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Bayesian varying-coefficient models using adaptive
regression splines

Clemens Biller and Ludwig Fahrmeir
Ludwig Maximilians University, Munich, Germany

Abstract: Varying-coefficient models provide a flexible framework for semi- and nonparametric generalized
regression analysis. We present a fully Bayesian B-spline basis function approach with adaptive knot selection.
For each of the unknown regression functions or varying coefficients, the number and location of knots and the
B-spline coefficients are estimated simultaneously using reversible jump Markov chain Monte Carlo sampling.
The overall procedure can therefore be viewed as a kind of Bayesian model averaging. Although Gaussian
responses are covered by the general framework, the method is particularly useful for fundamentally non-
Gaussian responses, where less alternatives are available. We illustrate the approach with a thorough
application to two data sets analysed previously in the literature: the kyphosis data set with a binary response
and survival data from the Veteran’s Administration lung cancer trial.

Key words: B-spline basis; knot selection: non-Gaussian response; non- and semi-parametric regression; reversible
jump Markov chain Monte Carlo
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1 Introduction

Generalized linear models (GLM, see McCullagh and Nelder, 1989) and extensions provide
a unified framework for exploring the relation between a response variate yi and a vector
xi ¼ ðxi1; . . . ;xipÞ of covariates observed for i ¼ 1; . . . ;n individuals. They relate the
expectation mi ¼ EðyijxiÞ to a predictor Zi through the relation mi ¼ hðZiÞ, where h is a
response function. Classical parametric GLM’s assume a linear predictor Zi ¼

xi1b1 þ � � � þ xipbp. Various non- and semi-parametric extensions have been proposed to
generalize parametric GLM’s. Varying-coefficient models (VCM, Hastie and Tibshirani,
1993) comprise many other models as special cases. They are defined by a predictor of the
form

Zi ¼ xi1f1ðri1Þ þ � � � þ xipfpðripÞ ð1Þ

where ri1; . . . ; rip are metrical covariates and f1; . . . ; fp are unspecified functions to be
estimated nonparametrically. The covariates ri1; . . . ; rip can be interpreted as effect modifiers,
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since the effects of xi1; . . . ; xip vary through the functions f1; . . . ; fp. Semiparametric or
partially linear models

Zi ¼ f1ðri1Þ þ xi2b2 þ � � � þ xipbp ð2Þ

and generalized additive models (Hastie and Tibshirani, 1990)

Zi ¼ f1ðri1Þ þ � � � þ fpðripÞ ð3Þ

are obtained as special cases.
For the modelling and estimation of the functions fj there are various alternatives. Hastie

and Tibshirani (1993) consider a penalized log-likelihood approach, where the smoothness
of the fj is controlled by a penalty term using a separate smoothness parameter for each fj.
Simultaneously data-driven selection of the smoothing parameters is so time consuming for
more than one or two functions fj that usually it is not done. Instead, the smoothness is
determined by the degrees of freedom of the smoothing matrices (see Hastie and Tibshirani,
1990; 1993). The estimates f̂fj of this approach are given as weighted cubic smoothing splines.
More recently, smoothing methods based on local polynomial regression have become a
popular alternative, see, e.g., Hoover et al. (1998) in the context of time-varying coefficient
models for Gaussian longitudinal data. Again, data-driven choice of smoothing parameters is
problematic in the presence of several functions. A third alternative mentioned in Hastie and
Tibshirani (1993) as a good choice for modelling the varying effects fj are regression splines,
which are defined as a linear combination of a vector of unknown basis coefficients and a
vector of known basis functions. These basis functions depend on a vector of knots that lie
within the support of the respective effect modifier rij. Shape and smoothness of fj are
determined by the number and the location of these knots. There are some advantages of
regression splines when compared to smoothing splines. Firstly, regression splines need only
few knots and few unknown basis coefficients, for example 5–10, while smoothing splines
are defined with one knot for each distinct value of the effect modifier rij, resulting in a large
number of unknown parameters. Another advantage is the fact that regression splines define
an ordinary linear predictor, so that all standard inferential tools for GLM’s can be used.
However, one obstacle with regression splines has been the choice of the number and the
location of the knots. Only minor changes in these parameters may cause major differences
in the fitted functions f̂ j. Eubank (1988: Section 7.2) pointed out that finding the right
number and location of knots by visual inspection of the data is impossible in most cases.
Therefore data-driven methods for adaptive knot placement are needed for (in some sense)
nearly optimal estimators f̂ j. Frequentist approaches (see, e.g., Friedman and Silverman,
1989, or Stone et al., 1997) use forward steps to add knots that are optimal with respect to
some chosen criterion (for example Rao statistics) and afterwards delete knots in backward
steps using another criterion (for example the AIC criterion).

Bayesian non- and semi-parametric regression models using Markov chain Monte Carlo
(MCMC) techniques have recently gained much interest. They offer some advantages:
MCMC procedures provide a rich output for inference, no asymptotic approximations are
necessary, choice of smoothing parameters or adaptive knot selection is an integral part of
the model, and extensions to more complex situations, such as longitudinal or spatial data,
are conceptually easier. We may distinguish between smoothness prior approaches as a
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stochastic generalization of penalized likelihood methods and basis function approaches with
adaptive knot selection. Based on smoothness priors, Hastie and Tibshirani (2000) develop
an efficient block move Gibbs sampler for a Bayesian version of smoothing splines in
Gaussian additive models. For non-Gaussian responses they suggest a Metropolis–Hastings
algorithm, but its performance is not tested. Fahrmeir and Lang (2001a; 2001b) use random
walk models as smoothness priors for unknown functions of metrical covariates and Markov
random field priors for spatial covariates in generalized additive mixed models. Lang and
Brezger (2001) extend this work to a Bayesian version of P-splines (Eilers and Marx, 1996)
including bivariate surface smoothers.

In this paper, we follow the second type of approach. In Bayesian basis function
approaches using MCMC techniques, the number and location of the knots are no longer
fixed but are random. During all iterations both the number and the location of the knots
may vary. Hence, the uncertainty in the knot placement is taken into consideration and the
estimation of the regression splines in each iteration of the algorithm is based on different
knot settings. Function estimation is carried out by model averaging: the final estimator is
then built as the mean of the estimators in each iteration, resulting in great flexibility of the
estimated spline function. Smith and Kohn (1996) proposed a Bayesian approach for
univariate curve fitting and additive models with normal response using Gibbs sampling.
In each iteration of their algorithm significant knots are chosen from a set of candidate knots
by Bayesian variable selection. An extension to bivariate curve fitting is given in Smith and
Kohn (1997). A Bayesian approach for univariate curve fitting with normal response using
reversible jump Markov chain Monte Carlo (RJMCMC, see Green, 1995) is presented by
Denison et al. (1998). They choose piecewise polynomials as basis functions, which are more
general than polynomial splines and allow one to model even curves with discontinuities.
Estimation is not fully Bayesian, but a form of hybrid algorithm: in each iteration they
choose the set of knots by RJMCMC methods, but, given these knots, the unknown basis
function coefficients are estimated by the usual least squares approach. They also extend this
approach to additive models, but due to the use of the least squares method they need
backfitting in each iteration. Mallick et al. (2000) proposed Bayesian multivariate adaptive
regression splines (BMARS) for the GLM. They emphasize that ‘the Bayesian MARS method
is just an extension in many dimensions of the Bayesian curve fitting methodology given in
Denison et al. (1998).’ For the extension to the GLM they use a simple Metropolis–Hastings
proposal. No example of the convergence properties of the method is given, but they state
that the sampler has slow convergence. A fully Bayesian approach for the semi-parametric
generalized linear model (2), also using RJMCMC for knot selection, was presented in Biller
(2000). In contrast to Denison et al. (1998), this approach was generally defined for
responses from the exponential family, and for estimation of the regression spline, given
the knots, MCMC techniques are used instead of least squares. Recently, hybrid methods
merging smoothness priors and basis function approaches have been proposed. Shively et al.
(1999) and Yau et al. (2000) combine Bayesian variable selection with shrinkage priors for
basis function coefficients. Dias and Gamerman (2000) develop Bayesian hybrid splines for
function estimation in a Gaussian model with adaptive knot selection via RJMCMC and the
common smoothness prior for splines. This procedure shows improved adaptivity for
estimating highly oscillating functions. Again the procedure is not fully Bayesian: as in
Denison et al. (1998) they avoid drawing samples for basis function coefficients, and instead,
for given knot placements, they use a penalized least squares estimate in the iterations.
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In this paper we present an extension of the adaptive Bayesian regression spline approach
for semi-parametric GLM’s in Biller (2000) to a Bayesian version of the varying coefficient
models (1). Compared to Denison et al. (1998) and Dias and Gamerman (2000), our method
is particularly useful for regression analyses with non-Gaussian responses, where less
alternatives are available, and inference is fully Bayesian, which offers some advantages.
We use MCMC techniques both for adaptive knot selection and for estimating basis function
coefficients, given the knot placement. We prefer to choose numerically stable (natural) B-
splines as basis functions, but our concept remains valid for other bases. Updating of basis
function coefficients is carried out by Metropolis–Hastings steps with the iteratively weighted
least squares proposal of Gamerman (1997a). The resulting samplers show considerable
improved mixing and convergence performance in comparison to the random walk
proposals in Mallick et al. (2000). This is illustrated in our first application, where no
thinning is necessary, whereas Mallick et al. (2000) include only every 100th iterate. We also
carry out sensitivity analyses with respect to the knot placement in our applications, showing
that the results are rather robust for these data sets. However, as is to be expected, sensitivity
can become an issue for more sparse data (see Biller, 2000).

Our fully Bayesian approach has several advantages. Firstly, the complete MCMC output
is available for inference, thus we need not rely on asymptotic approximations. For example,
to compute confidence regions for regression functions we only have to compute the 0.05
and the 0.95 quantiles of the generated sample of a function fj to get a 90% confidence
region for that fj. Any functionals of the model may be estimated in a similar way. These
functionals are simply computed in each iteration of the algorithm to create samples of the
functionals of interest. Furthermore, models are conceptually easier to combine or to extend.
For example, other basis functions might be used, or random effects could be incorporated
into the predictor, resulting in generalized additive mixed models. Also, the complete
MCMC output is available for model diagnostics and model choice – see the discussion of
the applications.

The rest of the paper is organized as follows. The Bayesian varying-coefficient model is
defined in Section 2. Together with a brief introduction to MCMC techniques, Section 3
describes the algorithm used to estimate this model. In Section 4 the model is applied to well-
known data sets from the literature. Some concluding remarks follow in Section 5.

2 The Bayesian varying-coefficient model

For the definition of the Bayesian varying-coefficient model (BVCM) we use a formulation
that directly combines the special cases (2) and (3) of the VCM (1). In addi-
tion to the covariates xi1; . . . ;xip with effect modifiers ri1; . . . ; rip we consider covariates zi ¼

ðzi1; . . . ; ziqÞ with fixed effects b ¼ ðb1; . . . ;bqÞ
0. Then the BVCM is defined as

Zi ¼ zibþ xi1f1ðri1Þ þ � � � þ xipfpðripÞ ð4Þ

We obtain the classical parametric GLM for p ¼ 0, the semi-parametric GLM (2) for p ¼ 1,
and the GAM (3) for q ¼ 0 and xij � 1 for all i, j.

Each of the varying coefficients fj for j ¼ 1; . . . ;p is defined to lie in the kj-dimensional
space of natural cubic splines. That is, with a vector cj ¼ ðcj1; . . . ; cjkj

Þ
0 of unknown basis
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coefficients and a vector Bj ¼ ðBj1; . . . ;Bjkj
Þ of basis functions for the space of natural splines,

each fj can be represented as the spline

fjðrijÞ ¼
Xkj

l¼1

cjlBjlðrijÞ ¼ BjðrijÞcj ð5Þ

The known basis functions Bj1; . . . ;Bjkj
are computed with a kj vector of knots

tj ¼ ðtj1; . . . ; tjkj
Þ from the support of each effect modifier rij. An appropriate choice is the

widely used B-spline basis with local support. For details and efficient algorithms for
computing this basis see De Boor (1978), Eubank (1988), Schumaker (1993) or Dierckx
(1993), and particularly for natural splines see Lyche and Schumaker (1973) or Lyche and
Strøm (1996). Instead of natural splines, it is also possible to use ordinary splines. Then
additional basis coefficients in (5) are necessary.

With the basis functions approach for each fj, the predictor (4) of the BVCM is in the form
of a parametric GLM

Zi ¼ zibþ xi1B1ðri1Þc1 þ � � � þ xipBpðripÞcp ð6Þ

with constant effects b; c1; . . . ; cp. As already mentioned, the shape and the smoothness of
the splines (5) are determined by the number kj and the location of the knots tj. However,
both kj and tj are treated as unknown random variables and have to be estimated together
with the constant effects of model (6). Thus, the resulting overall procedure is nonparametric
Bayesian model averaging.

For the joint estimation of the knots tj and the basis coefficients cj defining the spline
fj; j ¼ 1; . . . ;p, we define the following hierarchical model. The number kj of knots is from
some countable set Kj (which is defined below) and serves as model indicator. Each value of kj
defines a model for the spline fj that is determined by the parameters tj and cj. In such an
hierarchical model we define the model parameter ykj

¼ ðtj; cjÞ 2 R2kj , and combine this with
the model indicator kj to give the parameter yj ¼ ðkj; ykj

Þ of the spline fj.
For the Bayesian approach we need a prior specification for each of the unknown

parameters. Each of the model indicators kj for j ¼ 1; . . . ; p is constrained to lie in a set
Kj ¼ fkj;min; kj;minþ1; . . . ; kj;maxg  N. Due to the definition of fj as natural spline, kj;min is
restricted to kj;min � 4. We propose three different priors for kj. A Poisson distribution with
parameter l, but restricted to the set Kj, is a widely used prior in the reversible jump
literature (see for example Green (1995) or Denison et al. (1998)). Alternatives are a discrete
uniform distribution on Kj or a negative binomial prior with parameters m ¼ 1 (i.e., a
geometric distribution) and p 2 ð0;1Þ. The probabilities of the last prior are globally
monotonically decreasing in kj, which avoids overly complex models resulting from a
prior that favours larger kj. When compared to the Poisson prior, the latter two priors
lead to models with small average numbers of knots. As demonstrated by the examples of
Biller (2000), resulting curves may be too smooth. In the examples in Section 4, however,
these two latter priors also lead to convincing results.

Given kj for j ¼ 1; . . . ; p we assume the elements tj and cj of the model parameter ykj
to be

independent and treat them separately. The knots tj are assumed to lie in a discrete set of
candidate knots Tj0 ¼ ftj0;1; tj0;2; . . . ; tj0;kj;max

g, which may consist of the sorted distinct values
of the effect modifier rij or of order statistics. An alternative is to distribute tj0;1; . . . ; tj0;kj;max
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equidistantly over the interval ½rmin;j; rmax;j�. The prior for tj is defined by assuming that all
possible samples tj ¼ ðtj1; . . . ; tjkj

Þ from Tj0 have equal probability, i.e.,

pðtjjkjÞ ¼
kj;max

kj

� ��1

¼
kj!ðkj;max � kjÞ!

kj;max!
ð7Þ

Hence, this prior depends only on kj and kj;max. For the basis coefficients cj we use a
multivariate normal prior distribution cjjkj � Nkj

ð0;Scj
Þ, where the covariance matrix is

defined as Scj
¼ s2

cj
Ikj

with a scalar s2
cj
.

The fixed effects b are also assumed to be multivariate normally distributed, i.e.,
b � Nqð0;SbÞ. Possible correlations between the coefficients b ¼ ðb1; . . . ; bqÞ

0 are modelled
by defining Sb ¼ s2

bRb with a scalar s2
b and a q-dimensional correlation matrix Rb.

All parameters y1; . . . ; yp and b are assumed to be pairwise independent and are combined
to give the joint unknown parameter y ¼ ðb; y1; . . . ; ypÞ. For the estimation of y we consider
the joint posterior distribution

pðyjyÞ / pðyjyÞpðbÞ
Yp

j¼1

pðykj
jkjÞpðkjÞ ð8Þ

suppressing the covariates for ease of presentation. The factor pðyjyÞ denotes the likelihood
of the response y ¼ ðy1; . . . ; ynÞ.

3 MCMC estimation techniques

Estimation of the joint unknown parameter y is done by sampling from the posterior (8)
using MCMC techniques. They are based on samples from a Markov chain with the
distribution of interest as its stationary limiting distribution. Thus, these stochastic simula-
tion methods avoid the necessity of a complete knowledge of the target distribution. This
enables us to simulate from very complex distributions in hierarchical Bayesian models such
as the posterior (8). The Metropolis–Hastings algorithm (the most general MCMC techni-
que, see, for example, Gilks et al., 1996) ensures that the transition kernels of the Markov
chain converge to the target distribution. Samples are generated through an appropriate
proposal density qðy; y0Þ, from which a new value y0 can be drawn given the current state y of
the Markov chain. Since this proposal density usually does not agree with the distribution of
interest (8), the proposal value y0 is only accepted with a certain probability / ðy; y0Þ as a new
state of the Markov chain. For more information about MCMC techniques see Tierney
(1994), Besag et al. (1995), Gilks et al. (1996) or Gamerman (1997b).

The Metropolis–Hastings algorithm is defined for models with known and fixed dimen-
sion of the parameter. However, such an algorithm is not suitable when the dimension of the
interesting parameters is also unknown. This is the case for the posterior (8), where for each
spline fj the model indicator kj is unknown. The reversible jump MCMC algorithm of Green
(1995) extends the Metropolis–Hastings technique to such problems with unknown and
varying dimensions. Here the model indicators kj vary during the iterations leading to state
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spaces of the Markov chain with different dimensions, since the dimension of the model
parameter ykj

varies with kj. For state transitions without a change in dimension, i.e., when kj
does not vary and the transitions take place within the same state space, the ordinary
Metropolis–Hastings algorithm mentioned above is applicable. For transitions between
different state spaces, however, the method of Green (1995) proposes steps for increasing
and reducing kj. These ‘birth’ and ‘death’ steps have to be defined as a related pair of steps,
where birth is the reversal of death and vice versa (this feature is called ‘dimension
matching’). For a birth step, that is a transition from yj ¼ ðkj; ykj

Þ to y0j ¼ ðkj þ 1; y0kjþ1Þ

with an increase of kj by 1, we have to create both one new knot and one new basis
coefficient. This is done by drawing a two-dimensional random vector uB independent of yj
and defining the new proposal y0j by an appropriately chosen invertible deterministic function
y0jðyj;uBÞ. The reverse death step, from y0j to yj, is accomplished by using the inverse
transformation leading to a deterministic proposal.

For the simulation of the joint posterior given in (8) it follows that we have to design
different reversible jump steps for the different parts of y both with and without a change in
the dimension of the state space of the Markov chain, leading to a hybrid MCMC algorithm.

For each spline fj both the number kj and the location of the kj knots tj have to be chosen.
This can be done separately for j ¼ 1; . . . ; p by moves for the birth and death of a knot and
the movement of a knot to another position, as proposed by Biller (2000) for the semi-
parametric model (2) with only one spline. Given the placement of the knots, the estimation
of the remaining parameters b; c1; . . . ; cp can be done by standard MCMC technology for
Bayesian GLM’s using the representation (6) of the model. Each iteration of the reversible
jump algorithm then consists in the following steps:

a) Update the fixed effects b by the method of Gamerman (1997a) for GLM’s adapted to
blocks of fixed effects.

b) Update the splines fj separately for j ¼ 1; . . . ; p.

i) Position change: move a given knot tj;l to another position (without change in kj).
ii) Dimension change: birth or death of one knot tj;lþ1, that is, adding or deleting a

tj;lþ1 with changing kj by 1 and corresponding changes in cj; the choice between
birth and death is done randomly.

iii) Update of basis coefficients: update the basis coefficients cj by the method of
Gamerman (1997a) for GLM’s adapted to blocks of fixed effects (without change
in kj).

Details of the update of the fixed effects b and the basis coefficients c1; . . . ; cp are given in the

Appendix. For details of the reversible jump moves position change and dimension change
we refer to Biller (2000: Sections 3.3 and 3.4), which are applied separately to each fj for
j ¼ 1; . . . ;p.

4 Applications

This section illustrates the BVCM with two data sets from the literature: the kyphosis data
set presented in Hastie and Tibshirani (1990), and the data of the Veteran’s Administration
lung cancer trial, given in Kalbfleisch and Prentice (1980).
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For each data set we use the three alternative prior distributions for the model indicators kj
mentioned in Section 2. The results in Biller (2000) indicate that the prior for kj has minor
influence on the smoothness of fj provided that there is enough information in the data.
However, the prior has influence on the estimation of kj, where a reasonable convergence
and mixing of the chain is only achievable with a Poisson prior (with parameter l between
about 20 and 35), whereas the discrete uniform and the negative binomial (or geometric)
prior lead to inadequate convergence with small acceptance rates. In contrast to these results
the discrete uniform and the negative binomial prior with p 2 ð0;1Þ lead to a reasonable
convergence and mixing of the Markov chains in the applications below. For these
applications we prefer the discrete uniform prior for kj, where no hyperparameter has to
be specified. To illustrate (in-)sensitivity, we compare the results for the three alternative
prior distributions for the kyphosis example. The results for the second example are similar.
Sensitivity of results with respect to the choice of the grid for the knots is examined in the
second application.

In both examples we compare several models with the deviance information criterion
(DIC), defined by Spiegelhalter et al. (1998), measuring the fit and the complexity of each
model. For the Bernoulli distributed response in the following examples the saturated
deviance

DðfÞ ¼ 2
Xn

i¼1

yi log
yi

mi

� �
þ ð1 � yiÞ log

1 � yi

1 � mi

� �� �

is used (see McCullagh and Nelder, 1989: 34). The fit of the respective model is measured by
the posterior expectation D ¼ EfjyðDÞ of the deviance. The complexity is given by the
effective number of parameters pD that is defined by the difference of the expected posterior
deviance D and the deviance computed at the posterior expectation f ¼ EfjyðfÞ of the
parameter, i.e., pD ¼ D � DðfÞ. Hence, pD is a penalty term that penalizes a better fit by
greater complexity. The DIC then is defined as

DIC ¼ D þ pD ð9Þ

The algorithm is implemented and run in Cþþ on a Windows NT 4.0 personal computer
with a 333 MHz Intel Pentium II processor. Based on 10 000 iterations after a burn-in of
5000 iterations the algorithm ran for about 7 and 40 minutes in the applications in Sections
4.1 and 4.2, respectively. The plotted graphs show the median of each sample together with
pointwise 90% Bayesian credible regions. No thinning of samples was necessary due to
excellent mixing of the chains. In contrast, Mallick et al. (2000) used only every 100th
sampled value for analysing the kyphosis data.

4.1 Kyphosis data

The binary response of the kyphosis data is given by the presence (1) or absence (0) of
kyphosis, a postoperative deformation that follows a corrective spinal surgery commonly
performed in children for tumors and congenital or developmental abnormalities. Kyphosis
is defined as forward flexion of the spine of at least 40� from vertical. The data set contains
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81 patients, of which 17 had kyphosis after surgery. The predictors are age in months at time
of operation (A), the starting range of vertebrae levels involved in the operation (S), and the
number of levels involved (N). A frequentist analysis of the data based on splines is described
in Hastie and Tibshirani (1990: Section 10.2).

To analyse the influence of the covariates on the response we fit the seven generalized
additive logistic models shown in Table 1. Model 1 uses a regression spline fj for each of the
three predictors, together with an intercept term b0. In models 2–7, we either replace a
nonparametric covariate effect by a linear parametric term or we completely leave it out.

Figure 1 shows the estimates of the nonparametric functions fA, fS and fN for model
1. The plots for the predictors age A and start S have striking nonlinear features, while
the effect of number N perhaps also could be modelled by a parametric term with fixed
covariate effect.

To compare the seven models, Table 1 additionally shows the value of DIC for each
model. Similar to the results of Hastie and Tibshirani (1990: Section 10.2, Table 10.1),

Table 1 Models for analysing the kyphosis data together with DIC

Model D D( �ff) pD DIC

(1) Zi ¼ b0 þ fAðAi Þ þ fN ðNi Þ þ fS ðSi Þ 56.08 45.99 10.08 66.16
(2) Zi ¼ b0 þ AibA þ fN ðNi Þ þ fS ðSi Þ 60.84 52.65 8.19 69.03
(3) Zi ¼ b0 þ fN ðNi Þ þ fS ðSi Þ 64.53 56.97 7.56 72.08
(4) Zi ¼ b0 þ fAðAi Þ þ NibN þ fS ðSi Þ 56.69 49.14 7.54 64.23
(5) Zi ¼ b0 þ fAðAi Þ þ fS ðSi Þ 58.38 50.79 7.59 65.96
(6) Zi ¼ b0 þ fAðAi Þ þ fN ðNi Þ þ SibS 59.88 51.86 8.02 67.89
(7) Zi ¼ b0 þ fAðAi Þ þ fN ðNi Þ 69.22 62.22 7.00 76.22

Figure 2 Sample path (left), frequencies (middle) and cumulative occupancy fractions (right) for the samples of the
model indicator kS for estimating the spline fS of covariate start in model 1.

Figure 1 Estimates of splines with 90% Bayesian credible intervals for model 1.
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linearizing or leaving out the covariates age A or start S (models 2, 3, 6 and 7) leads to a
worse fit by increasing the DIC when compared to model 1. Hastie and Tibshirani (1990)
state that only age and start seem to be important, for which reason they leave number N out
completely. Inspection of the deviances given in their analysis leads to the conclusion that a
linear effect of covariate N yields the best model. With the smallest value of DIC for model 4,
this result can also be seen in Table 1 of our analysis, while model 5, leaving out the covariate
N, shows the second best fit.

The plots of fA and fS for model 4 are very similar to the respective plots of model 1 in
Figure 1 and therefore are not shown. The linear effect of number N in model 4 has median
0.3547 with the 90% Bayesian credible region (0.0600, 0.7078).

As an example of estimating the model indicators kj, Figure 2 gives some details of the
sample of kS, for estimating the spline fS of covariate S in model 1. The left part of Figure 2
shows the sample kS with values between 4 and 19. With an acceptance rate of 0.34 for the
birth and death steps the mixing over kS is good. In the middle of Figure 2 is the frequency of
the accepted values of kS. The mode is at ks ¼ 4, and we see that in more than one third of
the iterations we use a spline fS with four knots. The right part of Figure 2 depicts the
cumulative occupancy frequencies pðkS < jjyÞ for the different values of kS against the
number of iterations, which is a useful check on the stationarity of kS. After the burn-in
phase these cumulative occupancy frequencies stay at a stable level, demonstrating an
adequate length of the burn-in. The samples of the model indicators kA and kN for the
splines fA and fN behave similarly.

To compare the sensitivity of the results to different priors for the model indicators, Figure
3 again shows the frequencies of the samples of kS in model 1, when using the negative
binomial prior with p ¼ 0:7 (a) and p ¼ 0:3 (b), and the Poisson prior with l ¼ 10 (c) and
l ¼ 30 (d). Prior (a) has a mode at kS ¼ 4, while reducing the parameter p, for example to
p ¼ 0:3 as in prior (b), leads to an increase in the mode of kS to 6. A greater dependence on
choosing the hyperparameter is given with the Poisson prior. With l ¼ 10 in prior (c) we
have a mode of kS ¼ 5, while l ¼ 30 yields a mode kS ¼ 12 (d). In the estimation of the
splines fj the first three priors (a)–(c) lead to curves that are very similar to the estimates in
Figure 1 for the discrete uniform prior, while the Poisson prior (d) with large hyperparameter
l ¼ 30 leads to rougher estimates – see also the comments in Biller (2000). Considering the
sample paths of kS and the cumulative occupancy frequencies, the four priors (a)–(d) show
very similar behaviour to that given in Figure 2 for the discrete uniform prior. We prefer to
use the discrete uniform prior for the model indicators kj, as no hyperparameter has to be
chosen by the user and hence it is the most objective choice.

Figure 3 Frequencies of the model indicator kS in model 1, when using the negative binomial prior with p ¼ 0:7 (a)
and p ¼ 0:3 (b), and the Poisson prior with l ¼ 10 (c) and l ¼ 30 (d).
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4.2 Veteran’s Administration lung cancer trial

The Veteran’s Administration lung cancer data are from a clinical trial to compare a
standard and a test chemotherapy (see Kalbfleisch and Prentice, 1980: Appendix 1). The
data set consists of the censored survival times of n ¼ 137 male patients. The observed event
is the death of a patient and only 9 of the 137 times are censored. To consider the possibility
of heterogeneity between patients, a number of covariates were measured, see Table 2. With
increasing observation time the number of patients at risk decreases strongly. For example,
after about 8 months only 10 patients are at risk in each therapy group, while beyond month
20 no patient with standard chemotherapy is under observation. Therefore we group the
survival time (originally given in days) into months. Hence, for each patient i ¼ 1; . . . ; n the
survival time is measured at discrete time points ti with maximal time Tmax ¼ 34 months.
Since splines are sensitive in situations with sparse data at the end of the observation period,
we follow a proposal of Grambsch and Therneau (1994) by using the monotone transfor-
mation Lt ¼ logðtÞ of the original time scale t.

To analyse the survival of patients with dependence on the covariates xt given in Table 2
at survival time t ¼ 1; . . . ;Tmax, we consider the discrete hazard rate lðtjxtÞ ¼

PðT ¼ tjT � t; xtÞ. This is the conditional probability for the death of a patient at time t
given that patient has survived up to that time. To analyse the hazard rate within the
framework of the GLM, and particularly the BVCM presented in this paper, the discrete
survival data have to be transformed in the following way. For each patient i ¼ 1; . . . ;n
and each time point t ¼ 1; . . . ; ti we define binary event indicators by yit ¼ 1, if patient i dies
at the discrete time point t, otherwise yit ¼ 0. With the covariates xit ¼

ðLt;Gi;K1i;K2i;Ai;Mi;Pi;H1i;H2i;H3iÞ of patient i at time t and the histories y�t�1 and x�
t

of event indicators and covariates of all patients up to time t � 1 and t, respectively, the
distributional assumption yitjy

�
t�1;x�

t � Bð1;mitÞ holds, and the discrete hazard rate of patient
i at time t,

lðtjxitÞ ¼ Pðyit ¼ 1jy�t�1;x�
t ; yi1 ¼ � � � ¼ yi;t�1 ¼ 0Þ ¼ mit

is modelled within the GLM framework as lðtjxitÞ ¼ hðZitÞ, with the logit link function h. For
details on discrete survival models see Fahrmeir and Tutz (1997).

Table 2 Covariates of the Veteran’s Administration lung cancer data

G Treatment group (randomized):
1¼ standard chemotherapy, 0¼new test chemotherapy.

K Performance status of patient (Karnofsky scale), dummy coded in three categories:
K1 scale 10–30, completely hospitalized,
K2 scale 40–60, partial confinement,
K3 scale 70–90, able to care for self.

A Age in years: 34–81 years.
M Time in months from diagnosis to randomization: 1–87 months.
P Prior therapy: 1¼yes, 0¼no.
H Histological type of tumor, dummy coded in four categories:

H1 squamous,
H2 small cell,
H3 adeno,
H4 large cell.
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Model 1 includes all covariates and is defined by the predictor

Zit ¼ b0 þ f0ðLtÞ þ GifGðLtÞ þ K1ifK1
ðLtÞ þ K2ifK2

ðLtÞ þ PifPðLtÞ ðModel 1Þ

þ H1ifH1
ðLtÞ þ H2ifH2

ðLtÞ þ H3ifH3
ðLtÞ þ fAðAiÞ þ fMðMiÞ

The effects of the binary covariates Gi;K1i;K2i;H1i;H2i;H3i and Pi are modelled by
coefficients that vary over the transformed time Lt, while the functions fA and fM vary
over the metrical variables A and M.

Figure 4 shows the estimates of the varying coefficients together with 90% Bayesian
credible intervals. The effect of therapy in graph (a) is negative at the beginning, after
5 months the zero line is crossed, and then it stays positive. This implies that at the beginning
the classical therapy is better for survival, while from month 5 onwards the new test therapy
is better. As in Kalbfleisch and Prentice (1980), using a pure parametric approach, or in Mau
(1986), with time varying coefficients, the effect of therapy may be considered as non-
significant, since the zero line is included in the credible region for almost the whole
observation period. The effect of Karnofsky scale 10–30 in graph (b) starts at value 4.4
and then decreases monotonically. Near month 20 it is approximately zero. A similar
behaviour is seen for Karnofsky scale 40–60 in graph (c). It starts at value 2.2 and crosses the
zero line after 4 months. This implies that the patients with Karnofsky scale 10–30 have the
greatest risk of death in the first 8 months of treatment when compared to patients with
Karnofsky scale 70–90 (the reference category). After month 8, the effect is non-significant,

Figure 4 Estimates of varying coefficients with 90% Bayesian credible intervals (model 1).
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since the credible region includes the zero line. Patients with Karnofsky scale 40–60 have a
greater risk of death in the first 4 months when compared to patients with Karnofsky scale
70–90. Notice, however, that this risk is below the one of patients with Karnofsky scale 10–
30. After month 4 this effect is also non-significant, since the credible region includes the zero
line. The effect of age in graph (d) shows different risks for different age groups. The lowest
risk is for patients with age about 50 years. The effect of time in months from diagnosis to
randomization, in graph (e), varies about a horizontal line, and hence could be considered as
being non-significant. Graph (f) depicts the effect of a prior therapy, decreasing until about
month 24. Here the credible region includes the zero line over almost the whole observation
period, and again this effect may be considered to be non-significant. Graphs (g)–(i) give the
effects of the dummy variables for tumor type with reference category ‘large cell’. The effect
of tumor type ‘squamous’ may be considered as non-significant, since again the credible
region includes the zero line for almost the whole observation time. However, the tumor type
‘small cell’ is significantly positive up to month 4, although after that time there is no effect.
The effect of tumor type ‘adeno’ is positive over the whole observation period, but declines to
zero at the end. We see that this effect could also be modelled by a straight line. When
compared to the reference category tumor type ‘large cell’, these results indicate that patients
with type ‘small cell’ and ‘adeno’ have (at least in the first 8–10 months) a greater risk of
death, whereas the risk of type ‘adeno’ is above the risk of type ‘small cell’.

To discover which covariate effects are really relevant for the survival of patients, we fit the
following reduced models and compare them using the deviance information criterion (9):

Zit ¼ b0 þ f0ðLtÞ þ GifGðLtÞ þ K1ifK1
ðLtÞ þ K2ifK2

ðLtÞ þ PifPðLtÞ ðModel 2Þ
þ H1ifH1

ðLtÞ þ H2ifH2
ðLtÞ þ H3ifH3

ðLtÞ þ AibA þ MibM

Zit ¼ b0 þ f0ðLtÞ þ GifGðLtÞ þ K1ifK1
ðLtÞ þ K2ifK2

ðLtÞ þ PifPðLtÞ ðModel 3Þ
þ H1ifH1

ðLtÞ þ H2ifH2
ðLtÞ þ H3ifH3

ðLtÞ

Zit ¼ b0 þ f0ðItÞ þ GifGðLtÞ þ K1ifK1
ðLtÞ þ K2ifK2

ðLtÞ ðModel 4Þ
þ H1ifH1

ðLtÞ þ H2ifH2
ðLtÞ þ H3ifH3

ðLtÞ

Zit ¼ b0 þ f0ðLtÞ þ GifGðLtÞ þ K1ifK1
ðLtÞ þ K2ifK2

ðLtÞ ðModel 5Þ
þ H1ifH1

ðLtÞ þ H2ifH2
ðLtÞ þ H3ibH3

Zit ¼ b0 þ f0ðLtÞ þ K1ifK1
ðLtÞ þ K2ifK2

ðLtÞ ðModel 6Þ
þ H1ifH1

ðLtÞ þ H2ifH2
ðLtÞ þ H3ibH3

Compared to model 1, in model 2 only the effects of age A and time M are modelled as fixed,
while these two covariates are completely left out in model 3. Model 4 results from model 3
by leaving out the covariate prior therapy P. In model 5 the effect of tumor type ‘adeno’ H3 is
considered to be constant over time. Finally, model 6 results from model 5 by omitting the
effect of the covariate treatment group G.

Table 3 shows the fit of models 1–6 assessed by the deviance information criterion DIC.
With the greatest value of DIC, model 1 has the worst model fit resulting from the greatest
complexity pD. Modelling the effects of A and M as constant in model 2 yields a greater D

Bayesian varying-coefficient models 207

 at LMU Muenchen on May 16, 2013smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


but a much smaller pD, resulting in a clearly better fit as assessed by DIC. The estimates of
these constant effects, b̂A ¼ �0:0028 and b̂M ¼ �0:0052, are almost zero. With 90%
Bayesian credible regions ð�0:0212;0:0150Þ and ð�0:0340; 0:0246Þ these two effects are
non-significant. The omission of the covariates A and M in model 3 yields a further clear
improvement of the fit with a smaller DIC. Also the omission of the covariate prior therapy P
in model 4 results in a somewhat better fit. We mentioned above that the effect of tumor type
‘squamous’ could be considered as non-significant. But both leaving out this covariate and
modelling the effect as constant yields a greater value of DIC and hence a worse fit (this result
is not shown in Table 3). However, we obtain a better fit if, in model 5, the effect of tumor
type ‘adeno’ is held constant over time, with estimate b̂H3

¼ 1:3073 and 90% credible region
(0.5950, 2.0824). This results both in a smaller deviance D and in a smaller complexity pD
when compared to model 4. If the covariate tumor type with its dummies H1;H2 and H3 are
left out completely, as in Mau (1986) where only the covariate Karnofsky scale is considered
as significant, we get a very bad model fit, worse than that of model 1 (not shown in Table 3).
A similar model fit to that from model 5 results if we additionally leave out the covariate
treatment group G (model 6). This corresponds to the results of Kalbfleisch and Prentice
(1980) and Mau (1986), where the treatment group is not significant for the survival of
patients.

The presented results indicate that the Veteran’s Administration lung cancer data are best
described by model 5 with the covariates treatment group, Karnofsky scale and histological
type of tumor.

As an illustration of the samples of the model indicators kj, Figure 5 gives details for the
samples of kG for estimating the varying effect fG of the covariate treatment group in model
5. The left part of Figure 5 shows the samples of kG with values between 4 and 14. With an
acceptance rate of 0.31 for the birth and death steps, the mixing over kG is good. In the
middle of Figure 5 is the frequency of the accepted values of kG with mode at kG ¼ 4. The
right part of Figure 5 depicts the cumulative occupancy frequencies pðkG < jjyÞ for the
different values of kG against the number of iterations. After the burn-in phase these
cumulative occupancy frequencies stay at a stable level, demonstrating an adequate length
of the burn-in. The samples of the other model indicators kj for j 2 f0;K1;K2;H1;H2g of
model 5 behave similarly and hence are not shown.

5 Conclusions

As we demonstrated in the last section, Bayesian non- and semiparametric regression is a
valuable tool for practical data analysis. MCMC techniques provide a rich output for

Table 3 Model fit of models 1–6 computed with the deviance information criterion (DIC)

Model D D(�yy) pD DIC

(1) 545.93 504.74 41.19 587.12
(2) 546.39 518.24 28.14 574.53
(3) 544.54 518.22 26.32 570.86
(4) 545.79 522.04 23.75 569.54
(5) 545.24 522.66 22.58 567.81
(6) 547.40 526.89 20.52 567.92
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inference, prediction and model comparison. No approximations based on asymptotic
arguments have to be made, and data-driven choice of smoothing or tuning parameters is
incorporated as part of the model.

The main advantage of Bayesian modelling and inference with modern Monte Carlo
techniques is the modular structure. This allows us to generalize and modify the existing
approach in a conceptually straightforward way. Some future extensions are: inclusion of
basis functions which admit edges or jumps, two-dimensional basis functions such as tensor
products of B-splines, and incorporation of random effects for longitudinal or spatial data.
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Figure 5 Sample path (left), frequencies (middle) and cumulative occupancy fractions (right) for the samples of the
model indicator kG for estimating the varying effect fG of covariate treatment group in model 5.
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tuning of the parameters of the proposal distribution. Suitable approaches are the adaptive
rejection Metropolis sampler of Gilks et al. (1995) or the approach of Gamerman (1997a),
the so-called weighted least squares proposal. The latter approach has some advantages
regarding computing time and allows the incorporation of correlations between the fixed
effects b. Another advantage is the possibility to adapt this method in a straightforward way
to GLM’s where the vector of fixed effects is split up into several blocks that have to be
simulated separately, as in the BVCM (6).

For this modification of the approach of Gamerman (1997a) we consider a GLM with
fixed effects a ¼ ða0

ð1Þ; . . . ; a
0
ðpþ1ÞÞ

0 split up in p þ 1 blocks að jÞ yielding the predictor
Zi ¼ zið1Það1Þ þ � � � þ ziðpþ1Þaðpþ1Þ. The BVCM (6) then is given by zið1Þ ¼ zi; að1Þ ¼ b and
zið jþ1Þ ¼ xijBjðrijÞ; að jþ1Þ ¼ cj for j ¼ 1; . . . ;p. The blocks að jÞ are assumed to be a priori

independent and multivariate normal Nðað j0Þ;Sað jÞ
Þ. For each j ¼ 1; . . . ;p þ 1 we consider

the full conditional pðað jÞjað�jÞ; yÞ of block að jÞ, where að�jÞ denotes the vector a without að jÞ. In
a single Fisher scoring step this full conditional is now maximized with regard to að jÞ,

resulting in a MAP (maximum a posteriori) estimate m̂mð jÞ of að jÞ and the inverse of the
expected Fisher information Ĉð jÞ ¼ F̂�1

ð jÞ . Details are given in Gamerman (1997a).
For the separate simulation of each block að jÞ, the two estimates m̂mð jÞ and Ĉð jÞ are

computed in each iteration of the algorithm by a single Fisher scoring step, given the
estimate of að jÞ of the preceding iteration. The new proposal for að jÞ is then drawn from the
multivariate normal proposal distribution Nðm̂mð jÞ; Ĉð jÞÞ. This procedure incorporates the
structure of the observation model in the proposal distribution, leading to a very efficient
algorithm with good convergence and mixing properties.
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