably valid.

Future work, some of it in process, is needed in two areas. Firstly, other fitting criteria

for the configurational version of INDSCAL with projection matrices could be envisaged.

For example, one could try to solve the following maximisation problem:

max

∥∥∥∥
K∑
k=1

XkPk

∥∥∥∥
2

∥∥∥∥
K∑
k=1

XkPk −GWk

∥∥∥∥
2 subject to

K∑

k=1

W2
k = KI . (33)

The criterion in (33) models the individual differences as in the rest of the paper. It seeks

to maximise the group average, but simultaneously seeks to minimise the differences
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between each projected configuration and the scaled group average. Finding a suitable

algorithm to maximise (33) may be a fruitful line of research. Secondly, the proposed

algorithms in this paper have been of an alternating least squares type and more knowledge

is needed about their performance with respect to speed, accuracy, and the ability to find

global rather than local optima, applied to both real and artificial data. One may also

compare these algorithms with different algorithms for optimising the same criterion.

More work is required here.
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Figure 1: Group average of the six pork meat patties (upper graph) and weights of the
eight assessors (lower graph), obtained by two variants of INDSCAL.
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Figure 2: Function value plotted against iteration number for the configuration version of
INDSCAL with orthogonal matrices (left) and column-wise orthonormal (pro-
jection) matrices (right), for two randomly started runs of the corresponding
algorithm


