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Semiparametric Bayesian models for
human brain mapping

L Fahrmeir1 and C Gössl2
1Department of Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
2Max-Planck-Institute of Psychiatry, Munich, Germany

Abstract: Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain
mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique,
combining parametric and non-parametric components, imposes challenging problems in statistical
modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov
chain Monte Carlo inference are promising tools.

The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian
models for the analysis of fMRI data. Most approaches focus on important but separate temporal or
spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim,
we suggest a complete spatiotemporal model for analysing fMRI data within a uni�ed semiparametric
Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach
and demonstrates its computational feasibility.

Key words: functional magnetic resonance imaging, human brain mapping, MCMC, semiparametric
models, spatiotemporal models
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1 Introduction

The development of modern non-invasive imaging techniques has led to rapid advances
in human brain mapping. Functional magnetic resonance imaging (fMRI) aims at the
localization of functional brain areas in a living human brain, that is, the detection of
areas or regions that are responsible for the processing of certain stimuli. Adequate
statistica l modeling and analysis of the massive spatiotemporal data sets generated with
this imaging technique incorporates challenging tasks for the statistical community.
Modern Bayesian approaches, using computer-intensive and realistica lly complex
models, offer promising tools for inference.

This paper has two major aims. First, it provides a review of current general
semiparametric Bayesian models for human brain mapping using fMRI data. A
characteristic feature of many of these approaches is that they are designed only to
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solve separate parts of the complete problem. Hierarchica l Bayesian modelling,
however, has the potential to link such separate pieces to a joint model. Therefore,
as our second goal we suggest a comprehensive semiparametric spatiotemporal model,
based on previously developed submodels, and show its computational feasibility by an
application to data from a visual fMRI experiment.

In fMRI experiments it is assumed that the presentation of an external stimulus causes
a local increase in blood oxygenation in activated areas. This increase can be visualized
with specially sensitized MR sequences and is called the BOLD (blood oxygenation level
dependent) effect. Thus, acquiring a complete time series of MR images, activated areas
can be identi�ed by a systematic MR signal increase during stimulation in comparison to
a rest condition. In most cases the stimulus is presented in a so-called boxcar design
of alternating activation and rest periods. For a visual stimulation, Figure 1 shows
such a boxcar stimulation paradigm together with representative MR signal time series
of different regions of the brain that are strongly, weakly, or not activated.

Conventional standard analyses of fMRI data comprise correlation (Bandettini et al.,
1993) or parametric regression models (Friston et al., 1995). Let i, i ˆ 1; . . . ; I, denote
the pixel index. In a parametric linear regression set-up, the time series fyit; t ˆ
1; . . . ; Tg of measured MR signals at pixel i is assumed to be the sum

yit ˆ w0
tai ‡ ztbi ‡ Eit; Eit ¹ N…0; s2

i †; i ˆ 1; . . . ; I; t ˆ 1; . . . ; T …1:1†

of a baseline trend fw0
tai; t ˆ 1; . . . ; Tg, an activation pro�le fztbi; t ˆ 1; . . . ; Tg, and a

measurement error fEit; t ˆ 1; . . . ; Tg. The vector wt consists of the evaluations of a few
known simple basis functions such as polynomials or trigonometric functions. The
transformed stimulus fzt; t ˆ 1; . . . ; Tg is linked to the original (boxcar) stimulus

Figure 1 Visual fMRI: (a) An 8 Hz � ickering rectangular checkerboard (ON) is presented to the subject,
alternating every 30 s with an uniformly dark background and a � xation point (OFF); an experiment consists of
four OFFs and three ONs; Representative MR signal time courses from strongly (b), weakly (c), and non-
activated (d) pixels
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fxt; t ˆ 1; . . . ; Tg of Figure 1a through a so-called hemodynamic response function
(HRF). The HRF is used to model the neurovascular coupling, that is, the relation
between neuronal activation and the changes in blood oxygenation. These occur only
shifted by some time lag d and proceed rather continuously, often described by a
convolution with a Poisson or Gamma density h:

zt ˆ
Xt¡d

sˆ0

h…s; y†xt¡d¡s : …1:2†

The parameters d and y of the HRF are mostly estimated prior to the above regression
analysis, as global estimates for the whole brain (Friston et al., 1994) or for each pixel
separately (Cohen, 1997; Rajapakse et al., 1998; Gössl et al., 2000). In the latter case,
the transformed stimulus depends on pixel i through yi, that is, one has zit ˆ zt…yi†.
Further, instead of the convolution model direct approaches have also been proposed
(Figure 2), which describe increase and decrease of the hemodynamic response directly
by a combination of diverse functions or splines (Aguirre et al., 1998; Crellin et al.,
1998; Kruggel et al., 2000; Genovese, 2000; Gössl et al., 2001b).

After having estimated the stimulus effects b ˆ …b1; . . . ; bI†0 in the regression model,
these are tested to be zero for each pixel separately. Pixels with a signi�cant stimulus
effect are assumed to be activated and are displayed in a so-called activation map,
which is shown in Figure 3 for a visual stimulation. Furthermore, in many cases
spatial postprocessing steps are applied to the �eld of estimated effects b. They
range from simple cluster algorithms (Forman et al., 1995), to reduce the number of
false positive activations, to Gaussian random �eld considerations (Poline et al.,
1997), to account for multiple test problems arising from the huge number of
tested pixels.

Figure 2 Direct hemodynamic response model, divided into � ve basis epochs. For comparison, the dotted
line displays a classical Poisson convolution model
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Beside other distribution-free, non-parametric, Fourier-based or multivariate tech-
niques, in recent years several variations and extensions of the general regression
approach have been proposed, based on generalized additive models. Bullmore et al.
(1996) model the reference function as a sum of trigonometric basis functions and
derive a different test statistic, for which they calculate an empirical distribution by
permutation. Genovese (2000) and Gössl et al. (2000) describe a pixelwise semipara-
metric approach to model the baseline more �exibly. Whereas Genovese uses
regression splines for this purpose, Gössl et al. apply a state space model. In the
latter, as an important feature, the activation effect is also modelled dynamically,
allowing temporally varying activation effects to be described. To control the multiple
test problem, Everitt and Bullmore (1999) and Hartvig and Jensen (2000) describe the
calculated map of test statistics by a spatial mixture model of activated and non-
activated pixels. Hartvig and Jensen (2000) thereby also account for spatial depen-
dencies between pixels. Spatio-temporal models have been proposed by Gössl et al.
(2001a), formulated in the form of different priors in a hierarchical Bayesian
approach.

A common characteristic of the mentioned models is that statistical modelling and
analysis is divided into several separate steps. The main issues are: detrending and
smoothing in preprocessing steps prior to the evaluation; determination of the HRF;
estimation of the activation pro�le; and spatial considerations concerning the activation
maps. We show how this subdivision can be avoided in a hierarchical Bayesian
framework.

The paper is organized as follows. Section 2 �rst reviews semiparametric regression-
based Bayesian model pieces, which are de�ned pixelwise and neglect spatial aspects,
but seem promising for being incorporated into a joint fMRI model (Section 2.1). In
Section 2.2, we describe some approaches that deal with spatial aspects, but that are less
�exible with respect to the temporal component than the pixelwise models of
Section 2.1. In Section 2.3, we introduce a hierarchical Bayesian approach that
incorporates �exible spatiotemporal modelling and estimation of the hemodynamic

Figure 3 Activation map for a simple linear regression model
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response function in a comprehensive fMRI model. Section 3 illustra tes this method
with an application to fMRI data from a visual experiment. The concluding section
discusses some perspectives for future research, such as computational issues and
analysis of diffusion tensor imaging (DTI) for tracking �ber connections between
functional areas.

2 Semiparametric Bayesian models for fMRI experiments

In the following, we �rst introduce semiparametric Bayesian regression models for
fMRI signals from a pixelwise point of view. The main ingredients are �exible forms for
the baseline trend and the activation pro�le, adapting smoothness priors or basis
functions approaches to fMRI data. Section 2.2 introduces some models that deal with
spatial aspects, but also considers more restrictive forms for pixelwise modelling of
baseline and activation. In Section 2.3 we propose a comprehensive spatiotemporal
model, incorporating space–time interactions and simultaneous estimation of the
hemodynamic response functions. This model will be applied to a visual experiment
in Section 3.

2.1 Semiparametric regression models for pixels

All regression-based approaches for the evaluation of fMRI data assume pixelwise
additive models of the general form

yit ˆ ait ‡ fit ‡ eit; i ˆ 1; . . . ; I; …2:1†

where fait; t ˆ 1; . . . ; Tg is the baseline trend, ffit; t ˆ 1; . . . ; Tg is the activation pro�le
and feit; t ˆ 1; . . . ; Tg is measurement noise at pixel i. Various models can result from
speci�c assumptions on these three components. A slight extension of the pixelwise
parametric linear regression model (1.1) is obtained by setting

ait ˆ w0
tai; fit ˆ v0

tbizt…yi†; …2:2†

where zt…yi† is de�ned as in equation (1.2) and yi is assumed to be known from a pilot
estimate. The linear combination v0

tbi models a time-varying activation effect bit ˆ v0
tbi

in complete analogy to the trend component ait ˆ w0
tai. For the special choice vt ² 1,

expression (2.2) reduces to (1.1)
More �exible forms for the unknown functions ait and bit , t ˆ 1; . . . ; T, are obtained

by modelling and estimating them non-parametrically. Bayesian approaches for non-
and semiparametric regression and time series analysis are based on appropriate
smoothness priors or on basis function representations with adaptive knot selection.
Gössl et al. (2000) propose a varying coef�cient model

yit ˆ ait ‡ bitzt…yi† ‡ eit; eit ¹ N…0; s2
i †; …2:3†
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where smoothness of the trend faitg and the time-varying activation effect fbitg is
achieved through pixelwise random walk priors for the unknown parameters ait and bit .
Expressing this model in state space form, the baseline trend and a time-varying
estimation effect can be estimated by Kalman �ltering and smoothing separately at
each of the pixels. As an alternative, Bayesian smoothing splines (Hastie and Tibshirani,
2000) or P-splines, developed by Lang and Brezger (2002) as a Bayesian version of
Eilers and Marx (1996), might be used.

Random walk priors can be seen as a discretized version of smoothing spline priors.
For an equidistant grid as in the analysis of fMRI signals, estimates from both methods
are practically indistinguishable. We prefer random walk priors, because they are
computationally less demanding and are more naturally combined with Markov
random �eld priors to obtain full spatiotemporal models (see Gössl et al. (2001b)
and the next subsection).

Bayesian P-splines assume representations of the form

ait ˆ
Xm

jˆ1

~aaijBj…t†;

bit ˆ
Xm

jˆ1

~bbijBj…t†;

with a moderate number m ˆ r ‡ l B-spline basis functions of degree l and r inner
knots. Again, smoothness is achieved through random walk priors for the vectors
ai ˆ …~aai1 ; . . . ; ~aaim† and bi ˆ …~bbi1; . . . ; ~bbim†, but m can be considerably smaller
than T. This more parsimonious parameterization might be useful for computational
reasons.

The hemodynamic response function in (1.2) and the transformed stimulus zt…yi† are
mostly determined in a pilot step. Genovese (2000) includes speci�cation of the
hemodynamic response as part of his pixelwise semiparametric regression models. A
related approach is suggested in Gössl et al. (2001b) in combination with the linear
parametric observation model (1.1). We will integrate this HRF model as part of our
complete spatiotemporal model in Section 2.3.

A �nal remark concerns the Gaussian error assumption eit ¹ N…0; s2
i †. In our

experience, Gaussian observation models showed good performance in all applica-
tions. However, robusti�ed observation models could be incorporated by (discrete or
continuous) mixtures of normals for the error distribution. Also temporal auto-
correlations of the error terms have already been described (see, for example,
Bullmore et al., 1996; Friston et al., 1995). There is evidence, however, that much
of this may be modelled by using a �exible trend model with white noise super-
imposed. Purdon and Weiskoff (1998) used a similar approach with an AR(1) model
for the trend, and Zarahn et al. (1997) found that this type of model �tted well to
empirical periodograms of noise data. Hartvig (2000, chapter 2) applies �exible
nonlinear state space models to decompose the trend into a smooth component and
white noise errors.

240 L Fahrmeir and C Gössl
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2.2 Spatial models

This section discusses some models that deal with spatial correlation between neigh-
bouring pixels. Although formulated for special models or problems, they have the
potential for being combined with �exible pixelwise models described in the previous
section.

Simple parametric spatial models can be de�ned by assuming a Markov random �eld
prior for the activation effects bi, i ˆ 1; . . . ; I, in the linear regression model (1.1). A
common MRF prior de�ned in terms of Gaussian difference priors is (see, for example,
Besag et al., 1991):

p…bjl† / exp ¡ 1
2

l
X

i¹j

…bi ¡ bj†2

( )

; …2:4†

where i ¹ j denotes that i and j are neighbouring pixels. The precision parameter l
controls the amount of smoothness and can be estimated jointly with other parameters
by assigning a gamma prior. A certain concern with Gaussian priors (2.4) is over-
smoothing in areas of high curvature in the activation surface fbi; i ˆ 1; . . . ; Ig.

Fahrmeir et al. (2002) replace Gaussian pairwise difference priors (2.4) by robust
versions and investigate their potential use to avoid blurring of edges, peaks, and areas
of high curvature in the activation surface. The general form of robust priors is given by

p…bjt; w† / exp ¡
X

i¹j

wijF‰t…bi ¡ bj†Š

( )

;

where t is a scale parameter, F is symmetric with F…u† ˆ F…¡u†, and wij are weights for
neighbours i ¹ j. Usually, the weights are assumed to be known, for example, by setting
them equal to one or by measuring the distance of pixels in some way. In Fahrmeir et al.
(2002), the weights are also admitted to be random variables obeying a hyperprior.
Then, the marginal prior p…bjt† is a mixture of pairwise interaction priors. Such priors
give additional �exibility when pixel i is near the border of an activated area. There
some neighbors jE@i might have similar activation effects, whereas others may be only
weakly or not activated. More speci�cally, the wij’s are allowed to be i.i.d. variables
following a Gamma hyperprior wij ¹ GA…n=2; n=2†. For F…u† ˆ u2=2, the resulting
mixture distribution is a Student prior with n degrees of freedom, which is a
Cauchy prior for n ˆ 1. For F…u† ˆ juj, the mixture is a weighted Laplace prior.
Experience with simulated and real data applications shows that the robusti�ed priors
improve estimation of the activation surface. However, if the main interest is in testing,
that is, in the activation maps, there is no substantial gain in using robust instead of
Gaussian priors. As an alternative to the i.i.d. priors for the weights, MRF priors as
suggested by Aykroyd (1998) could be considered. However, it is unclear whether the
additional computational effort is justi�ed and whether estimation of local features is
signi�cantly improved.
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Hartvig (2000) considers a spatiotemporal semiparametric observation model

yit ˆ bi…Ft ‡ nt† ‡ eit;

for detrended signals yit. The activation surface fbi; i ˆ 1; . . . ; Ig is decomposed into the
sum bi ˆ ai ‡ Zi of a smooth part ai and a random intercept Zi. The smooth part is
modelled through a spatial Bayesian basis function approach. The basis functions are
bells with centres obeying a spatial point process prior. The hemodynamic response
function is decomposed into a known �xed part Ft , obtained from a pilot estimate, and
a random walk nt for deviations from Ft . Estimation is carried out via MCMC. The
model is related to the additive spatiotemporal model in Gössl et al. (2001a), where a
MRF smoothness prior is assumed for the activation surface fbig.

Hartvig and Jensen (2000) propose a spatial mixture model for the statistical
parametric map (SPM) of pixelwise activation estimates ti, obtained from a parametric
regression model as in (1.1). For each pixel i, a latent binary activation indicator Ai is
introduced. The marginal distribution of ti is then speci�ed by a mixture distribution
pf …tijAi ˆ 1† ‡ …1 ¡ p†f …tijAi ˆ 0†, where p is the fraction of activated pixels, or by
more complex mixture models. Spatial correlations are modelled through adequate
priors for the activation pro�les. Conceptually, it seems possible to include this
approach into the spatial part of a spatiotemporal model, but implementation will
probably cause challenging problems.

2.3 A complete spatiotemporal model based on
smoothness priors

There are several ways of combining temporal, spatial, and hemodynamic response
models as the components of a joint, complete spatiotemporal model for fMRI data. In
view of the challenging and massive amount of data, computational feasibility is still an
important issue, and some compromise with model complexity is needed. In the
following, as in Gössl et al. (2001a), temporal and spatial components are modelled
through Gaussian random �eld smoothness priors. Additionally, a hemodynamic
response model is incorporated as a further ingredient of the complete model. As
illustra ted in Section 3, this leads to computationally feasible posterior inference with
Metropolis–Hastings techniques.

At least in current implementations, basis function and partition approaches require
too much computation time for high-dimensional spatiotemporal models.

We �rst focus on temporal and spatial smoothness priors for the trend faitg and the
activation effect fbitg in the semiparametric model (2.3). The hemodynamic response
model is described at the end of this subsection.

Since priors for faitg and fbitg are essentially identical, we restrict presentation to the
activation effect. Let bi, i ˆ 1; . . . ; I denote the vector of all parameters characterizing
fbitg. In a parametric temporal model bit ˆ v0

tbi, the vector bi is typically low-
dimensional or, for a time-constant activation effect bit ˆ bi, scalar. For semiparametric
models (2.3) with random walk priors, the entire high-dimensional vector …bi1 ; . . . ; biT†0

itself is considered as the unknown bi. To de�ne spatiotemporal priors, we further
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gather the entire set of parameters in b ˆ …b0
1; . . . ; b0

I†
0. Then all priors for b have the

same general conditional Gaussian form

p…bjK† / exp ¡ 1
2

b0Kb
³ ´

; …2:5†

where K is a penalty or precision matrix of known structure, containing unknown
hyperparameters. Models of special interest result by specifying particular structures
for K.

For block diagonal K ˆ diag…K1 ; . . . ; KI†, we obtain pixelwise models with

p…bjK† /
Y

i

exp ¡ 1
2

b0
iKibi

³ ´
:

For example, semiparametric models (2.3) with second order random walk priors are
given by

Ki ˆ liQ
t; Qt ˆ

1 ¡2 1
¡2 5 ¡4 1
1 ¡4 6 ¡4 1

. .
. . .

. . .
. . .

. . .
.

1 ¡4 6 ¡4 1
1 ¡4 5 ¡2

1 ¡2 1

0

BBBBBBBB@

1

CCCCCCCCA

…2:6†

The precision parameter li controls the amount of smoothness. Usually, we assign li a
highly non-informative gamma hyperprior li ¹ GA…a; b†. Also the classical parametric
pixelwise models (1.1) and spatial models with pairwise difference priors can be written
as special cases of the general prior (2.4).

Semiparametric spatiotemporal models can be speci�ed by appropriate combination
of precision matrices for temporal and spatial components. In Gössl et al. (2001a), an
additive and a non-additive model have been proposed. Here, we focus on the latter
one, which incorporates space–time interactions. In componentwise formulation, the
prior is

p…bjl† / exp ¡
1
2

X

i

lt
i

X

t
…D2bit†2 ‡ l2

i

X

t

X

j2@i

…D2bit ¡ D2bjt†2

( )" #

; …2:7†

where D2bit ˆ bit ¡ 2bi;t¡1 ‡ bi;t¡2 are second differences. The �rst term corresponds to
(pixelwise) second order random walk priors for the temporal effect, while the second
term penalizes differences between neighbouring local trends bit and bjt between pixels i
and adjacent pixel j, with j E @i of j. For ls

i ² 0, equation (2.7) reduces to a pixelwise
model. Assuming for simplicity equal temporal and spatial precision parameters
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li ² lt
i ² ls

i as in Gössl et al. (2001a), the prior (2.7) can be written in the general form
(2.4) with

K ˆ …Qs « Qt† ‡ …L « Qt† ˆ …Qs ‡ L† « Qt;

Qs
ij ˆ

P
k2@i

…li ‡ lk† i ˆ j
¡…li ‡ lj† i ¹ j

0 else

8
><

>:

and L ˆ diag…l1 ; . . . ; lI†.
As in Genovese (2000), we will further include speci�cation of the HRF as part of the

observation model. This will allow us to embed estimation of the activation pro�le
within a complete spatiotemporal modelling set-up, in contrast to Gössl et al. (2001a),
where the hemodynamic response function is estimated in a pilot step. For boxcar
paradigms as considered in our application in Section 3, the hemodynamic response
function zit…yi† is composed of a sequence of identical hemodynamic response models
w…u; yi†, linked together on the t-axis, and de�ned by

w…u; yi† ˆ

0:0 for u < t1 …I†

exp ¡ u ¡ t2

y1

³ ´2
" #

¡ c1

( )
=…1 ¡ c1† for u 2 ‰t1 ; t2 ‰ …II†

1:0 for u 2 ‰t2 ; t3 ‰ …III†

…1 ‡ y5† exp ¡ u ¡ t3

y2

³ ´2
" #

¡ c2

( )
=…1 ¡ c2† ¡ y5 for u 2 ‰t3 ; t4 ‰ …IV†

¡y5 exp ¡ u ¡ t4

4:0

± ²2
µ ¶

for u ¶ t4 …V†;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

where the above time points and normalizing constants are related to the model
parameters y1 increase, y2 decrease, y3 lag, y4 plateau, and y5 undershoot, according
to t1 ˆ y3 , t2 ˆ y1 ‡ y3 , t3 ˆ y1 ‡ y3 ‡ y4 , t4 ˆ y1 ‡ y2 ‡ y3 ‡ y4 , c1 ˆ c2 ˆ exp…¡1†.
Figure 2 displays the shape of this hemodynamic response model. It is used by Gössl
et al. (2001b) in combination with a linear parametric observation model (1.1). A
generalization from the simple boxcar paradigm to a more complex sequence of tasks
as in Genovese (2000) is conceptually straightforward.

For the observation error variances s2
i and the parameters yi of the hemodynamic

response model, we assume pixelwise priors

s2
i ¹ IG…ga; gb†; yij ¹ U‰0; IjŠ; j ˆ 1; . . . ; 4; yi5 ¹ N…0; x2†;

where the support ‰0; IjŠ is prede�ned, for example, Ij ˆ 15 s.
Together with usual conditional independence assumptions, the priors and the

observation models complete the Bayesian model speci�cation.
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3 Applications

To illustra te the spatiotemporal approach of Section 2.3 we use the data set also
analysed in Gössl et al. (2001a), consisting of an fMRI time series from a visual
stimulation experiment. In order to elicit a strong activation in visual cortical areas a
standard 8 Hz �ickering checkerboard stimulus was used. On a 1:5 T system (Echos-
peed, GE Medical Systems, Milwaukee), a set of 70 T2¤ BOLD images was acquired,
consisting of seven slices parallel to the intercommissura l line, covering the occipital
lobes. Each image comprises 128 £ 128 pixels (voxel size: 2:9 £ 2:9 £ 5 mm). The
stimulation paradigm was divided in four rest and three activation periods, each epoch
10 images …30 s† long. Figure 1a shows the study design. To correct for subject’s motion,
an image registration was performed prior to the analysis.

For the estimation of the above models we use a pixelwise Metropolis–Hastings
(MH) algorithm to generate the samples. The parameters a, b, and s2 are sampled in
Gibbs steps, for the HRF parameters an MH step is introduced. The full conditionals
are easy to calculate. All MCMC algorithms consisted of 25 000 iterations with the �rst
5000 being discarded as burn-in and every 20th iteration included in the �nal sample.
For convergence diagnostics a selection of randomly chosen parameter chains was used.
For all samples autocorrelations were less than 0.2 and almost independent of starting
values. Parameters of the Gamma hyperpriors were set to ga ˆ 1 and gb ˆ 10,
respectively. First order neighbourhoods were employed in the spatial applications.
Apart from the undershoot parameter, posteriors for all parameters are approximately
normal. To reduce working memory load only posterior means and variances for
parameters were updated in each iteration, and the posterior mean was used as point
estimate. For the undershoot the mode is applied, because a highly skewed posterior is
expected. Activation maps are calculated by testing pixelwise whether the stimulus
effect is signi�cantly different from zero or not. For a con�dence level a, this is
equivalent to checking whether the a quantile covers zero or not, that is, checking
P…bit > 0jY†¶ 1 ¡ a, using approximate normality of the posterior. These maps are the
direct Bayesian analogue of the classic activation maps. The maps in our example were
thresholded at different levels, to improve qualitative comparison between approaches.

In Figure 3 an activation map …P…bi > 0jY† ˆ 1 ¡ 10¡6† for a conventional para-
metric pixelwise approach is displayed. Main activation is located in the primary visual
cortex in the occipital lobe, also called V1. Additionally, small activated areas in the
extrastriate cortex or secondary visual areas can be found in the posterior parietal areas
on both sides of the brain. Rostral to (in front of) V1, a few pixels in the precuneus also
show a signi�cant reaction to the stimulus. Primary visual areas are the �rst cortical
relay station for general processing of all visual stimuli. The secondary or associate
regions co-activated in our experiment are supposed to handle speci�c information
about, for example, colour and shape of objects. Episodic memory, a part of the
declarative memory, is assumed to be located in the precuneus.

The results of the complete spatiotemporal model (2.7) including the HRF estimation
are shown in Figure 4 …P…bit > 0jY†¶ 1 ¡ 10¡5†. Each of the respective three maps in
Figure 4a represents one time point in the stimulation cycle. Time is indicated by the
asterisk on the boxcar at the bottom of the �gure. We con�ne ourselves to these three
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maps because activation varies only slowly in time and most interesting differences can
be found between stimulation periods in this activation paradigm. The undershoot map
in Figure 4b displays the undershoot parameter y5 thresholded at a level of 0.25. Finally,
in Figure 4c the average time course of all activated pixels is plotted. Compared to the
pixelwise approach, activations are estimated very consistently, especially in the primary
visual cortex. In contrast, temporally resolved results reveal a considerable temporal
variation of the activation in the secondary visual areas. Small �uctuations in the
precuneus can be observed, too. Further, simultaneous estimation of the HRF para-
meters yields undershoot values greater than 0.25 located in the primary visual cortex, in
good agreement with standard functional knowledge. The signal drop beyond the
baseline after each activation cycle is described by the undershoot parameter y5 . This
hemodynamic characteristic is well known to occur, especially in visual stimulations.

When analysing fMRI data of simple sensory paradigms, the main goal is usually the
robust individual localization of the primary and secondary sensory cortices. The
information provided by parametric methods, pixelwise or preferably spatial, is in
general suf�cient for this purpose. The activated areas depicted in Figures 3 and 4

Figure 4 Activation map (a), undershoot map (b), average time course of activated pixels (c) for the spatio-
temporal model, including the estimation of the hemodynamic response function
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mainly coincide. However, some patients (in particular older, or mentally or neurolo-
gically impaired) may have dif�culties in maintaining focal brain activation during the
course of the experiment …3¡10 minutes†. Temporal variations in alertness, attention,
or vigilance can produce severe and unpredictable interferences within an fMRI
experiment. At least complicating the analysis, such �uctuations moreover may also
provide additional information about the processing of certain stimuli. Semiparametric
approaches are thus well suited for such circumstances. These models can capture
activation variations during the experiment that simple parametric models would
neglect. Furthermore, as transiently activated areas can be assessed, greater sensitivity
and precision can be achieved in, for example, the impaired patients. The same holds
for the simultaneous modelling of hemodynamic response properties. Standard convo-
lution methods are working robustly. However, additional insight is gained by a more
�exible simultaneous modelling of the HRF, as could be shown, for example, for the
stimulation paradigm dependence of the post-stimulus undershoot in visual and
acoustic stimulations (Gössl et al., 2001b). This approach can easily be further extended
to other hemodynamic properties in question, as �rst applications to pharmacological
MR studies proved.

In conclusion, semiparametric spatial methods are well suited for the analysis of
functional MRI data. Model choice for a particular data situation has to be based on
the speci�c objectives of each study. If the main goal is the detection of activated areas
averaged over time, then simpler spatial models with time-constant activation para-
meters that perform suf�ciently well. If dynamically changing activation effects are to
be expected or of interest, then additional information can be gained by using more
complex semiparametric spatiotemporal approaches, also allowing for conclusions
about hemodynamic response properties.

4 Perspectives

In Section 2, we have already indicated some alternative possibilities for spatiotemporal
modelling of fMRI data. To avoid oversmoothing of peaks and areas of high curvature
between activated and non-activated regions, the spatial part of Gaussian priors could
be replaced by robust priors as outlined in Section 2.3. The pixelwise Bayesian
regression spline approach of Genovese (2000) can be extended to a spatiotemporal
model by introducing a spatial prior for the B-spline coef�cients, given the number and
location of knots. The computational effort, however, seems enormous. A further
possibility is to transfer the spatial mixture model of Hartvig and Jensen (2000) to
de�ne a prior for the activation effect bi in a regression model by a similar spatial
mixture distribution. Generally, however, it is unclear whether additional efforts in
implementation and computing time are in balance with additional gain in precision
and new insights.

A new perspective and challenging task in human brain mapping is the analysis of
diffusion tensor imaging (DTI) data for tracking neuronal �ber pathways in the living
human brain, connecting functional brain regions. Knowledge of these links is essential
for a full understanding of the human brain and its neuronal circuits. The basic idea in
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DTI is that within the brain water diffusion is preferentia lly directed along the white
matter �ber tracts, and that this spatially anisotropic diffusion can be characterized by a
3 £ 3 diffusion tensor (a symmetric, non-negative de�nite matrix). Diffusion tensor
magnetic resonance imaging provides noisy observations of the six unknown elements
of the diffusion tensor at each pixel. Recently, several proposals have been made on
how to use this information contained in noisy DTI data for reconstructing �ber
pathways. A basic idea is that at each pixel, the largest eigenvalue of the diffusion tensor
has a similar direction as a �ber trajectory going through this pixel. Preferably,
smoothed or regularized versions of the observed diffusion tensors or their largest
eigenvalues are used for reconstructing �ber tracts. Currently, regularization of DTI
maps is carried out in a preprocessing step, followed by tracking algorithms based on
the regularized DTI maps. In Basser et al. (2000) the tracking is performed using
differential equations, Poupon et al. (2000) use a complex Bayesian Markov random
�eld prior for this purpose, resulting in considerable computational and numerical
burdens. Gössl et al. (2002) propose a tracking algorithm based on linear state space
modelling. Applying an inherent smoothness prior, this algorithm allows for a sensitive
and accurate tracking of major white matter �ber bundles, as could be shown, for
example, for the pyramidal tract. However, the potential of DTI for understanding the
neuronal circuits, for the planning of neurosurgical interventions, or for the detection of
white matter changes in psychiatric diseases is enormous. Nevertheless, the statistical
analysis of diffusion tensor imaging data has just begun.
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