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1 Introduction

Considerable attention has been paid to various kinds of statistical issues in
linear regression models when some observations on some of the explanatory
variables are missing; see, e.g., Afifi and Elashoff (1966), Afifi and Elashoff
(1967), Afifi and Elashoff (1969), Hartley and Hocking (1971) and Little (1992)
for interesting reviews of literature. Among them, an important issue relates to
the estimation of regression coefficients when the missing values in the available
data set are replaced by some kind of imputed values and the model is thus re-
paired; see, e. g., Little (1992), Little and Rubin (1987) and Rao and Toutenburg
(1995) for an interesting exposition of various imputation procedures.

If least squares method is used for the estimation of regression coefficients
employing only the complete observations, the resulting estimators are unbiased.
Contending that outright discard of the remaining incomplete data set may not
necessarily be a good strategy, one may employ some kind of imputation proce-
dure to find substitutes for missing observations. If the imputation procedure
provides nonstochastic values for the replacement of missing observations and
the least squares method is applied to the thus repaired model, the resulting
estimators of regression coefficients are biased except in a trivial case where im-
puted values and true values of missing observations are identical. Performance
properties of such estimators have been analyzed by Toutenburg, Heumann,
Fieger and Park (1995); see also Rao and Toutenburg (1995, Chap. 8).

In view of the biased nature of least squares estimators, a question arises
whether we can find other biased estimators having better efficiency properties.
An effort in this direction is reported in this article. It essentially comnsists
of applying the Stein-rule estimation method to the repaired model; see, e. g.,
Judge and Bock (1978) for a detail account of Stein-rule estimation method.

The plan of this article is as follows. Section 2 describes the linear regres-
sion model with missing observations and presents the estimators for regression
coefficients. Section 3 presents the large sample asymptotic approximations for
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the bias vector and the mean squared error matrix of the estimators. A com-
parison of efficiency properties is made in Section 4. Finally, some remarks are
presented in Section 5.

2 Model Specification and Estimators
Let us consider the following linear regression model with missing observations:

Yy = XcB+tec (2.1)
Y = X*/6+€*

where y. and y. are column vectors of 7" and m observations respectively on the
study variable, X. and X, are matrices of T' and m observations respectively on
k explanatory variables, €. and €, are column vectors of T and m disturbances
respectively and f is a column vector of k regression coefficients.

It is assumed that the matrix X, has full column rank and is completely
known while the matrix X, may not necessarily have full column rank and is
partially known in the sense that each row vector of X, contains at least one
value missing.

Finally, we assume that the elements of ¢, and €, are independently and
identically distributed following a normal distribution with zero mean and unit
variance.

We thus observe that equations (2.1) and (2.2) describe the linear regression
model with complete and incomplete observations respectively.

If we apply the least squares method to (2.1) and (2.2) together, we get the
following estimator of 3:

b= (XéXc+XiX*)71(Xéyc+Xiy*) (2'3)

which is the optimal estimator in the class of linear and unbiased estimators.
This estimator has, however, no practical use as some elements in the matrix
X, are missing.

If we restrict our attention to complete data only and accordingly apply least
squares to (2.1), we find the estimator of 3 as

be = (X.Xo) ™ X0y, (2.4)

which is unbiased.

If we wish to utilize incomplete data set also for the estimation of 3, we need
to employ some kind of imputation procedure so as to find substitutes for the
missing elements in X,. An interesting description of various imputation pro-
cedures is available in Little (1992, Sec. 4 and Sec. 7) and Rao and Toutenburg
(1995, Sec. 8.3). Accordingly, let Xr denote a m X k matrix such that it is
same as X, except that missing values are replaced by nonstochastic quantities
obtained from some imputation procedure.

Substituting Xg in place of X, in (2.3), we get an operational version of
least squares estimator:

br = (X\Xc + XpXp) " (Xlye + Xpys) (2.5)

which is a biased estimator of 3.



As bg is biased, it is tempting to consider other biased estimators which
may have better performance properties than bgz. There could possibly be many
ways to do it, but we propose to consider a shrunken estimator based on bg. In
particular, we choose to apply the method of Stein-rule estimation. This yields
the following family of estimators for g:

. — X.br) (ye — Xcb « — Xrbr) (y« — Xrb
G = [1 e (e = Xebr)' (v , cIR) + (y, rbR)'(y rbR) br (2.6)
e (X!X:. + X5 XR)bR
where h* = (m) and h is any positive nonstochastic scalar characteriz-

ing the estimator; see, e. g., Judge and Bock (1978).

3 Asymptotic Properties

Toutenburg et al. (1995) have presented exact expressions for the bias vector
and mean squared error matrix of the estimator brp and have examined its
efficiency with respect to the estimator b.. Similar expressions for the Stein-
rule estimators can be derived following Judge and Bock (1978) but they will
be sufficiently intricate and will not be helpful in deducing some clear inferences
regarding the superiority of one estimator over the other. We therefore consider
the large sample asymptotic approximations. For this purpose, we assume that
the number (m) of incomplete observations stays fixed and only the number
(T') grows large. Further, we assume the asymptotic cooperativeness of the
explanatory variables in the model so that the limiting form of the matrix
(T~1X!X,) as T tends to infinity is finite and nonsingular.

First of all, we notice that the bias vector of b. is null and its variance
covariance matrix is given by

V(be) = 02(X/X.) = %s (say) . (3.1)

Further, the distribution of T%(bC — () is multivariate normal with mean
vector 0 and variance covariance matrix o2S.

Similarly, if we consider the random vectors T3 (bp—pB)and T 3 (ﬂ}{ —0), it
can be easily verified by applying central limit theorem that both the quantities
have identical asymptotic distributions, and this asymptotic distribution is same
as the distribution of T'2 (b — ). Thus, on the basis of asymptotic distribution,
we cannot prefer one estimator over the other. We therefore consider large
sample asymptotic approximations for the estimators by and Sg.

It is easy to see from (2.1) and (2.2) that

(br — B)

(XoXe + XpXR) ™' [Xiee + Xpew + Xp(Xu — Xg)f]
1 I 1
= I+ =SX,X — —(SXe,
1 1 1
= —5Su+ =(SXpe+0) — =5 SXpXpSu+0,(T"?),(3.2)
T2 T T>

where u = T%Xéec and § = SXL(X. — XRg)B.
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It thus follows from (3.2) that the bias vector of bg to order 0(T 1) is

1
B(bg) = T(S. (3.3)
Similarly, observing that
1 1 ! 1 ! —2
[bR—E(bR)] =S EU‘{— TXRG* — EXRXRSU +0p(T ),

the variance covariance matrix to order 0(7?) is

V(br)

2

1 1
TS [E(uu') + T_;E(X}%E*“I + uel, Xg)
1
—TE(X}%XRSUUI +uu'SXpXp — X}{e*e'*XR)] S

2 2
= %5 - %SX}%XRS. (3.4)

From (3.3) and (3.4), we obtain the mean squared error matrix of br to order
0(T—2) as follows:

%(UzSX}%XRS 58 . (3.5)

It may be remarked that if we consider the exact expressions for the bias
vector, variance covariance matrix and mean squared error matrix obtained
by Toutenburg et al. (1995) and therefrom deduce large sample asymptotic
approximations to the order of our approximation, they are found to match the
results (3.3), (3.4) and (3.5).

For obtaining similar results in case of ﬁR, we observe that

(yc — chR) = €c— Xc(bR - ﬁ)
(y« — Xrbr) = e+ (Xu—Xg)B— Xgr(br—p5).

Using these along with (3.2) and writing

2
M(bg) = %S -

_1 1
w=T 2ce. —T20°
we can express

(yc — chR)l(yc — chR) + (y* - XRbR)I(y* - XRbR)
(T —m — k + 2)bg( X! Xo + X Xp)br

. —1
= ﬁ [02 + Tw—% +0p(T*1)_ [1 + m—#lm] x
B'u —1 1!

x [1 + 27T%/61571/3 +0,(T ):

_ ﬁ [02 + % + op(Tfl)_ [1+0,(T1)] x
L, B ]

x [1 2T%6’5—16 +0,(T )_
_ o2 1 o?p'u L,
= 75513 + Ti35-13 (w - 27@5_15) +0,(T7%)



whence we find

~ . 02 !
(Gn=9) = (r=5)- gzgmrg |7+ 77 (v = 2gges ) + 0T )] x

x [8+ (br — B)]
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! 2h
o’h hw
ﬂls—lﬂ (S ﬂIS lﬂﬁﬁ>:| ﬂls—lﬂ

Thus the bias vector, to order 0(T 1), of the estimator Br is

g = |:SX;%XRS+ ﬁ

B0 = 1 (5 55256) - (38)

Similarly, we see that
Br — E(Br)] = —Su+ =5 Xhe, — ——g+0,(T?)
R R)| = T3 T REx e g p

whence the variance covariance matrix to order 0(7?) is

1 1
V(Br) = TSE(uu')S + FSE(X]'RG*U' + ue, Xg)S

2
1
- ﬁE(gu'S + Sug' — SXpee. XgS) .

By virtue of normality and stochastic independence of €. and e,, it is easy
to verify that

o2 202h

~ o2 ,
Vo =55 - 2 [sxps + 22 (s- - Zoo)] . o)

It thus follows from (3.8) and (3.9) that the mean squared error matrix of
the estimator Sg is given by

A o? 1 .,
M(Br) = ?S T2( SXLpXpS —60")
o2h , ., o?(h+4)
SRy, [2025+ﬂ6 + 68 — 5513 ﬂﬂ] (3.10)

to order 0(7~?) of approximation.

4 Efficiency Comparisons

Let us now compare the asymptotic properties of the three estimators bc,br
and g of 8. Such a comparison may shed light on the usefulness of imputed
values for repairing the model so far as the estimation of regression coefficients
is concerned.



4.1 Bias

We have observed that the estimators br and B r obtained from the imputation
of missing observations are generally biased while the estimator b, which ignores
the incomplete observations is unbiased.

Comparing the two biased estimators, it is observed from (3.3) and (3.8)
that BR is better than by with respect to the criterion of length of bias vector
when the characterizing scalar h satisfies the following constraint:

h < B'STIBASXp(Xy — XR)B (4.1)

Qﬂ’ﬂ

which is not an attractive condition due to presence of unknown quantities.

4.2 Variability Around Mean Vector

First we state two results for any non-null column vector ¢ and any positive
definite matrix A of order k x k.

Lemma 1: The matrix (A — aa') is positive definite if and only if a’A=1a is
less than 1.
Proof: See Farebrother (1976).

Lemma 2: The matrix (aa’ — A) cannot be non-negative definite for k greater
than 1.

Proof: See Guilkey and Price (1981).

Now we observe from (3.1) and (3.4) that

2
D(beibr) = V(be) = V(br) = 755X XS (4.2)

which is a non-negative definite matrix. This implies that the imputation pro-
cedure leads to a gain in efficiency when the criterion is variance covariance
matrix to order 0(7~2).

Similarly, from (3.1) and (3.8), we have

D(b;;Br) = V(be) — V(Br)
_ Clsxrxps g 22 (g2 ' 43
= 7 [shves + 55 (5- gep)| 69

which is positive definite, using Lemma 1, if and only if

40°h 20%h [\
Wﬂ’ (SX}%XRS + ﬂ,gi_lﬂL?) A<l
or
i — i / 20%h -
75 %ﬁ —XR<XRSXR+ﬂ,S %) Xg|B<1
or

BXL (XRSXR + g2 I) Xgpf
p'S—ip

>1. (4.4)



If amin and apax denote the minimum and maximum values among the
characteristic roots of XpSX},, we observe that the condition (4.4) is satisfied
when

amln

202h

——>1
amax‘*’gz 6

which cannot hold true. Consequently, (4.4) can never hold good implying that
Br cannot be better than b..
Next, let us check whether the converse is true. Thus we have

D(Br;be) = V(Br) = V(be)
02 40%h 202h
= ﬂﬂ'— <SX’ XpS + 55— >] 4.5
CERIOE RS + ey 09
which cannot be non-negative by virtue of Lemma 2 except in the trivial case
k = 1. This means that the estimator b. cannot be better than 8 except in
the special case of k = 1.
Finally, from (3.4) and (3.9), we get

. N 20h
Dwi ) = V(o) = V(on) = etz (5= o) (40

which cannot be positive definite from Lemma 1. Similarly, it follows from
Lemma 2 that the matrix difference D(BR; br) cannot be non-negative definte
except when k& = 1. Thus none of the two estimators by and BR is generally
superior to other.

Now let us compare the estimators with respect to a scalar measure of vari-
ability around mean vector. Choosing this weak criterion to be trace of S~!
times the variance covariance matrix to order 0(7~2), we observe from (4.2)
that

2

% tr X} Xp (4.7)

which is obviously positive implying the superiority of bg over b.
Similarly, from (4.3), we have

tr ST'D(be;bR) =

o? 202h(k — 2)

tr S~ D(b,; Br) = 73 |t SXpXp+ 5513 (4.8)
which is positive for k£ > 1. If £ = 1, the condition for its positivity is
5' '8
S rSXpXn. (4.9)
Comparing by and g, we see from (4.6) that
. 20th(k — 2)
-1 . —

whence it follows that BR is better than bgr for all positive choices of charac-
terizing scalar h provided that k exceeds 1. When k = 1, the estimator bg is
better than Bg for all positive values of h.



4.3 Variability Around True Parameter Vector

Now let us compare the estimators according to the criterion of mean squared
error matrix to the order of our approximation.
From (3.1) and (3.5), we observe that

A(be;bg) = V(be) — M(bg) = — (025X XrS — 60") (4.11)

1
TQ(
which is positive definite, according to Lemma 1, if and only if

%5' HXhXR)"lS18 < 1

provided that (X5 Xg) is invertible. When (X5 Xg) is not invertible, it is hard
to determine the nature of matrix on the right hand side of (4.11).

On the other hand, if we consider the difference A(bg;b.), it follows from
Lemma 2 that it cannot be positive definite for £ > 1 provided that (X5 Xg) is
nonsingular. If (X;Xg) is singular, nothing definite can be said.

Similarly, from (3.1), (3.5) and (3.10), we find that

~

Albe; Br) = V(be) — M(BR)

- le( 25X1 XS — 68"
Ugh 2 ! ! (h+4) !
+ T3 2528 + 38" + 64 — Z 55 ﬁﬂﬁ](4.12)
A(br;Br) = V(br) — M(Bg)
2h ! ! 2 h+4 !
- m {20254—,8(5 +68 — %ﬁﬂ} . (4.13)

It is, however, difficult to draw any clear inference from these expressions
regarding the superiority of one estimator over the other.

Next, let us compare the risk functions under a quadratic loss structure with
loss matrix as S~1.

Premultiplying (4.11) by S~! and then taking trace, we observe that bg has
smaller risk in comparison to b. when

1 1
trSXpXp > —6'S7'0= ﬂ (X. — Xg) XpSXRp(X.— Xg)B  (4.14)
g
while the reverse is true when the condition (4.14) holds with an opposite in-

equality sign. .
Similarly, it follows from (4.13) that 8g is better than bg when

h<?2 [(k —2)+ %ﬁ'xg(x* - XR)ﬁ] (4.15)

provided that the quantity in square brackets on the right hand side is positive.
In a similar manner it is seen from (4.13) that 8g is better than b. when

{5’ '8
0'

<t rSXpXg — —5' 5) +2h (k -2+ %5'5-%) - hﬂ >0
g
(4.16)



which holds true so long as (4.14) and (4.15) are satisfied.

If the quantity on the left hand side of inequality (4.16) is negative, b, is
superior to Bg. This is true at least as long as the inequalities (4.14) and
(4.15) hold true with a reversed sign. Then b, turns out to be better than both
the estimators by and ﬁR implying that it is not worthwhile to employ any
imputation procedure and it is better to use complete data set only.

5 Some Remarks

We have considered the problem of estimating the coefficients in a linear regres-
sion model when some observations on some explanatory variables are missing.
For this purpose, we have followed two alternative strategies. One strategy
consists of ignoring the incomplete data set and utilizing simply the complete
observations. Now an application of least squares method yields unbiased es-
timators which may not be necessarily efficient. The other strategy consists
of finding imputed values for missing observations through some imputation
procedure and then employing the thus repaired data set. Now an application
of least squares method provides generally biased estimators. Extending a bit
further, we have considered the Stein-rule family of biased estimators.

As the unbiased as well as the biased estimators of regression coefficients are
found to share the same asymptotic distributional properties, we have obtained
large sample asymptotic approximations and have analyzed their performance
properties with respect to criteria like the bias, variability around mean vector
and variability around true coefficient vector. Such an exercise has helped us
in specifying the situations where use of imputation procedure is worthwhile in
comparison to the strategy of ignoring the incomplete observations and vice-
versa.

Shrinkage techniques like ridge regression and Stein-rule estimation are well
documented for their capabilities to handle the problems arising due to pres-
ence of harmful multicollinearity. It will therefore be interesting to examine the
performance of Stein-rule estimators with respect to varying degree of harmful
multicollinearity, for example, on the lines of Hill and Ziemer (1983). Other
kinds of shrinkage estimators may be included and their relative performance
may be analyzed. It will perhaps be equally interesting to investigate the be-
haviour of estimators when the distribution of disturbances departs from nor-
mality. For studying these issues, we are planning a study based on simulation
and bootstrap methodologies, and we hope to come back with some findings in
near future.
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