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Abstract

The paper considers new devices to predict the response variable us-
ing a convex target function weighting the response and its expectation.
A MDEP-matrix superiority condition is given concerning BLUE, RLSE
and mixed estimator where the latter is used in case of imputation for
missing values. A small simulation study compares the alternative esti-
mators. Finally the detection of non-MCAR processes in linear regression
is discussed.

Some Hypotheses about Statistics for the twenty first century

1. Statistical research in next century will be largely based on artificial in-
telligence. Appropriate models for any given data set will be searched

through computers.

2. We have many empirical studies now. These will be fruitfully employed
in developing non-conjugate prior distributions that will describe reality.
The availability of realistic prior distributions will lead to high importance

to Bayesian inference.

3. Generally we pay attention to one problem at a time. Next century will
provide answers to questions that relate to problems which occur simulta-

neously. For example, consider the traditional linear regression analysis.
Such an analysis may not be appropriate due to, for instance, nonlinear-
ity, autocorrelated disturbance and measurement errors. If only one of the
problems is present, we know some solution. But if all the three problems
are present simultaneously, we have practically no suitable solution. Such

issues will be an important aspect of future research.

4. Nonparametric procedures will gain popularity. Considerable efforts will
be directed towards the study of performance properties of nonparametric

procedures in finite samples.

In general, computer based research will dominate the traditional work.



Problem 1
Predictive Performance of Restricted and Mixed Regression Estimators

1.1 Introduction

Generally predictions from a linear regression model are made either for the
actual values of the study variable or for the average values at a time. However,
situations may occur in which one may be required to consider the predictions
of both the actual and average values simultaneously. For example, consider the
installation of an artificial tooth in patients through a specific device. Here a
dentist would like to know the life of a restoration, on the average. On the other
hand, a patient would be more interested in knowing the actual life of restoration
in his/her case. Thus a dentist is interested in the prediction of average value
but he may not completely ignore the interest of patients in the prediction of
actual value. The dentist may assign higher weightage to prediction of average
values in comparison to the prediction of actual values. Similarly, a patient
may give more weightage to prediction of actual values in comparison to that
of average values.

This section considers the problem of simultaneous prediction of actual and
average values of the study variable in a linear regression model when a set of
linear restrictions binding the regression coefficients 1s available, and analyzes
the performance properties of predictors arising from the methods of restricted
regression and mixed regression besides least squares.

1.2 Specification of Model and Target Function

Let us postulate the following linear regression model:
vy=XB8+u (1.1)

where y is a n X 1 vector of n observations on the study variable, X is a n x K
full column rank matrix of n observations on K explanatory variables, 3 is a
column vector of regression coefficients and u is an n X 1 vector of disturbances.

It 1s assumed that the elements of u are independently and identically dis-

tributed with mean zero and variance ¢2.

IfB denotes an estimator of 3, then the predictor for the values of study variable
within the sample is generally formulated as T = X3 which is used for predicting
either the actual values y or the average values E(y) = X3 at a time.

When the situation demands prediction of both the actual and average values
together, Toutenburg and Shalabh (1996) defined the following stochastic target
function

Ty)=Ay+(1-NE(y)=T (1.2)

and use T = X@ for predicting it where 0 < A < 1 1s a nonstochastic scalar
specifying the weightage to be assigned to the prediction of actual and average

values of the study variable; see, e. g. Shalabh (1995).



Remark (i). In case that A = 0, we have T = E(y) = X3 and then optimal
prediction coincides with optimal estimation of 3, whereas optimality may be
defined, e.g., by minimal variance in the class of linear unbiased estimators
or by some mean dispersion error criterion if biased estimators are considered.
The other extreme case A = 1 leads to T = y. Optimal prediction of y is then
equivalent to optimal estimation of X3+u. If the disturbances are uncorrelated
this coincides again with optimal estimation of X3, i.e.; of 3 itself. If the
disturbances are correlated according to E(uu’) = ¢?W, then this information
leads to solutions y = X3 + u (cp. Goldberger, 1962).

Remark (ii). The two alternative prediction problems—the X3-superiority and
the y-superiority, respectively—are discussed in full detail in Rao and Touten-
burg (1995, Chapter 6). As a central result, we have the fact that the superiority
(in the Loewner ordering of definite matrices) of one predictor over another pre-
dictor can change if the criterion is changed. This was one of the motivations
to define a target as in (1.2) that combines these two risks.

In the following we consider this problem but with the nonstochastic scalar A
replaced by a nonstochastic matrix A. The target function is therefore

Ty)=Ay+(I-A)E(y)=T. (1.3)

Our derivation of the results makes no assumption about A, but one may have
in mind A as a diagonal matrix with elements 0 < X; <1, ¢0=1,...,n.

1.3 Exact Linear Restrictions

Let us suppose that we are given a set of .JJ exact linear restrictions binding the
regression coefficients:

r=Rg3 (1.4)
where r 1s a J x 1 vector and R 1s a J x K full row rank matrix.

If these restrictions are ignored, the least squares estimator of 3 is
b= (X'X)"'X'y (1.5)

which may not necessarily obey (1.4). Such is, however, not the case with
restricted regression estimator given by

br =b + (X'X)"'R'[R(X'X)"'R/]"'(r — Rb) (1.6)
which invariably satisfies (1.4).

Employing (1.5) and (1.6), we get the following two predictors for the values of
the study variable within the sample:

T = Xb, (1.7)
Tr = Xbg. (1.8)
In the following we compare the estimators b and by with respect to the predic-

tive mean dispersion error (MDEP) of their corresponding predictions T = Xb
and Tg = Xbg for the target function T.



From (1.3), and the fact that the ordinary least squares estimator and the
restricted estimator are both unbiased, we see that

EA(T) = E(y), (1.9)
EA(T)=X8 = E(y), (1.10)
EA(TR)=XB8 = E(y), (1.11)
but
E(T)=E(Tg)#T. (1.12)

Equation (1.12) reflects the stochastic nature of the target function T, a problem
which differs from the common problem of unbiasedness of a statistic for a fixed
but unknown (possibly matrix valued) parameter. Therefore both the predictors
are only “weakly unbiased” in the sense that

EA(T-T) = o0, (1.13)

EA(TR —T) = 0. (1.14)

1.3.1 MDEP Using Ordinary Least Squares Estimator

To compare alternative predictors, we define the matrix-valued mean-dispersion
error for T = X3 as follows:

MDEPA(T) = E(T — T)(T — T)'. (1.15)
First we note that
T = Ay+(I-A)E(y)
= XB+Au, (1.16)
T = Xb
= X+ Pu, (1.17)

with the symmetric and idempotent projection matrix P = X(X'X)71X'.
Hence we get

MDEPA(T) = E(P—A)uu'(P —A)
= o*(P-A)(P-A), (1.18)

using our previously made assumptions on u.

1.3.2 MDEP Using Restricted Estimator
The problem is now solved by calculation of

MDEP, (Tg) = E(Tr — T)(Tr — T)' . (1.19)
Using the abbreviation

F=X(X'X)"'R/[R(X'X)"'R|'R(X'X)"' X’ (1.20)



and

r—Rb=-R(X'X)"'X'u, (1.21)
we get from (1.6), (1.8), (1.16) and (1.17) the following
Tp—T = Xbgp-T
— (P-F—-Au. (1.22)
AsF=F,P =P and PF = FP = F, we have

MDEPA(Tg) = o (P—F—A)(P—F—A)
= o (P-A)P—-A) —(F-—AF-FA)]. (1.23)

1.3.3 MDEP Matrix Comparison

Using the results (1.18) and (1.23), the difference of the MDEP-matrices can be
written as

AA(T; Tg) MDEPA(T) — MDEPA (Tg)
c*(F — AF — FA')

o?[(I-A)F(I-A) —AFA'] . (1.24)

Then Tg becomes MDEP-superior to T if AA(T; TR) > 0.

For AA(T; TR) to be non-negative definite, it follows from Baksalary, Schipp
and Trenkler (1992) that necessary and sufficient conditions are

(i) R(AF)C (I-A)F
(i) M<1

where A; denotes the largest characteristic root of the matrix [(I — A)F(I —
A')J*AFA’.

For the simple special case of A = @I, the conditions reduce to § < %
1.4 Missing values in the X-Matrix and the Mixed Estimator

An interesting problem in all regression models relates to missing data. In
general, we may assume the following structure of data:

Yobs Xobs
Ymis = Xobs B +u. (125)
Yobs Xmis

Estimation of y,is corresponds to the prediction problem discussed in Chapter 6
of Rao and Toutenburg (1995) in full detail. We may therefore confine ourselves
to the structure

Yobs = ( §Obs )[3+u (1.26)

mis



and change the notation as follows:

(?):(i)/%r(ﬁ) (E*)~(0,021). (1.27)

The submodel
vy=XB8+u (1.28)

presents the completely observed data and should fulfill the standard assump-
tions (i.e., X is nonstochastic of full column rank). The other submodel

Y. = X*B‘i‘u*

is related to the partially observed X-variables. The dimensions of the two
models are m. and m., respectively, with n = m. + m..

Let M = (m;;) define the missing indicator matrix (c.p. Rubin, 1976) with
m;; = 1 if x;; is not observed and m;; = 0 if x;; is observed. Under the
assumption that missingness is independent of y, i.e.,

fMly, X) = f(M|X)

we have

syl x) = LS - SO — 1)

which means that the the CC-estimator (complete case)
b= (X'X)"'X'y (1.29)

1s consistent for 3.

As an alternative one may impute estimates or fixed values for the missing data
so that the partially unknown matrix X, is replaced by a known matrix R
resulting in

v. =R+ (X, —R)B+u, (1.30)

or, equivalently written in the shape of stochastic linear restrictions,
r=RB+d+¢, ¢~ (0,0°1) (1.31)

with & = (X. — R)B a bias vector. Combining the CC-model (1.28) and the
filled-up model (1.31) results in the mixed model (Theil and Goldberger, 1961)

(F)=(R)e+(5)+(5) o
For 4 = 0, the BLUE in (1.32) is given by the mixed estimator
br =b+ (X'X)" 'R/ [T+ R(X'X)"'R'] " (r — Rb) (1.33)
with dispersion matrix

V(bg) = V(b)—oX(X'X)"'R/ [T+ R(X'X)"'R/] " R(X'X)"(1.34)
= V(b)-D, (1.35)



say, whence it follows that the variance covariance matrix of b exceeds the
variance covariance matrix of by by a non-negative definite matrix and thus by
1s more efficient than b.

In case that & # 0, the mixed estimator br becomes biased and its bias vector
is

Bias(bg, 3) = Dd (1.36)

where
d = (XX)Rtdo™? (1.37)
Rt = R/(RR)"'. (1.38)

Therefore Bias(BR,ﬁ) € R(D) and we may apply result Al given in the Ap-
pendix to get the following theorem.

Theorem 1. Let M(B,B) = E(B - B)(B - B): define the MDE matrix of

an estimator B of 3. Then the biased estimator bg is MDE-superior over the
OLSE b in the sense that the variance covariance matrix of b exceeds the mean
squared error matrix of by by a non-negative definite matrix if and only if
p=0 28 I+ RX'X)"'R] ' 6<1. (1.39)
If u and ¢ are independently normally distributed, then p i1s the noncentrality
parameter of the statistic
1 _ -1
= ﬁ(r - Rb) [I+R(X'X)"'R/]

which follows a noncentral Fj,_(p)-distribution under p < 1.

(r — Rb) (1.40)

1.4.1 MDEP Using Mixed Estimator

Using the mixed estimator BR, we have 'i‘R = XBR. Hence we have to calculate

MDEP, (TR) — B(Tp — T)(Tg - T)' . (1.41)
Using the abbreviation
A= (X'X)"'R/ 1+ R(X'X)"'R/] ™ (1.42)
and taking into account that
A[I+RX'X)"'R']A’ = D (1.43)
PX(X'X)"'R'A’ = D (1.44)
XDX' = F incasethat =0 (1.45)

we may write
Tr — T = (P — A)u+ XA [¢p - R(X'X)"'X'u] + XAJ . (1.46)
Therefore, using (1.43), (1.44) and (1.45) we get
MDEP, (TR) — 2P —A)P —A)

—¢? (XDX’' — AXDX' — XDX'A’)
+ XAH5'A'X (1.47)



1.4.2 MDEP-Matrix Comparison

The difference of the MDEP-matrices of T and 'i‘R can be written as
AA(T;Tr) = 0? [(I- A)XDX'(I- A) — AXDX'A'] — XAJ§'A'X’ (1.48)

Then using Baksalary et al. (1992) and the result Al of the Apendix, we have

AA(T; TR) >0

if and only if
(i) [(I-A)XDX'(I-A) —-AXDX'A'] >0 (1.49)
(i) o726 A’X'[(I-A)XDX'(I-A) — AXDX'A']” XA§ < 1. (1.50)

Problem 2
Missing values in the X-matrix and the weighted mixed regression es-
timator

In the following we again assume the situation given in equation (1.26), that is
missing values in X only. Filling in replacement values for the missing values
leads to the setup of biased mixed estimation as in equations (1.31) and (1.32).
Since the additional information is biased, it seems pertinent to use a weight
lower than one for this part of the model. This can be achieved by rewriting
the target function to be minimized from

S(B)=(y —Xp)'(y - XB) + (r — RB)'(r — RY)
to
S(B,A) = (y = XB)'(y - XB) + \Mr - RB)'(r - Rp) ,
with 0 < A < 1. The solution given by
b()) = (X’X + A\AR'R)"!(X'y + A\R'r)

may be called the weighted mixed regression estimator (WMRE). This estimator
may be interpreted as the familiar mixed estimator in the model

(i) = () (o)

Using Zy = (X’X + AR'R), we have the alternative representation
b(}) 77 (X'XB + X'u+ A\R'X.8 + AR/ ¢)

B+NZ'R/(X,. — R)B+Z7 (X u+ AR ¢)

from which it follows that the WMRE is biased and its bias vector is given by
Biasb(\) = AZ'R/§ |
with covariance matrix as

V(b)) = ¢*Z7 (X'X + M’R'R)Z; ' .



2.1 Ways of finding an optimal A

One strategy to find an optimal A is to minimize the MDEP. Let g = ilﬁ—l—ag be
a nonobserved future realisation of the regression model that is to be predicted
by p = x’b()). Minimizing the MDEP of p given by E(p — §)? with respect to
A leads to the relation (Rao and Toutenburg, 1995)

1
A= —
L+ o=2p(N)pz~(N)
pr(N) = t[Z7'SZI'RTISIRZ
pr'(\) = t[Zy'SRZ7'SZT],

with 8 = X’X and Sg = R'R. In general, the solution has to be found
iteratively while 0 and & have to be estimated by some procedure, e.g., o2
may be estimated from the complete cases. For the special case that only
one observation is missing (i.e., r and & are scalars), an explicit but unknown
solution is available as

1

= 2.1
1+ 0252 (2.1)

A second strategy is to minimize the trace of the MDE matrix with respect to
A, which is given by

tr MDE(b()), B) = tr [¢?Z5 (S + A?SR)Z; '] + M2 Z 'R/66'RZ} ]
Note that the solution A¢. has to be found iteratively.

A third way is to compare b(A) and b with respect to the MDE criterion. This
results in the condition that b(A) is MDE better than b, if

pr =0 2 [2A T - DI+ RSTIR/ 716 < 1.
It can be shown, that the generalized version of (2.1),

1
A= ——
1402868

always fulfills this condition. Alternatively Apnax could be chosen such that
px = 1 holds. Again, A\ ax has to be found iteratively.

2.2 A small simulation study

In a small simulation study we compared the estimators b (complete case es-
timator, which is the same as b(A) with A = 0), b(1) = bgr and b(A) (with
0 < A < 1). The comparison of the respective estimators was conducted using
the scalar risk function

R(I) = E (b(\) - 8)' (b()) - B)

estimated by its empirical version

#rep
R(b(),B) = #rlep Z (b(\); — B) (b(\)i — )



where #rep means the number of repeated simulations of the error terms applied
to one specific covariate data set. The details of the setup can be obtained from
the authors on request.

Using the weights computed from & and ¢ which are known in the simulation
study (generating 100 different covariate data sets), all weighted estimators
were found to be better than the complete case estimator b, as expected from
the theory. Comparing the weighted estimators using the different A-values
previously mentioned with the estimator bg shows that by, performs best in
this comparison (by,, was better than by in 91 of 100 runs, while by_ was better
than bg in only 50 of 100 runs). On the other hand, using the weights computed
from estimated = r — Rb and &2 (from the complete data), we observed that
bj was better than b in 99 of 100 runs, by ~was better than b in 97 of 100
runs, while br was better than b in only 79 of 100 runs, but also that, e.g. by
was better than bg 1n only 32 of 100 runs and by, was better than bR n only
43 of 100 runs. These results yield no transitive ordermg of the estimators.

One possible reason for these results could be that the true A, is typically

underestimated by A, = 1/(1+ &_23/3) (the degree is also depending on o?

and the covariance structure of X), since it can be shown that E(3/3) =464+
o?(J + ijl p;), where i; are the eigenvalues of RS™'R/.

These observations suggest the construction of a bias corrected version of the
estimators. An interesting direction is to use bootstrapping techniques to obtain
a bias correction (using different resampling techniques). The results of this
approach indicate that the estimates can be improved concerning the bias. But
there 1s still noticeable underestimation.

2.3 Some concluding remarks

For handling the problem of missing values of some explanatory variables,
weighted mixed estimation seems to be a promising approach. However, the
determination of the weighing scalar requires careful attention. It will also be
interesting to develop suitable procedures for confidence intervals and hypothe-
sis testing. So far the results hold only for J < p, i.e., the number of restrictions
is smaller than the number of variables. For the missing value context, we also
need to investigate the case when J > p.

Problem 3

Detection of non-MCAR processes in linear regression models

Missing data values in X are said to be missing completely at random (MCAR)
if
fMly, X, ¢) = f(M|$) Vy X,

using the indicator matrix M, defined in section 1.4.

10



For a mixed model with missing values in X, we have

P
E(yil Xi, - Xip) = Bo+ Y 85Xy
j=1
) P
E(yi|Xiz, ..., Xip) = 50+51Xi1+25inj
j=1

with X;; = E(X;1]X52, ..., X;p). This means that imputing conditional means
X;1 and applying least squares on the completed data produce consistent esti-
mates assuming MCAR (Little, 1992).

MCAR Diagnosis
There are several approaches to detect missing data, which are non-MCAR.
These include

e comparison of the means of y in the complete subsample (CC-data) and
in the partially observed subsample,

e diagnostic plots, as introduced by Simon and Simonoff (1986), or

e the usage of diagnostic measures originally intended for the detection of
outliers.

We will discuss the latter ideas in more detail.
Possible diagnostics include
e Cook’s distance,
e the change in the residual sum of squares, or
e the change in the determinant of X'X

where originally the comparison is between the data sets X and X;), the data
without case number ¢.

In the context of detecting a non-MCAR mechanism, the CC-data X and the
partially observed data X, are compared. Cook’s distance now compares the
(weighted) difference of the CC-estimator b = (X’X)~!X'y and the mixed-
estimator bg from (1.33)

(br — b)(X'X 4+ R'R)(bg — b)

2
DSy

Analogouesly, the change in the residual sum of squares (DRSS)

(RSSk — RSS.)/m.
RSSc/(me —m. — K + 1)

and the change in the determinant (DXX)
det(X’'X)
det(X'’X + R'R)

are used to gain information on the nature of the missing data mechanism.

11



Idea

The basic idea is to compare CC and ‘valid imputation assuming MCAR’
(Simonoff, 1988). If MCAR does not hold, then a MCAR-imputation for the
missing values in X, is not adequate. If we compare the diagnostic measure
to 1t’s distribution under Hy: “MCAR, is valid”, we should be able to detect a
possible non-MCAR, process. This is more general than comparing group means
(see above), as this procedure can also detect non-MCAR with E(y) = E(y.).

Distribution under Hg

The distribution of the diagnostic measures under Hy can be investigated using
a Monte-Carlo method. The algorithm is as follows

e compute b

e replace X, by ‘valid imputation assuming MCAR’ R

e replace y. by y. = Rb.+ €, ¢ ~ N(0,57)
e produce MCAR samples from the filled-in data repeatedly to generate a
Null-distribution

The basic idea here is that, no matter what the true missing data mechanism is,
the generated data will always have unobserved values that are MCAR. A basic
underlying assumption that has to be fullfilled to keep type-I error under control
is that the relationship between the missing values in X, and the observed values
can adequately be fitted by a linear regression model.

Simulation Study

A simulation study was conducted to investigate the properties of the above
approach for different imputation methods and different correlation structures
of the data matrix X. The structure was as follows.

Generate X = (1,x1, x2) with missing values only in x5.
e Repeat this step for varying p = corr(zq, 22), and

e varying amount of cases with missing values.

e Consider different non-MCAR processes.

The processes generating missing values were a mean split and a variance split
process. The mean split process selects a value z;» as missing value with prob-
ability py if (22 — #2) exceeds a specified constant c. If (z;0 — Z2) < ¢ the value
is selected as missing value with probability ps.

The variance split process is alike the mean split, but the absolute difference
|22 — @2| > ¢ is used to decide if a value is selected as suitable for the missing
value.

In brief, the simulation studies suggested that Cook’s distance performes good
for mean split while DRSS and DXX for variance split. Interestingly enough,

12



performance also depended on p. For low absolute p, the useage of DRSS seems
to perform better, whereas for high p, DXX gives better results.

In contrast to the simulation study, the missing data mechanism is unknown in
real applications so that there is no general ranking of the diagnostic measures,
concerning their ability for the detection of non-MCAR processes.
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Appendix

Result Al (Baksalary and Kala, 1983). Let A be a non-negative definite matrix
and let a be a column vector. Then A —aa’ > 0 &

acR(A) and a’A"a<1,
where A~ is any g-inverse of A, that is, AATA = A.
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Result A2 (Baksalary, Liski and Trenkler, 1989). Let A = C;C) — C2C}. Then
A>0s

(i) R(C2) C R(Cy)
(i) A (CH(C1C))~Cy) < 1.

Theorem A3 (Baksalary et al., 1992). Let F be a symmetric non-negative definite
n x n-matrix. Then

I-AFI-A-AFA>0 &

1. R(A'F) C R((I - A)'F)
2. M{(I—AYFI-A)}FA'FA]< 1.

References

Baksalary, J. K. and Kala, R. (1983). Partial orderings between matrices one
of which 1s of rank one, Bulletin of the Polish Academy of Science, Math-
ematics 31: 5-7.

Baksalary, J. K., Liski, E. P. and Trenkler, G. (1989). Mean square error matrix
improvements and admissibility of linear estimators, Journal of Statistical
Planning and Inference 23: 312-325.

Baksalary, J., Schipp, B. and Trenkler, G. (1992). Some further results on hermi-
tian matrix inequalities, Linear Algebra and its Applications 160: 119-129.

Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized
regression model, Journal of the American Statistical Association 57: 369—

375.

Little, R. J. A. (1992). Regression with missing X’s: a review, Journal of the
American Statistical Association 87: 1227-1237.

Puntanen, S. and Styan, G. (1989). On the equality of the ordinary least squares
estimator and the best linear unbiased estimator, The American Statisti-
cian 43: 153-164.

Rao, C. R. and Toutenburg, H. (1995). Linear Models: Least Squares and
Alternatives, Springer, New York.

Rubin, D. B. (1976). Inference and missing data, Biometrika 63: 581-592.

Shalabh (1995). Performance of Stein-rule procedure for simultaneous prediction
of actual and average values of study variable in linear regression model,
Bulletin of the International Statistical Institute 56: 1375-1390.

Simon, G. A. and Simonoff, J. S. (1986). Diagnostic plots for missing data in
least squares regression, Journal of the American Statistical Association

81: 501-509.

Simonoff, J. S. (1988). Regression diagnostics to detect nonrandom missingness
in linear regression, Technometrics 30: 205-214.

14



Theil, H. and Goldberger, A. S. (1961). On pure and mixed estimation in
econometrics, International Economic Review 2: 65-78.

Toutenburg, H. and Shalabh (1996). Predictive performance of the methods of
restricted and mixed regression estimators, Biometrical Journal 38: 951—

959.

15



