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Abstract

This paper considers the estimation of coe�cients in a linear regression model with missing obser�

vations in the independent variables and introduces a modi�cation of the standard �rst order regression

method for imputation of missing values� The modi�cation provides stochastic values for imputation

and� as an extension� makes use of the principle of weighted mixed regression� The proposed proce�

dures are compared with two popular procedures�one which utilizes only the complete observations

and the other which employs the standard �rst order regression imputation method for missing values�

A simulation experiment to evaluate the gain in e�ciency and to examine interesting issues like

the impact of varying degree of multicollinearity in explanatory variables is proceeded� Some work on

the case of discrete regressor variables is in progress and will be reported in a future article to follow�

� Introduction

It is not uncommon in many applications of the regression analysis that some values of certain explanatory
variables are not available due to one reason or the other� A simple solution is then to discard the available
values of other variables in the model and to con�ne attention to the complete data only� Such a solution�
it is well known� has often serious statistical consequences and is surely not an e�cient strategy� An
alternative solution is to plug in imputed values for missing observations and then to carry out the
regression analysis� Such imputed values can be obtained in several ways� see� e�g�� Little and Rubin
��	
�� for basic considerations and Little ��		� for a detailed discussion of missingX�values in regression�
and Rao and Toutenburg ��		�� for a detailed account of MDE�superiority investigations for imputation
methods� When these imputed values are non�stochastic� the application of the least squares procedure
for the estimation of regression coe�cients generally yields biased and inconsistent estimators� see� e�g��
Toutenburg� Heumann� Fieger and Park ��		��� who have examined the e�ciency properties of such
procedures with respect to the procedure that uses only the complete observations and provides unbiased
estimators of regression coe�cients� This raises an interesting issue related to e�ciency properties of
procedures which employ stochastic values for imputation of missing observations on explanatory variables�
This article is a modest attempt in this direction�

We consider the imputation method based on the �rst order regression� This method and some mod�
i�cations are discussed in Buck ��	���� A�� and Elasho� ��	��� and Dagenais ��	���� It essentially
amounts to running the auxiliary regressions of each one of explanatory variables �for which some val�
ues are missing� on the remaining explanatory variables �for which no value is missing� employing the
complete observations only� The estimated equations are then used to formulate predictors for missing
values� The thus obtained predicted values are then utilized as substitutes for missing observations on the
explanatory variables� This leads to a complete data set and now the regression analysis is performed�
As all the observations on the study variable are available� we can easily include the study variable also
in the capacity of an additional explanatory variable while running the auxiliary regressions in a bid to
utilize all the available information on the variables� This will lead to another imputation method which
can be termed as modi�ed �rst order regression method� and will obviously provide imputed values that
are no more non�stochastic� This method was presented in Toutenburg� Srivastava and Fieger ��		�� in
full detail� Moreover superiority conditions were deduced using large sample asymptotics� Examining the
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impact of such imputed values on the estimation of regression coe�cients by simulation is the objective
of our present investigation�

The plan of this article is as follows� In Section � we present the model speci�cation and describe the
alternative estimation procedures for the regression coe�cients� One is the procedure that discards the
incomplete portion of the data while the remaining two employ imputed values obtained from �rst order
regressions� Out of these two� one uses non�stochastic values for imputation while the other uses stochastic
values� whereas additionally a weighting procedure is adapted� In Section � we discuss e�ciency properties
and de�ne the risk function� Section � describes the model used for simulation and presents e�ciency
comparisons of the various estimators�

� Model Speci�cation And Estimation Procedure

Let us consider the following linear regression model�

y � X� � �

which is structured as follows�

yc � Xc� � ��c � ����

y� � X�� � ��� � ���

where yc and y� denote mc � � and m� � � vectors of observations on the study variable� Xc and X� are
mc�K and m��K matrices of observations on K explanatory variables� � is a K�� vector of unknown
regression coe�cients� �c and �� are mc � � and m� � � vectors of disturbances and � is a scalar�

It is assumed that the matrix X� is partially observed and contains some missing values� To keep the
exposition simple but without any loss of generality� let us assume that the values of the last explanatory
variable in X� are missing� Thus we can express X� as �Z� �x�� where Z� is m� � �K � �� matrix with no
missing values and x� is the last column vector with all missing values� Accordingly partitioning Xc and
�� we write

Xc � �Zc �xc� � � �

�
�

�

�
�

where Zc comprises �rst �K � �� column vectors of Xc and xc is the last column vector� Similarly� �
denotes a column vector formed by �rst �K � �� elements of � and � is the last element�

Thus we can write the model as follows�

yc � Zc� � �xc � ��c � ����

y� � Z�� � �x� � ��� � ����

Finally� we assume that the elements of disturbance vectors �c and �� are independently and identically
distributed with mean zero and variance one�

For the following it is assumed that missingness of x� depends only on the values of all the explanatory
variables but is independent of the study variable y� Using the missing data indicator matrix R �Rubin�
�	��� with �i� j�th element rij � � if xij is observed and rij � � if xij is missing� in our notation R has
the structure

R �

�
�� � � ��� �

�� � � ��� �

�
corresponding to the dimensions of �

Zc xc
Z� x�

�
�

Then the assumption on the missing mechanism results in

f�yjR�X� �
f�y�RjX�

f�RjX�
� f�yjX� ����

as f�Rjy�X� � f�RjX�� i�e�� regression of y on X is independent of R�





It may be noticed� that if ���� is not valid� i�e� missingness may also depend on y� then we get

f�yjX� �
f�R�yjX�

f�Rjy�X�
�
f�yjR�X�f�RjX�

f�Rjy�X�
�� f�yjR�X�

In this case estimation procedures would depend on the missing data process�

As x� is not available� application of least squares to the entire model speci�ed by ���� and ���� provides
although best linear unbiased estimators of regression coe�cients but lacks any practical utility� The
simplest solution in such circumstances is to ignore ���� and to apply least squares to ����� This gives
the following estimator of ��

��CC � �X�

cXc�
��X�

cyc� ����

This estimator bc �the complete case estimator� CC� fails to utilize the information contained in m�

observations on the study variable and �K � �� explanatory variables of the model� This kind of complete
discard is obviously not always a satisfactory proposition and may often have misleading implications�

An alternative solution is to employ some imputation method so that missing values of the last explanatory
variable can be replaced� There are several ways to do this� see� e�g�� Rao and Toutenburg ��		�� Chap� 
��
Among them� an interesting procedure known as �rst order regression method �FOR� is to run an auxiliary
regression of the variable in xc on the remaining �K��� variables in Zc and to use the estimated equation
for �nding the predicted values of missing observations� viz��

xR � Z��Z�

cZc�
��Z�

cxc � ����

Replacing x� in ���� by xR and then applying least squares to the thus obtained repaired model for
estimating �� we get the following estimator �FOR�

��FOR � �X�

cXc �X�

RXR����X�

cyc �X�

Ry�� � ��
�

where XR is the same as X� except that the last column vector x� is replaced by xR�

In order to make full utilization of available information� we may include the study variable also as an
explanatory variable while running the auxiliary regression of xc on Zc so that the imputed values for the
elements of x� are given by

�x� � �Z� �y��

�
Z�

cZc Z�

cyc
y�cZc y�cyc

�
���

Z�

cxc
y�cxc

�

� �Z� �y��

�
A b

b� c

��
Z�

cxc
y�cxc

�

� Z��Z�

cZc�
��Z�

cxc �
x�cMyc

y�cMyc

�
y� � Z��Z�

cZc�
��Z�

cyc
�

� xR �
x�cMyc

y�cMyc

�
y� � Z��Z�

cZc�
��Z�

cyc
�
� ��	�

where

M � I� Zc�Z
�

cZc�
��Z�

c �

A � �Z�

cZc�
�� �

�

y�cMyc
�Z�

cZc�
��Z�

cycy
�

cZc�Z
�

cZc�
�� �

b � �
�

y�cMyc
�Z�

cZc�
��Z�

cyc �

c �
�

y�cMyc
�

Substituting �x� for x� in ���� and then applying least squares to the resulting repaired model� we obtain
the following estimator of � �modi�ed �rst order regression estimator� MFOR��

��MFOR � �X�

cXc � �X�

�

�X�����X�

cyc � �X�

�
y�� � �����

where �X� is same as X� except with x� in X� being replaced by �x��

�



It may be noticed that non�stochastic quantities are used to replace the missing values in the traditional
�rst order regression method� In the proposed procedure involving a modi�cation of the �rst order
regression method� we substitute stochastic quantities for missing values� Thus xR is a �xed vector while
�x� is a random vector�

It is common practice in regression models with missing values to give the completely observed sample
matrix a di�erent weight than the sub�matrix containing missing or imputed values �cp� e�g� Rao and
Toutenburg� �		�� for the derivation of the weighted mixed regression estimator�� As a generalization of

the MFOR estimator �� from ����� we introduce a weight w� � � w � � and incorporate it in �� in the
following manner

��wMFOR � �X�

cXc �w� �X�

�

�X�����X�

cyc � w� �X�

�
y�� �����

This estimator is called the weighted MFOR estimator �wMFOR��

The weight w used for the incomplete cases accounts for the increased residual variance for the cases with
missing covariate values� yielding weighted least squares estimators� For the setup used in the simulation
study� i�e� X � �X�� X�� with missing values in X� only� the weight would be

w � �yy�����yy�� � �� ��y�� �

where �yy��� is the residual variance of y given X� and X�� �yy�� is the residual variance of y given X�
only� and ��y�� is the partial correlation coe�cient of X� and y given X� �see Little� �		��

� E�ciency Properties and MDE�II Superiority

It is easy to see that the estimator bc based on complete observations alone is unbiased for � with variance
covariance matrix as

V �bc� � E�bc � ���bc � ���

� ���X�

cXc�
�� � �����

Next� we observe that the estimator bR is biased with bias vector and mean squared error matrix as

B�bR� � E�bR � ��

� ��X�

cXc �X�

RXR���X�

R� � ����

M �bR� � E�bR � ���bR � ���

� ���X�

cXc �X�

RXR��� � ���X�

cXc �X�

RXR���

�X�

R��
�

XR�X�

cXc �X�

RXR��� � �����

where

� � �x� � xR� �
�

�
�X� �XR�� � �����

Toutenburg et al� ��		�� have analysed the e�ciency properties of bc and bR in detail and have deduced
conditions under which bR is superior to bc with respect to di�erent weak and strong mean dispersion
error criteria�

Deriving the exact distributional properties of the estimators �� and ���w� arising from our proposed
procedure� it can be easily visualised� will be a fairly intricate exercise and may not lead to any meaningful
and clear conclusion regarding the e�ciency properties of �� and ���w�� Let us therefore consider its
properties using a simulation study�

The mean dispersion error of an estimator �� of � is de�ned as

M������ � E��� � ����� � ���

� V���� � Bias������ Bias������� � �����

Comparing two estimators ��� and ��� with respect to the MDE�matrix criterion means that ��� is superior

to ��� if

M��������M������� � ������ ���� � � �
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We will use the weakened MDE�II superiority criterion for investigating the e�ciency properties of the
alternative estimators� Let ��� and ��� two competing estimators� Then ��� is said to be MDE�II better

than ��
�

if

tr�����
�
� ��

�
�� � � � �����

or� equivalent if
tr�M��������

tr�M���
�
����

� � �����

� Model Speci�cation and some Simulation Results

To investigate the properties of the considered estimators in case of small sample sizes �n � ���� a
simulation study was conducted� We considered data X � ���x��x��� where x� was always observed
and x� contained some missing values� The structure of the data is as described in ���� and ����� with
Z � x�� Varying degrees of multicollinearity are governed by � � corr�x�� x��� The simulation study
investigates the considered estimators for di�erent data sets �y�X��

The algorithm for the creation of data �y�X� was as follows�

��� The independent variables �x��x�� were generated as i�i�d� multivariate normal with mean � � � and
covariance matrix � � ��X

�
� �

� �

�
for a given ��X �

�� The regression coe�cients � were set to � � ��� �� ���� yielding response values y � X� � �� with a
random error � � N ��� ���I�� Using this setup� the overall model �t �measured by R�� is driven by
the ratio �����

�

X � where smaller values signalize a better �t�

��� Having created data as described in ��� and ��� missing values in x� were generated randomly for a
speci�ed percentage of missing values�

Using the data set generated by the above algorithm� the complete�case estimator ��
CC

� the FOR estima�

tor ��
FOR

� the MFOR estimator ��
MFOR

and a weighted version of the MFOR estimator ��
wMFOR

were
evaluated�

By repeating step �� of the algorithmR � �� times� the empirical variances of the considered estimators
were computed� using �component wise� j � �� �

dVar���j� �
�

R� �

RX
i��

���ij �
���j�

� �

The bias of the considered estimators was estimated by

dBias���j� �
�

R

RX
i��

���ij � �j� �

yielding dMDE���j� � dVar���j� � dBias���j�
�� In order to compare the e�ciency of the estimators in relation

to the complete case method� the ratio of the MDE�II risks� i�e� the ratio of the traces of the MDE matrices
of the CC estimator and the respective estimator is used�

e� �
tr�MDE�CC��

tr�MDE�Estimator��
�

A value greater than one indicates superiority to CC�

The algorithm was repeated� creating di�erent X matrices in step ���� The so obtained results were
averaged� which is taking the expectation over X� Figure ��� shows the ratios for the considered estimators
for varying degrees of multicollinearity� indexed by �� Figure �� shows the corresponding bias terms� and
�gure ��� shows the corresponding variance components�

First note that the FOR estimator is unbiased �for random X�� whereas it is generally biased assuming a
�xed X� Second� for the investigated setup with missing values in only one variable� the FOR estimator
coincides with the CC estimator for this component�

�



The gain in e�ciency is determined both by the ratio �����
�

X � i� e�� the overall model �t� and the amount
of missing values� Generally speaking� the better the model �t achieved by the CC estimator� the smaller
the possible gain by using a �lled�up model� For increasing amount of missing data the gain in e�ciency
increases� Both conclusions seem natural� since having a nearly perfect �t with CC� there is not much
room for further improvement� and having nearly no missing data� the estimators tend to be identical�

More interesting is the e�ect of multicollinearity on the behaviour of the considered estimators� If x�
and x� are not correlated� i�e� if � � �� then the bias for ��� �the covariate with no missing values� is

zero for all considered estimation methods� as ��� and ��� are estimated independently �for the normal
model�� Generally� the bias of the MFOR �weighted and unweighted� estimator increases with increasing
� �see Figure ���� Weighted MFOR has a smaller bias than unweighted MFOR �the bias is reduced by
introducing a weight�

The e�ciency of the MFOR procedures compared to the CC method decreases for increasing � �
corr�x�� x�� �see Figure ����� Only for values of � 	 ��
� i�e� if multicollinearity is severe� the wM�
FOR procedure is less e�cient than the FOR procedure� In these situations� however the model itself is
questionable� as the variances �see Figure ���� increase exponentially�

� �� ��� ��� ��
 �

��
�

��	

��	�

�

����

���

����

�

Figure ���� Ratios of tr�MDE� for di�erent degrees of multicollinearity �indexed by ���
MDE�CC��MDE�FOR� dashed line �short�� MDE�CC��MDE�MFOR� dashed line �long��
MDE�CC��MDE�wMFOR� thick line� ���X � ��� � ���� ��� cases with missing values��
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�����
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�

����

���

����

�

Figure ��� Bias terms for di�erent degrees of multicollinearity �indexed by ��� ��
�

left panel� and ��
�

right
panel� Bias�CC� solid line� Bias�FOR� dashed line �short�� Bias�MFOR� dashed line �long�� Bias�wMFOR�
thick line� ���X � ��� � ���� ��� cases with missing values�� Note� Bias�CC� and Bias�FOR� coincide for
��� as x� is the only variable a�ected by missing values�
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Figure ���� Variance terms for di�erent degrees of multicollinearity �indexed by �� using a log scale�� ��
�

left panel� and ��
�

right panel� Var�CC� solid line� Var�FOR� dashed line �short�� Var�MFOR� dashed line
�long�� Var�wMFOR� thick line� ���X � ��� � ���� ��� cases with missing values��
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