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Abstract

Reliability measures in linear models are used in geodetic science and
elsewhere to quantify the potential to detect outliers and to suppress their
impact on the regression estimates. Here we shall study the effect of
missing values on these reliability measures with the idea that, under a
proper design, they should not change drastically when such a situation
occurs.

1 Introduction

Since Baarda (1976) defined reliability measures to quantify the potential to
detect outliers in a linear model, this technique has found wide applications
in geodesy, photogrammetry, mapping and related areas. Generalizations to
include the case of correlated measurements have been proposed quite recently
by Schaffrin (1997). It is still unclear, however, what the effect of missing values
would be on these reliability measures. This will be studied in more detail in this
contribution, thereby relying on the previous studies of Toutenburg, Heumann,
Fieger and Park (1995) and Toutenburg, Fieger and Heumann (1999) concerning
the missing values problem in regression with particular emphasis on mixed and
weighted mixed estimation.

After a brief overview on reliability measures in chapter 1, we shall investi-
gate the situation of missing values in the observation vector as well as in the
design matrix in chapter 2 before presenting a short example and drawing some
conclusions. The point we want to stress is that not only do we need sufficient
reliability in our systems, but also should this reliability not too much be af-
fected by missing values. The results from this study will help to illuminate the
situation.
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2 Reliability Measures in a Linear Model

Let us introduce the Gaufi-Markov regression model for uncorrelated observa-
tions as

- X +e, kX =m,
vo= X Pre  akX=m (21)
~ (0,02P71), P := Diag(p;),
€ ( UO ) nxn lag(pj) (22)

with the unknown m x 1 parameter vector 8 and the unknown variance com-
ponent o2; @ := P! may be called “cofactor matrix”.

Before we consider the case of missing values we give a brief review of
Baarda’s “reliability measures” as derived in the context of weighted least-
squares estimation. The corresponding normal equations are

Nf=c¢ for [N,d:=X"P[X,y] (2.3)

so that we obtain sequentially

B=N"'¢c ~ (B,02N71) (2.4)
e=y—XB ~ (0,02(P~' —xN'XT)) (2.5)
o3 =(n-m&Pe = (n—m)"' (" Py—c"P) (2.6)

with E{63} = o for any arbitrary of € IR;. E denotes ‘expectation’, and the
symbol

Qs:=P ' - XN x7T (2.7)

may denote the cofactor matrix of the residual vector €.
Should there be a single outlier in the j-th observation we would have to
replace the characterization of the observational errors in (2.2) by

e~ (n; B, 02P7Y),  pl=00,...,1,...0], (2.8)

with 7; as j-th n x 1 unit vector and with ﬁéj) denoting the size of the out-
lier. New least-squares estimates can now be taken from the augmented normal
equations

nf Py nf PX 1| 8 | _ [ Py 2.9)
XTpPy; N 30) c '
leading to
T
50 n; PQzPy
3y O (2.10)
nj PQzPn;
= 6_] for ry = (QéP)jj, (211)
rj



and to
£ = N Ye—XTPy,; f)) = € - 560 (212)
660 = NTIXTPp; (nj PQzPn;)~" (n] PQzPy) (2.13)

where (5{—C () describes the effect of the outlier on the estimated parameters. The
effect on the corresponding dispersion matrix is given by

sD{EV} = D{{} - D{{V)}
= —og NT' X" Pnj(n] PQePrj)~'nf PXN™"  (2.14)

which seems to indicate a “gain in efficiency” when neglecting the outlier (in
spite of its existence). The original residual vector, however, was shifted by

0¢ = (QeP) [y — (v — mif")] = (QePn; &, (2.15)
and in its j-th component by
5¢; =) (QaP)n; &) =r; & (2.16)

due to the neglected outlier in the j-th observation. The interpretation of both
(2.11) and (2.16) allows us to state that outliers of a given size can be de-
tected more easily by inspecting the corresponding residual when the so-called
“redundancy number” r; is relatively large. (Note that the situation changes
completely as soon as correlated observations are involved; see e.g. Schaffrin
(1997).)

The redundancy number r; is the j-th diagonal element of the matrix
Q:P = I, — XN 'XTP, or equivalently of the matrix P'/2Q;P'/?, with
P2 = Diag(p;/ %), since P is diagonal. As idempotent and symmetric ma-
trix P1/2Q; P'/? represents an orthogonal projection with bounded diagonal
elements

o2
0<r = OA(]-) < (2.17)
p; D{&7}
with an average size of “—** since the trace
tr(QsP) =r1+ ...+ rp=trl, —tr(N'XTPX)=n-m (2.18)

yields the (original) “degrees-of-freedom” of the model. If reliability is of con-
cern, our goal must therefore be to design the model in such a way that the
redundancy numbers are not too far away from their average value, and that
their values do not change too much in the case of missing values. It is the
latter question that we shall further investigate in the following.

3 Reliability Measures with Missing Values in
the Model

3.1 The case of one missing observation (exogeneous vari-
able)

Let us first investigate the case where one observation, say yy, is missing and its
impact on the reliability measures r; for j # k. If 2] denotes the k-th row of the



matrix X we would have to replace the matrix N = X7PX by the “reduced”
matrix N — a:kpkka throughout, with the corresponding inverse

(N —apprap) ™ = NP+ N ey (pp ! — ol N7 ay) T laf N1 (3.1)
assuming that it exists for all k € {1,...,n}. Thus, for j # k, the modified
reliability measure becomes

rioi= 1 ij(N — xypry) "y pj

= 1- (ijN_lzvj)pj - ijN_lzvk(p,;l —xf N7 o) ol N7 a; p;

B (z] N~tap)? pj

 pipe (@] N”hay)?
Tk

- Tj (32)

Obviously the reliability has deteriorated by an amount which primarily de-
pends on 7, and ijN ~lz4. In this sense the deterioration is becoming relatively
small if a highly controlled measurement fails to be collected (r large), or if
the expected correlation between the “adjusted observations” involved, namely
C{ijB, atkTB}, turns out to be negligible.

3.2 The case of missing endogeneous variables in one row

In this case we assume that all observations y;, j € {1,... ,n}, were taken except
that only some values in the k-th row 27 of the matrix X are missing. Following
one of the techniques as described by Janner (1993), Toutenburg et al. (1995)
or Toutenburg et al. (1999) we may use a substitute row 5:{ for mz, generating
the possible “bias”

by = (&F — af)B. (3.3)

Therefore, the matrix N = XTPX is now to be replaced by N := (N —
TRprTy ) + TrprZ} whose inverse is readily obtained as
Nt = [N —zepemy) + Trpely]

- (N — :Ukpk.rkT)71:ik X

X [p,;1 + a’c{(N — xkpk:v,{)_lik]_lif(N — mkpk:v,{)_l. (3.4)

= (N —aprap)”

I.

' consequently change (for j # k) to

The corresponding reliability measures r

;o= 1-— :v]T[(N — opprzy ) + a’ckpkfkT]*lxj D)
= 1—aj (N —zppry) " apy + 2] (N — zppray) ™' Ty x

j
X [p,;1 + fkT(N — xkpk:vZ)flfk]flfkT(N — xkpkka)flxjpj

o [T (N — zppreT)~1z,]?
A 1 Gl 'f,pk’”) d (3.5)
J 2—7,
where
Ty = 1-— .f’{(N - l'kpkx{)ili'k Pk (36)



in analogy to the definition (3.2). For j = k we have

T = 1— :ig]\_/v_lik Dk
= 1-Z{[(N — zrpray) + Trpr®y |~ T i
1—7)2 1
= ch+(2__k,) =57
Tk Tk
or, conversely,
Th=2—7" (3.7)

and, furthermore, for j # k we get

7"; =T — PjPk [.Z‘jT(N - l'kpkx{)il.f’k]z T (38)
The above formulas (3.5) to (3.8) have been derived on the basis of the

matrix N — mkpka:,{ which does not rely on the substitute row 5:{ per se. If we

decide to use the matrix N instead we would, for instance, obtain the following

relations, for (j # k)

i = —pipk Tilz] (N — Zeprdy ) 2]

= 75— pipe Trle] N7 + o) N7 epe(1— 2 N7y pr) ™ 2 f N7y

_ _ 1. 1-7\?
= Tj —DjPk Tk(.Z’]TN 137k)2 <1+ ™ >

. pjpk(iUfN_lfk)Q

= 7 Tk (3.9
in formal analogy to (3.2), or by applying (3.7),
7 =15+ pjp(e] N71z)(2 - 7) (3.10)
with
Pl =1 — 71 (N — Z1pp Ty )" T pre. (3.11)

We notice that the above are obviously not just formal relations since they
are independent of the row mf with the missing values. However, they do
not provide knowledge about the effect of the substitute row a‘:f on the original
reliability measures r; (rather than r}). Let us now try to tackle this problem by
recombining some of the results achieved so far. We start with the fundamental
decomposition (for j # k)

ri—rg = (=15 = (rj —rj)
_ (z] N~'zf)? B (z] N~ tay)?
DDk T -

= pip[e] (N = Zpr@) " 24)° 7 — pipele] (N — xppra) " g 1y
(3.12)

where obviously

N — zypray, = N — Tppiy, (3.13)



holds true, according to the definition of N. Thus we obtain

Tj —Tj = DjPk ij(N — xkpkka)fl(:ikafkT — xkrkka)(N — :vkpkka)flxj
(3.14)

which shows that the difference between the original reliability measure r; and
its counterpart 7; is governed by the difference between the dyadic matrices
itkfka_:,{ and mkrkka. By applying formula (3.7) and its analogon ry, = (2—7r},) !
we see that we have to compare the matrix Z;(2 — 7},) 17} with the matrix
zp(2 - r}c)_lmz, both of rank 1 while symmetric and positive-semidefinite. Fol-
lowing a theorem by Baksalary and Kala (1983), 7; — r; will turn out non-
negative if and and only if Zj, is proportionate to x; with

wy (Zerray )" wprg < 1 (3.15)
or
o T 2 —r
i (Tpay ) oy < i = 5= Ff” (3.16)
k

a2zt (3.17)

in which case we arrive at the inequality

Tk (m{a‘:k)z < T (H_Zz;il_fk)z (318)
or
T= \2 =T = \2
2 -1} 2 -7,

to ensure superiority of 7; over 7; for any j # k. In contrast, for j = k we have
the trivial relations

Pk =(2-7) ' —(2-r) >0 (3.20)
if and only if
2-r)—2-7,)=7,—1,>0. (3.21)

This concludes our analysis of missing endogenous variables in one row only.
The case of several rows can be treated along the same lines and is therefore
omitted here.

4 A Simple Example

We refer to the simple regression example used by Toutenburg (1992) and again
by Rao and Toutenburg (1995). The observations are collected in the 10 x 1
response vector

y := [18,47,125,40, 37, 20, 24, 35, 59, 50|~



while the 10 x 2 coefficient matrix X consists of the following values (row-wise)

11 1 1 1 1 1 1 1 1

T o
X0 =lonmol =1 10 19 100 17 13 10 5 22 35 20

and the weight matrix P is the 10 x 10 identity matrix P = I;y.
Consequently, we obtain the cofactor matrix of the residuals by

Qs =1I0 - X(XTx)'x7T
with

(X7x) !

_ 1 [13183 -231) _ o
T 78160 | —231 10 |~

and, therefore, the following “redundancy numbers” which may here serve as
reliability measures as well:

ri=0.760 | 7o = 0.898 | 73 = 0.1435 | r4 = 0.895 | 75 = 0.897
rg = 0.878 | 7 = 0.858 | 15 = 0.900 | rg = 0.882 | 119 = 0.899

With the exception of the third observation ys, every other observation appears
to be as reliable as expected in view of an expected average value of 8/10 =
0.800; we call y3 an observation with “high leverage”, or little reliability, due
to the small number r3 which would make the detection of any outlier in this
particular measurement most difficult.

Now let us form the 10 x 10 matrix R’ of modified reliability measures 7’}
(j # k, thus without diagonal elements) where the k-th column refers to the
case of yx missing: (R');; := ) (missing yx).

If, in addition, we fill in the diagonal elements (R')g; := 1}, = 2 — 1, ' we
readily obtain R’ =

0.684 0.745 0.405 0.742 0.737 0.733 0.724 0.748 0.757 0.746
0.880 0.886 0.873 0.886 0.886 0.885 0.884 0.887 0.888 0.886
0.076 0.140—4.969 0.141 0.143 0.142 0.136 0.134 0.089 0.138
0.874 0.883 0.884 0.883 0.882 0.881 0.880 0.884 0.886 0.883
0.860 0.875 0.887 0.874 0.873 0.871 0.869 0.875 0.879 0.875
0.846 0.865 0.872 0.864 0.863 0.861 0.858 0.866 0.871 0.866
0.817 0.845 0.816 0.844 0.841 0.839 0.835 0.846 0.852 0.845
0.886 0.889 0.845 0.889 0.888 0.888 0.888 0.889 0.889 0.889
0.879 0.872 0.554 0.873 0.874 0.875 0.876 0.871 0.866 0.872
0.882 0.887 0.865 0.887 0.887 0.886 0.886 0.888 0.889 0.888

Note that the non-diagonal elements per column must sum up to 7. From this
matrix it becomes obvious that the third observation approximately doubles its
already high leverage,—respectively cuts its already low reliability by half—if
either y; or yo is missing. Conversely, if y3 should be missing it would have a
deteriorating effect on the reliability of both y; and yg, although critical limits
are not yet reached. All the other pairs of observations are mutually unaffected
when either one of them should turn out missing.

Now let us consider the case when exactly one value in the second row of XT
is missing and subsequently replaced by the average of the remaining elements.



Thus we obtain for the Ty o:

T1p =26.78 | Top = 23.56 | T3 = 14.56 | Typ = 23.78 | T5y = 24.22

Tgz = 24.56 | Tro = 25.11 | Tgz = 23.22 | Tgo = 21.78 | T102 = 23.44

and, moreover, the following modified inverses

267.78 13770.17

1 13770.17 —267.78
65995.56 | —267.78 10

—1
(XIX _ 1'11’{ + i’lf{)_l — |: 10 26778 :|

—1
e 10 235.56
(X'X — 2wy +227,) - [235.56 13347.07]
1 [13347.07 -235.56
T 77982.22 | —235.56 10
_ —1
e 10 145.56
(X'X —zgay +T3%3)"" = | 145.56 3364.99}

B 1 3364.99 —145.56
T 12462.22 | —145.56 10

r -1
Iy _ o T o~ =T\—1 _ 10 237.78
(WX o Foaz)™ = | 93778 13429.49]
_ 1 13420.49 —237.78
© TT755.56 | —237.78 10
-1
) T, Tl 10 242.22
(X = asws +a525)7 = [ 242.22  13570.61 ]
_ 1 [ 13570.61 —242.22 ]
T 77035.56 | —242.22 10
-1
Iy _ o T o~ =T\—1 _ 10 245.56
(XX —wotg +To%5) " = [ 245.56  13656.19
_ 1 [ 13656.19 —245.56 ]
T 76528.89 | —245.56 10

-1
(X'X — 2727 + 5727)~" = [ 10 25111 ]

251.11 13758.51

1 13758.51 —251.11
74528.89 | —251.11 10

N, N ' [ 10 232.22
(XX~ zezs + 2575 | 232.22 13208.17 |

_ 1 13208.17 —232.22
78155.56 | —232.22 10

, e [ 10 217.78
(X'X — zgwg + Toly) | 217.78  12402.37 |

_ 1 [12402.37 —217.78]

76595.56 | —217.78 10



-1
(X'X — 2102, + 31057, [ 10 234.44 ]

234.44 13302.43

1 13302.43 —234.44
78062.22 | —234.44 10

Next, we form the 10 x 10 matrix R which shows the substitute reliability
measures 7; (j # k, thus without diagonal elements again) where the k-th
column indicates which element in the second row of X7 was missing:

(R)j1, := 7 (missing z2).
In addition, we may fill in the diagonal elements

_ . 1
' 27,

with
T, =1-— .f{(N — xkx{)_lik

and arrive at R =

0.900 0.756 0.416 0.753 0.748 0.743 0.735 0.759 0.768 0.757
0.891 0.900 0.884 0.897 0.896 0.896 0.895 0.898 0.899 0.897
0.088 0.151 0.900 0.152 0.155 0.154 0.148 0.146 0.101 0.149
0.886 0.894 0.895 0.900 0.893 0.892 0.891 0.895 0.897 0.895
0.871 0.885 0.898 0.885 0.900 0.882 0.880 0.887 0.890 0.886
0.857 0.876 0.883 0.876 0.874 0.900 0.869 0.878 0.882 0.877
0.828 0.856 0.827 0.855 0.852 0.850 0.900 0.858 0.863 0.856
0.896 0.900 0.856 0.900 0.899 0.899 0.899 0.900 0.900 0.900
0.890 0.883 0.564 0.884 0.885 0.886 0.887 0.882 0.900 0.883
0.893 0.898 0.876 0.898 0.898 0.898 0.896 0.899 0.900 0.900

Note that now all the elements per column must sum up to 8, including the
diagonal elements which equally show the value of 0.900 due to the way we
constructed the substitute elements Ty 5.

All the elements in the matrix R turn necessarily out larger than their cor-
responding entries in the matrix R’ which shows the positive impact, in general,
of the imputation method used. Specifically, however, the third observation
can no longer be identified as of “high leverage” so that it may be treated as
an outlier more often than not. In this case the reliability measures of both
y1 and yg drop considerably, with or without imputation. (More sophisticated
imputation techniques can be considered along the same lines.)

5 Conclusions

Traditionally reliability measures are computed for every observation in a linear
model in order to quantify their potential to detect ouliers. These reliabil-
ity measures may be more or less drastically affected by the occurrence of the



“missing value” situation. We have studied some of the typical cases and pro-
vided analytical formulas for them so that counter-measures can be taken in
time to avoid problems associated with the lack of control among some of the
data, assuming they are uncorrelated. The case of correlated observations will
be treated elsewhere.
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