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Improving the Estimation of Coe�cients in

Linear Regression Models with Some Missing

Observations on Some Explanatory Variables

H� Toutenburg� V�K� Srivastava��

September �� ����

� Introduction

Considerable attention has been paid to various kinds of statistical issues in
linear regression models when some observations on some of the explanatory
variables are missing� see� e� g�� A�� and Elasho� ��	

�� A�� and Elasho�
��	
��� A�� and Elasho� ��	
	�� Hartley and Hocking ��	��� and Little ��		
�
for interesting reviews of literature� Among them� an important issue relates to
the estimation of regression coe�cients when the missing values in the available
data set are replaced by some kind of imputed values and the model is thus re�
paired� see� e� g�� Little ��		
�� Little and Rubin ��	��� and Rao and Toutenburg
��		�� for an interesting exposition of various imputation procedures�

If least squares method is used for the estimation of regression coe�cients
employing only the complete observations� the resulting estimators are unbiased�
Contending that outright discard of the remaining incomplete data set may not
necessarily be a good strategy� one may employ some kind of imputation proce�
dure to �nd substitutes for missing observations� If the imputation procedure
provides nonstochastic values for the replacement of missing observations and
the least squares method is applied to the thus repaired model� the resulting
estimators of regression coe�cients are biased except in a trivial case where im�
puted values and true values of missing observations are identical� Performance
properties of such estimators have been analyzed by Toutenburg� Heumann�
Fieger and Park ��		��� see also Rao and Toutenburg ��		�� Chap� ���

In view of the biased nature of least squares estimators� a question arises
whether we can �nd other biased estimators having better e�ciency properties�
An e�ort in this direction is reported in this article� It essentially consists
of applying the Stein�rule estimation method to the repaired model� see� e� g��
Judge and Bock ��	��� for a detail account of Stein�rule estimation method�

The plan of this article is as follows� Section 
 describes the linear regres�
sion model with missing observations and presents the estimators for regression
coe�cients� Section � presents the large sample asymptotic approximations for
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the bias vector and the mean squared error matrix of the estimators� A com�
parison of e�ciency properties is made in Section �� Finally� some remarks are
presented in Section ��

� Model Speci�cation and Estimators

Let us consider the following linear regression model with missing observations�

yc � Xc� � �c �
���

y� � X�� � �� �
�
�

where yc and y� are column vectors of T and m observations respectively on the
study variable� Xc and X� are matrices of T and m observations respectively on
k explanatory variables� �c and �� are column vectors of T and m disturbances
respectively and � is a column vector of k regression coe�cients�

It is assumed that the matrix Xc has full column rank and is completely
known while the matrix X� may not necessarily have full column rank and is
partially known in the sense that each row vector of X� contains at least one
value missing�

Finally� we assume that the elements of �c and �� are independently and
identically distributed following a normal distribution with zero mean and unit
variance�

We thus observe that equations �
��� and �
�
� describe the linear regression
model with complete and incomplete observations respectively�

If we apply the least squares method to �
��� and �
�
� together� we get the
following estimator of ��

b � �X �

cXc �X �

�
X��

���X �

cyc �X �

�
y�� �
���

which is the optimal estimator in the class of linear and unbiased estimators�
This estimator has� however� no practical use as some elements in the matrix
X� are missing�

If we restrict our attention to complete data only and accordingly apply least
squares to �
���� we �nd the estimator of � as

bc � �X �

cXc�
��X �

cyc �
���

which is unbiased�
If we wish to utilize incomplete data set also for the estimation of �� we need

to employ some kind of imputation procedure so as to �nd substitutes for the
missing elements in X�� An interesting description of various imputation pro�
cedures is available in Little ��		
� Sec� � and Sec� �� and Rao and Toutenburg
��		�� Sec� ����� Accordingly� let XR denote a m � k matrix such that it is
same as X� except that missing values are replaced by nonstochastic quantities
obtained from some imputation procedure�

Substituting XR in place of X� in �
���� we get an operational version of
least squares estimator�

bR � �X �

cXc �X �

RXR�
���X �

cyc �X �

Ry�� �
���

which is a biased estimator of ��






As bR is biased� it is tempting to consider other biased estimators which
may have better performance properties than bR� There could possibly be many
ways to do it� but we propose to consider a shrunken estimator based on bR� In
particular� we choose to apply the method of Stein�rule estimation� This yields
the following family of estimators for ��

��R �

�
�� h�

�yc �XcbR�
��yc �XcbR� � �y� �XRbR�

��y� �XRbR�

b�R�X
�

cXc �X �

RXR�bR

�
bR �
�
�

where h� �
�

h
T�m�k��

�
and h is any positive nonstochastic scalar characteriz�

ing the estimator� see� e� g�� Judge and Bock ��	����

� Asymptotic Properties

Toutenburg et al� ��		�� have presented exact expressions for the bias vector
and mean squared error matrix of the estimator bR and have examined its
e�ciency with respect to the estimator bc� Similar expressions for the Stein�
rule estimators can be derived following Judge and Bock ��	��� but they will
be su�ciently intricate and will not be helpful in deducing some clear inferences
regarding the superiority of one estimator over the other� We therefore consider
the large sample asymptotic approximations� For this purpose� we assume that
the number �m� of incomplete observations stays �xed and only the number
�T � grows large� Further� we assume the asymptotic cooperativeness of the
explanatory variables in the model so that the limiting form of the matrix
�T��X �

cXc� as T tends to in�nity is �nite and nonsingular�
First of all� we notice that the bias vector of bc is null and its variance

covariance matrix is given by

V �bc� � ���X �

cXc�
�� �

��

T
S �say� � �����

Further� the distribution of T
�

� �bc � �� is multivariate normal with mean
vector � and variance covariance matrix ��S�

Similarly� if we consider the random vectors T
�

� �bR � �� and T
�

� � ��R � ��� it
can be easily veri�ed by applying central limit theorem that both the quantities
have identical asymptotic distributions� and this asymptotic distribution is same
as the distribution of T

�

� �bc���� Thus� on the basis of asymptotic distribution�
we cannot prefer one estimator over the other� We therefore consider large
sample asymptotic approximations for the estimators bR and ��R�

It is easy to see from �
��� and �
�
� that

�bR � �� � �X �

cXc �X �

RXR�
���X �

c�c �X �

R�� �X �

R�X� �XR���

�

�
I �

�

T
SX �

RXR

�
�� �

�

T
�

�

Su�
�

T
�SX �

R�� � ��

�

�
�

T
�

�

Su�
�

T
�SX �

R�� � ���
�

T
�

�

SX �

RXRSu� �p�T
��� � ���
�

where u � �

T
�

�

X �

c�c and � � SX �

R�X� �XR���

�



It thus follows from ���
� that the bias vector of bR to order ��T��� is

B�bR� �
�

T
� � �����

Similarly� observing that

�bR �E�bR�� � S

�
�

T
�

�

u�
�

T
X �

R�� �
�

T
�

�

X �

RXRSu

�
� �p�T

��� �

the variance covariance matrix to order ��T��� is

V �bR� �
�

T
S

�
E�uu�� �

�

T
�

�

E�X �

R��u
� � u��

�
XR�

�

�

T
E�X �

RXRSuu
� � uu�SX �

RXR �X �

R���
�

�
XR�

�
S

�
��

T
S �

��

T �
SX �

RXRS � �����

From ����� and ������ we obtain the mean squared error matrix of bR to order
��T��� as follows�

M�bR� �
��

T
S �

�

T �
���SX �

RXRS � ���� � �����

It may be remarked that if we consider the exact expressions for the bias
vector� variance covariance matrix and mean squared error matrix obtained
by Toutenburg et al� ��		�� and therefrom deduce large sample asymptotic
approximations to the order of our approximation� they are found to match the
results ������ ����� and ������

For obtaining similar results in case of ��R� we observe that

�yc �XcbR� � �c �Xc�bR � ��

�y� �XRbR� � �� � �X� �XR�� �XR�bR � �� �

Using these along with ���
� and writing

w � T�
�

� ��c�c � T
�

���

we can express

�yc �XcbR�
��yc �XcbR� � �y� �XRbR�

��y� �XRbR�

�T �m� k � 
�b�R�X
�

cXc �X �

RXR�bR
���
�

�
�

T��S���

�
�� �

w

T
�

�

� �p�T
���

� �
� �

m� k � 


T

�
��

�

�

�
� � 


��u

T
�

���S���
� �p�T

���

�
��

�
�

T��S���

�
�� �

w

T
�

�

� �p�T
���

� �
� � �p�T

���
�
�

�

�
�� 


��u

T
�

���S���
� �p�T

���

�

�
��

T��S���
�

�

T
�

� ��S���

�
w � 


����u

��S���

�
� �p�T

���

�



whence we �nd

���R � �� � �bR � ���
h

T��S���

�
�� �

�

T
�

�

�
w � 


����u

��S���

�
� �p�T

���

�
�

� �� � �bR � ���

�
�

T
�

�

Su�
�

T
f �

�

T
�

�

g � �p�T
��� �����

where

f � SX �

R�� �

�
� �

��h

��S���
�

�

g �

�
SX �

RXRS �
��h

��S���

�
S �




��S���
���

��
u�

hw

��S���
� �

Thus the bias vector� to order ��T���� of the estimator ��R is

B� ��R� �
�

T

�
� �

��h

��S���
�

�
� �����

Similarly� we see that

� ��R �E� ��R�� �
�

T
�

�

Su�
�

T
SX �

R�� �
�

T
�

�

g � �p�T
���

whence the variance covariance matrix to order ��T��� is

V � ��R� �
�

T
SE�uu��S �

�

T
�

�

SE�X �

R��u
� � u��

�
XR�S

�

�

T �
E�gu�S � Sug� � SX �

R���
�

�
XRS� �

By virtue of normality and stochastic independence of �c and ��� it is easy
to verify that

V � ��R� �
��

T
S �

��

T �

�
SX �

RXRS �

��h

��S���

�
S �




��S���
���

��
� ���	�

It thus follows from ����� and ���	� that the mean squared error matrix of

the estimator ��R is given by

M� ��R� �
��

T
S �

�

T �
���SX �

RXRS � ����

�

��h

T ���S���

�

��S � ��� � ��� �

���h� ��

��S���
���

�
������

to order ��T��� of approximation�

� E�ciency Comparisons

Let us now compare the asymptotic properties of the three estimators bc� bR
and ��R of �� Such a comparison may shed light on the usefulness of imputed
values for repairing the model so far as the estimation of regression coe�cients
is concerned�

�



��� Bias

We have observed that the estimators bR and ��R obtained from the imputation
of missing observations are generally biased while the estimator bc which ignores
the incomplete observations is unbiased�

Comparing the two biased estimators� it is observed from ����� and �����

that ��R is better than bR with respect to the criterion of length of bias vector
when the characterizing scalar h satis�es the following constraint�

h �



�����
��S�����SX �

R�X� �XR�� �����

which is not an attractive condition due to presence of unknown quantities�

��� Variability Around Mean Vector

First we state two results for any non�null column vector a and any positive
de�nite matrix A of order k � k�

Lemma �� The matrix �A � aa�� is positive de�nite if and only if a�A��a is
less than ��

Proof � See Farebrother ��	�
��

Lemma �� The matrix �aa��A� cannot be non�negative de�nite for k greater
than ��

Proof � See Guilkey and Price ��	����
Now we observe from ����� and ����� that

D�bc� bR� � V �bc�� V �bR� �
��

T �
SX �

RXRS ���
�

which is a non�negative de�nite matrix� This implies that the imputation pro�
cedure leads to a gain in e�ciency when the criterion is variance covariance
matrix to order ��T����

Similarly� from ����� and ������ we have

D�bc� ��R� � V �bc�� V � ��R�

�
��

T �

�
SX �

RXRS �

��h

��S���

�
S �




��S���
���

��
�����

which is positive de�nite� using Lemma �� if and only if

���h

���S�����
��
�
SX �

RXRS �

��h

��S���
S

���

� � �

or




��S���
��

	
S�� �X �

R

�
XRSX

�

R �

��h

��S���
I

���

XR



� � �

or

��X �

R

�
XRSX

�

R � ���h
��S���

I
�
��

XR�

��S���
	 � � �����






If 
min and 
max denote the minimum and maximum values among the
characteristic roots of XRSX

�

R� we observe that the condition ����� is satis�ed
when


min


max �
���h
��S���

	 �

which cannot hold true� Consequently� ����� can never hold good implying that
��R cannot be better than bc�

Next� let us check whether the converse is true� Thus we have

D� ��R� bc� � V � ��R�� V �bc�

�
��

T �

�
���h

���S�����
��� �

�
SX �

RXRS �

��h

��S���
S

��
�����

which cannot be non�negative by virtue of Lemma 
 except in the trivial case
k � �� This means that the estimator bc cannot be better than ��R except in
the special case of k � ��

Finally� from ����� and ���	�� we get

D�bR� ��R� � V �bR�� V � ��R� �

��h

T ���S���

�
S �




��S���
���

�
���
�

which cannot be positive de�nite from Lemma �� Similarly� it follows from
Lemma 
 that the matrix di�erence D� ��R� bR� cannot be non�negative de�nte

except when k � �� Thus none of the two estimators bR and ��R is generally
superior to other�

Now let us compare the estimators with respect to a scalar measure of vari�
ability around mean vector� Choosing this weak criterion to be trace of S��

times the variance covariance matrix to order ��T���� we observe from ���
�
that

trS��D�bc� bR� �
��

T �
trSX �

RXR �����

which is obviously positive implying the superiority of bR over bc�
Similarly� from ������ we have

trS��D�bc� ��R� �
��

T �

�
trSX �

RXR �

��h�k � 
�

��S���

�
�����

which is positive for k 	 �� If k � �� the condition for its positivity is

h 	
��S���


��
trSX �

RXR � ���	�

Comparing bR and ��R� we see from ���
� that

trS��D�bR� ��R� �

��h�k � 
�

T ���S���
������

whence it follows that ��R is better than bR for all positive choices of charac�
terizing scalar h provided that k exceeds �� When k � �� the estimator bR is
better than ��R for all positive values of h�

�



��� Variability Around True Parameter Vector

Now let us compare the estimators according to the criterion of mean squared
error matrix to the order of our approximation�

From ����� and ������ we observe that

��bc� bR� � V �bc��M�bR� �
�

T �
���SX �

RXRS � ���� ������

which is positive de�nite� according to Lemma �� if and only if

�

��
��S���X �

RXR�
��S��� � �

provided that �X �

RXR� is invertible� When �X �

RXR� is not invertible� it is hard
to determine the nature of matrix on the right hand side of �������

On the other hand� if we consider the di�erence ��bR� bc�� it follows from
Lemma 
 that it cannot be positive de�nite for k 	 � provided that �X �

RXR� is
nonsingular� If �X �

RXR� is singular� nothing de�nite can be said�
Similarly� from ������ ����� and ������� we �nd that

��bc� ��R� � V �bc��M� ��R�

�
�

T �
���SX �

RXRS � ����

�
��h

T ���S���

�

��S � ��� � ��� �

���h� ��

��S���
���

�
����
�

��bR� ��R� � V �bR��M� ��R�

�
��h

T ���S���

�

��S � ��� � ��� �

���h� ��

��S���
���

�
� ������

It is� however� di�cult to draw any clear inference from these expressions
regarding the superiority of one estimator over the other�

Next� let us compare the risk functions under a quadratic loss structure with
loss matrix as S���

Premultiplying ������ by S�� and then taking trace� we observe that bR has
smaller risk in comparison to bc when

trSX �

RXR 	
�

��
��S��� �

�

��
���X� �XR�

�XRSX
�

R�X� �XR�� ������

while the reverse is true when the condition ������ holds with an opposite in�
equality sign�

Similarly� it follows from ������ that ��R is better than bR when

h � 


�
�k � 
� �

�

��
��X �

R�X� �XR��

�
������

provided that the quantity in square brackets on the right hand side is positive�
In a similar manner it is seen from ������ that ��R is better than bc when�
��S���

��

�
trSX �

RXR �
�

��
��S���

�
� 
h

�
k � 
 �

�

��
��S���

�
� h�

�
	 �

����
�

�



which holds true so long as ������ and ������ are satis�ed�
If the quantity on the left hand side of inequality ����
� is negative� bc is

superior to ��R� This is true at least as long as the inequalities ������ and
������ hold true with a reversed sign� Then bc turns out to be better than both

the estimators bR and ��R implying that it is not worthwhile to employ any
imputation procedure and it is better to use complete data set only�

� Some Remarks

We have considered the problem of estimating the coe�cients in a linear regres�
sion model when some observations on some explanatory variables are missing�
For this purpose� we have followed two alternative strategies� One strategy
consists of ignoring the incomplete data set and utilizing simply the complete
observations� Now an application of least squares method yields unbiased es�
timators which may not be necessarily e�cient� The other strategy consists
of �nding imputed values for missing observations through some imputation
procedure and then employing the thus repaired data set� Now an application
of least squares method provides generally biased estimators� Extending a bit
further� we have considered the Stein�rule family of biased estimators�

As the unbiased as well as the biased estimators of regression coe�cients are
found to share the same asymptotic distributional properties� we have obtained
large sample asymptotic approximations and have analyzed their performance
properties with respect to criteria like the bias� variability around mean vector
and variability around true coe�cient vector� Such an exercise has helped us
in specifying the situations where use of imputation procedure is worthwhile in
comparison to the strategy of ignoring the incomplete observations and vice�
versa�

Shrinkage techniques like ridge regression and Stein�rule estimation are well
documented for their capabilities to handle the problems arising due to pres�
ence of harmful multicollinearity� It will therefore be interesting to examine the
performance of Stein�rule estimators with respect to varying degree of harmful
multicollinearity� for example� on the lines of Hill and Ziemer ��	���� Other
kinds of shrinkage estimators may be included and their relative performance
may be analyzed� It will perhaps be equally interesting to investigate the be�
haviour of estimators when the distribution of disturbances departs from nor�
mality� For studying these issues� we are planning a study based on simulation
and bootstrap methodologies� and we hope to come back with some �ndings in
near future�
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