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Abstract

Arminger and Sobel (1990) proposed an approach to estimate mean-
and covariance structures in the presence of missing data. These authors
claimed that their method based on Pseudo Maximum Likelihood (PML)
estimation may be applied if the data are missing at random (MAR)
in the sense of Little and Rubin (1987). Rotnitzky and Robins (1995),
however, stated that the PML approach may yield inconsistent estimates
if the data are (MAR). We show that the adoption of the PML approach
for mean- and covariance structures to mean structures in the presence of
missing data as proposed by Ziegler (1994) is identical to the complete case
(CC) estimator. Nevertheless, the PML approach has the computational
advantage in that the association structure remains the same.

Keywords: Correlated Data Analysis, Generalised Estimating Equations, Marginal
Models, Missing Data, Pseudo Maximum Likelihood

1 Introduction

Arminger and Sobel (1990) introduced an approach to estimate mean- and co-
variance structures in the presence of missing data. Their method is based
on Pseudo Maximum Likelihood (PML) estimation proposed by Gourieroux,
Monfort and Trognon (1984). The approach of Arminger and Sobel (1990) was
adopted by Ziegler (1994) to the analysis of mean structures including the gen-
eralised estimating equations (GEE) first proposed by Liang and Zeger (1986).
For an overview s. e.g. Ziegler, Kastner and Blettner (1998). Arminger and So-
bel (1990) claimed that their approach may be applied if the data are missing at
random (MAR) in the sense of Little and Rubin (1987). Rotnitzky and Robins
(1995), however, stated that the PML approach with missing data may lead
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to inconsistent parameter estimates when the data are MAR but not missing
completely at random (MCAR) in Little and Rubin’s (1987) sense. The proof
of their statement was left to the reader.

In this paper we show that the PML estimator for incomplete data as pro-
posed by Arminger and Sobel (1990) and adopted by Ziegler (1994) to mean
structure models is in fact equivalent to the complete case (CC) estimator. For
this purpose we use a simple example for estimating the mean structure. Our
results also hold for mean- and covariance structure models.

The outline of the paper is as follows. In section 2 we introduce the PML
model using the multivariate normal density to construct the Pseudo-log-likeli-
hood function. In section 3 the PML approach for missing data is introduced.
Finally, in section 4 the PML technique is illustrated using a response vector
with two responses and two missing observations.

2 The Pseudo Maximum Likelihood Approach

Suppose that the correctly specified marginal mean of the 7" x 1 response vector
y; of individual ¢ given the n x p matrix of explanatory variables X; is given by

E(yilXi) = p(XiB) = pi,

where p is the response function and g is the p x 1 unknown parameter vector
of interest. The true conditional covariance matrix ;(X;) of y; given X; is
unknown and need not be parameterised in 3. A ”good guess“ of the true
covariance matrix is used instead. This covariance matrix denoted by ¥; may
depend on the explanatory variables X; as well as on the parameter vector g
and an additional association parameter o which is treated as nuisance. ¥; is
usually called working covariance matrix.

Regardless of the true distribution of y; given X; we choose the multivariate
normal distribution to estimate the parameter vector 8. Hence, we assume that

i Xi ~ N(,u(Xzﬂ), Ei).

A solution 3 is found by maximizing the kernel of the Pseudo-log-likelihood
function

1(B) = —zn:li(ﬂ) = _z”: (yz - Hi)lzi_l(yi - Mz’) = —zn:tr (Ei_lsi):

i=1

where S; = (y; — ui)(y; — p;)'. This corresponding score equations for § are

given by
0=3 D5 (y, - M)
i=1

which are identical to GEE for the mean structure.

To account for the probably incorrectly specified distribution of y; given
X, the so-called robust variance matrix (s. e.g. Ziegler et al., 1998) is used to
estimate the covariance matrix of 3 Gourieroux et al. (1984).

If missing data are present, a classical approach is to use the CC estimator.
This takes into account only those observations ¢ within an individual ¢ that are



completely observed for all explanatory variables used to model the marginal
mean of the response y;; at time ¢. In addition, y;; also has to be available. This
approach is applicable, if the data are MCAR. One computational problem arises
in the currently available implementations (s. e.g. Ziegler and Gromping, 1998)
of this approach. Rows that suffer from missing data are internally deleted.
Hence, covariance structures X; that require the exact positions of the entire
observations cannot be estimated adequately: If, for example, observations at
time points 1 and 3 are available for an autoregressive model of order 1 (AR1),
these are treated as observations 1 and 2 by the currently available commercial
programs. These observations contribute with a factor o instead of o? to an
estimate of the correlation. Thus, the structural change usually effects the
interpretation of the association parameter a which is usually underestimated
in these situations (s. e.g. Ziegler and Gromping, 1998). It also may effect the
efficiency of the estimate of 3.

3 Pseudo Maximum Likelihood Estimation With
Missing Data

Arminger and Sobel (1990) have shown that the PML method based on the
normal theory may be applied, even if missing data in the explanatory variables
and / or the response variables are present. In the following we assume w.l.o.g.
that both the dependent and the explanatory variables are either missing or
present.

Analogously to Arminger and Sobel (1990) we define a matrix K; that selects
the variables observed for the ith sample element. The number of rows in K;
is equal to the length of observed units w; the number of columns in K;isT.
Hence, the number of rows in K; can vary for each individual. For computation
of first and second derivatives it is useful to make the number of rows equal to
T. For this purpose a row of zeros is filled in for each unobserved variable. The
new T x T matrix is denoted by K;, and the matrix I — K; by K; where I is
the T' x T unit matrix.

Using the same arguments as Arminger and Sobel (1990) for mean- and
covariance structure models, Ziegler (1994) has shown for mean structure models
that the estimator based on the kernel of the Pseudo-log-likelihood function

() =— in« (z7s)

with ~
E; = K%K, + K;

and -
Sl* =K;S;K; + K;

is proportional to the estimator obtained from [() using the incomplete re-
sponses.



4 TIllustration

In this section we illustrate the results obtained in the previous section using
observations from a single person. This individual was observed at time points
1 and 3, while the data for time points 2 and 4 are missing.

For this person, K; is a 2 x 4 matrix, while K; and K; are 4 x 4 matrices:

1 0 00 0 00O
- 1 0 0 0 0 0 0O = 01 00
K’_<0010>’K’_0010’K"_0000
0 0 0O 0 0 01
S and X7 are given by
(yir — Mi1)2 0 (yar — pa)(yiz — pz) O
g* — 0 1 0 0
' (yis — piz)(yar — par) 0 (yiz — piz)? 0
0 0 0 1
and )
Uf 0 013 0
. 0 1 0 0
Ei - 013 0 Ug 0
0 0 0 1
Simple algebra yields
0'% 0 —013 0
o703 — 073 ) oi03 — 073
oy 0 02 0
—013 0 01 0
oios — o oios — o
0 1

so that the kernel of the Pseudo-log-likelihood function of this individual is given

1
I = _t (2#*15.*) =—_ X

i(B) |y i 0%03 _ 0%3

(Ug(yil - Mi1)2 —2013(yi1 — par) (Yis — Hiz) + 0%(%’3 - Mi3)2) +2
and

oL(B)  _ -1

2 3 D)
ap 0103 — 013

{203(%’1 — 1) <— 6(;;/;1)
—2073 <(yi1 - ,Uz'l) (- a;;) + (— a;;) (yiB - /li3)>

+20% (yiz — 1i3) <— 6;;)} =




2 Oy
= 55— {Jg(yil — fi1) a3

‘71‘7% — o3
ou; ou;
—013 <(yi1 — 1) (‘553 + ;ﬂl (yiz — Mz'3)>

Ops
+07 (Yis — piz) (553}

is the responding score function of this individual. In matrix notation we get

Yi1 — Mi1
_ 0
2Dyt , 1
e Yis — i3 (1)
0

where D; = 0u;/0f'. Equation (1) shows that the CC estimating equations and
the PML estimating equations are proportional yielding identical estimators.
Hence, the PML approach garantuees consistent parameter estimates for data
that are MCAR but not MAR.

Acknowledgment

For partial research support, the first author thanks the Sonderfoschungsbereich
386 at the Ludwig-Maximilians University of Munich, where he was a visiting
researcher in July 1998. This work was supported by the Deutsche Forschungs-
gemeinschaft.

References

Arminger, G. and Sobel, M. E. (1990). Pseudo-maximum likelihood estima-
tion of mean and covariance structures with missing data, Journal of the
American Statistical Association 85: 195-203.

Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo maximum likeli-
hood methods: Theory, Econometrica 52: 681-700.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using general-
ized linear models, Biometrika 73: 13-22.

Little, R. J. A. and Rubin, D. B. (1987). Statistical analysis with missing data,
Wiley, New York.

Rotnitzky, A. G. and Robins, J. M. (1995). Semiparametric estimation of models
for means and covariances in the presence of missing data, Scandinavian
Journal of Statistics 22: 323-333.

Ziegler, A. (1994). Verallgemeinerte Schatzgleichungen zur Analyse korrelierter
Daten, PhD thesis, Fachbereich Statistik, Universitat Dortmund.

Ziegler, A. and Gromping, U. (1998). The generalised estimating equations:
A comperison of procedures available in commercial software packages,
Biometrical Journal 40: 245-260.



Ziegler, A., Kastner, C. and Blettner, M. (1998). The generalised estimating
equations: An annotated bibliography, Biometrical Journal 40: 115-139.



