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Abstract

This paper presents a fully Bayesian approach to regression splines with automatic knot selection

in generalized semiparametric models for fundamentally non�Gaussian responses� In a basis

function representation of the regression spline we use a B�spline basis� The reversible jump

Markov chain Monte Carlo method allows for simultaneous estimation both of the number of

knots and the knot placement� together with the unknown basis coe�cients determining the

shape of the spline� Since the spline can be represented as design matrix times unknown �basis�

coe�cients� it is straightforward to include additionally a vector of covariates with �xed e	ects�

yielding a semiparametric model� The method is illustrated with data sets from the literature

for curve estimation in generalized linear models� the Tokyo rainfall data and the coal mining

disaster data� and by a credit�scoring problem for generalized semiparametric models�
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� Introduction

Let us consider observations �yi� xi� zi�� i � � � � � � n� on p� explanatory variables� with a metrical

covariate x and a p�vector z � �z�� � � � � zp�� and on a univariate nonnormal response y� e�g� a discrete

or nonnegative response� The aim is to analyze the dependence of the response on the covariates in

a semiparametric generalized linear model� That means� the distribution of yi given the covariates

xi� zi is assumed to belong to an exponential family where the mean �i � E�yijxi� zi� is linked

to the predictor �i by an appropriate response function h� i�e�� �i � h��i�� Since we consider a

semiparametric approach� the predictor is of the form

�i � f�xi� � zi�� ��

with an unknown real valued regression function f and a p�dimensional parameter vector ��

A common approach to estimate the unknowns f and � from the data is maximizing the

penalized log�likelihood

pl�f� �� �
nX
i��

li�yij�i��


�
�

Z �
f ���x�

��
dx ���

over f and �� where the log�likelihood contribution li�yij�i� is de�ned as the logarithm of the

probability density function p�yij�i� of the response yi� Here the parameter � controls the compro�

mise between faith with the data and smoothness of the maximizing function �f � which is a natural

cubic smoothing spline with knots at each distinct xi� see Green and Yandell �	��� or Green and

Silverman �		��� For rather small �� �f will nearly interpolate the data� while a large � yields a

very smooth and nearly linear �f � Data driven methods for choosing the smoothing parameter �

exist� see e�g� Fahrmeir and Tutz �		��� Chapter ��

Another approach starts by de�ning the unspeci�ed function f as a spline� With a certain

number k of knots t� � � � � � tk� with tj � �xmin� xmax�� we consider the space Sq�t�� � � � � tk� of

splines of order q� In this space of dimension K � k � q we can represent f by

f�x� �
KX
j��

cjBj�x� � B�x� c� ���

with �known� basis functions B�x� � �B��x�� � � � � BK�x�� of Sq�t�� � � � � tk�� and unknown basis

coe�cients c � �c�� � � � � cK��� As alternative one may de�ne f to lie in a subspace of Sq�t�� � � � � tk��

�



the k�dimensional space NSq�t�� � � � � tk� of natural splines of order q � �m� m � IN� For q � ��

NSq�t�� � � � � tk� is the space of natural cubic splines� where the function �f � resulting from the

maximization of the penalized log�likelihood ���� lies in� De�ning K � k� f � NSq�t�� � � � � tk� has

the representation ���� too� An appropriate basis B��x�� � � � � BK�x� for both spaces is the widely

used B�spline basis with local support� For details and e�cient algorithms for computing this basis

see Eubank �	��� or Schumaker �		��� and especially for natural splines Lyche and Schumaker

�	��� or Lyche and Str�m �		���

Both with f � Sq�t�� � � � � tk� and with f � NSq�t�� � � � � tk� the predictor �� now has the form

�i � B�xi� c � zi� �
�
B�xi�� zi

��B� c

�

�
CA � ���

i�e�� we have a generalized linear model with �xed coe�cients c and �� that can be estimated by

standard methods� The shape and smoothness of the estimator �f is given by the number k and

the location of the knots t�� � � � � tk� With only a few knots the function �f is very smooth� while

increasing the number k of knots allows a more wiggly and �exible �f � Placement of a knot in a

certain aera yields more �exibility of �f in that aera� Since �nding the right number and location of

knots by visual inspection of the data is impossible in most cases �see Eubank� 	��� Section �����

we need data driven methods for knot placement to get �in some sense� nearly optimal estimators

�f �

For normal response y� such data driven methods exist� Friedman and Silverman �	�	� present

an adaptible knot placement algorithm with forward and backward steps� In the forward steps

they add knots which are optimal with respect to the average squared residual criterion� while in

the backward steps they delete knots yielding the model being optimal for the generalized cross�

validation score� A Bayesian approach using reversible jump Markov chain Monte Carlo �RJMCMC�

see Green� 		�� is presented by Denison� Mallick and Smith �		��� In each iteration they choose

the set of knots by RJMCMC methods� and given these knots the spline is estimated by the

usual least squares approach� The estimator �f then is built by averaging over all iterations� For

generalized linear models� Stone� Hansen� Kooperberg and Troung �		�� also propose forward and

backward steps� They add basis functions using Rao statistics until a maximum number of knots

�



is reached� Subsequently� basis functions are deleted using Wald statistics� Out of the complete

sequence of models� the one optimal with respect to the AIC criterion is chosen�

This paper presents a Bayesian approach to automatic knot selection in generalized semipara�

metric models �� with nonnormal response using RJMCMC methods for knot selection and �or�

dinary� MCMC methods for estimating the resulting generalized linear model ���� So� in contrast

to Denison et al� �		��� where the estimation of the basis coe�cients given the knots is done by

ordinary least squares methods for normal response� we use a fully Bayesian approach in nonnormal

cases� And contrary to Friedman and Silverman �	�	� and Stone et al� �		��� where the result is

one somehow �optimal� knot placement� the RJMCMC method can neither �nd one optimal num�

ber k of knots nor an optimal placement of these k knots� But in each iteration of the RJMCMC

algorithm both the number of knots and the knot placement may vary� So in each iteration the

estimation of the coe�cients c and consequently the estimation of f is based on di�erent knot

settings� The �nal estimator of f is built as the mean of the estimators in each iteration� and hence

a great �exibility of �f is provided� Hence� this procedure is a sort of Bayesian model averaging�

The paper is organized as follows
 Section � gives a brief overview over ordinary and reversible

jump MCMC methods� which are applied in Section � to the Bayesian approach to adaptive re�

gression splines� Applications of the proposed method to curve estimation in the generalized linear

model and to the generalized semiparametric model follow in Section �� Some concluding remarks

and possible extensions of the model are given in Section ��

� Markov chain Monte Carlo methods

Here we give a brief summary of Markov chain Monte Carlo �MCMC� theory� The emphasis�

in Section ���� is on reversible jump MCMC� proposed by Green �		��� which allows Bayesian

estimation in hierarchical models where the parameter dimension varies� As introduction� Section

�� contains the �ordinary� MCMC methods� but restricted to the Metropolis�Hastings algorithm�

one of the most popular methods in MCMC computation� For more details including other methods�

e�g� the Gibbs sampler� see Tierney �		��� Besag� Green� Higdon and Mengersen �		�� or Gilks�

Richardson and Spiegelhalter �		��� In contrast to the remainder of the paper� where x is the
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metrical covariate� in this section the parameters of interest are denoted by x�

��� Metropolis�Hastings MCMC

Consider a distribution 	�x�� which in Bayesian inference is the posterior of the parameters of

interest x � �x�� � � � � xn� given the data� Since in most cases 	�x� is not completely known� e�g� due

to analytically intractable normalizing constants� direct sampling from the distribution of interest

is not possible� To overcome this problem� in MCMC computation we create a Markov chain

x���� � � � � x�N�� whose transition kernel P �x� x�� has the limiting distribution 	�x�� This sample is

used for estimating parameters of interest� e�g� E�x� is estimated by the sample mean� In the

Metropolis�Hastings method� we have to construct the kernel P �x� x�� in a way that it satis�es

aperiodicity and irreducibility� and also the detailed balance

	�x�P �x� x�� � 	�x��P �x�� x� �x� x�� ���

Often the vector x � �x�� � � � � xn� is split up into components xT � with T a subset of f� � � � � ng�

and we consider the so�called full conditionals 	�xT jx�T � instead of 	�x�� where x�T � fxi� i �� Tg�

Given the current state xT of the Markov chain� a new value x�T is drawn from an arbitrarily chosen

proposal density qT �xT � x
�
T �� With probability


T �xT � x
�
T � � min

	
�
	�x�T jx�T �qT �x�T � xT �

	�xT jx�T �qT �xT � x
�
T �



���

the proposed value is accepted as new state of the chain� otherwise we leave xT unchanged� De��

nition ��� ensures� that the necessary properties of the transition kernel P �x� x�� hold�

��� Reversible jump MCMC

Consider the following hierarchical model
 let k � K be an indicator from a countable set K given

k we have a parameter vector ��k� � !�k� �nally the data y� Here each k determines a model Mk

de�ned by the parameter ��k�� with dimension of parameter space !�k� possibly varying with k�

The hierarchy is also re�ected in the joint probability

p�k� ��k�� y� � p�k�p���k�jk�p�yjk� ��k���

�



the product of model probability� prior and likelihood� and in the joint posterior p�k� ��k�jy� �

p�k� ��k�� y�� on which Bayesian inference is based on� For convenience we abbreviate �k� ��k��

as x� and p�k� ��k�jy� � p�xjy� as 	�x�� Given k� x lies in Ck � fkg � !�k�� while generally

x � C �
S
k�K Ck�

For a fully Bayesian analysis with joint estimation of both model parameter ��k� and model

indicator k� we need a method� that switches between parameter subspaces A�B � C of possibly

di�erent dimension� For that reason we use di�erent move types m� and for each of these move

types we construct a transition kernel Pm� which satis�es the detailed balance

Z
A

Z
B
	�dx�Pm�x� dx�� �

Z
B

Z
A
	�dx��Pm�x�� dx�� �A�B � C�

That means� the equilibrium probability of moves from A to B equals that from B to A� Given

the current state x� a move of type m is proposed to state dx� with probability qm�x� dx��� and is

accepted with probability


m�x� x�� � min

�
�
	�dx��qm�x�� dx�

	�dx�qm�x� dx��

�
� ���

The ratio ��� makes sense for moves between subspaces A and B from C� if we consider that proposal

degrees of freedom are matched� This �dimension matching� assumption is attained as follows� For

a move from state x to state x� we generate random numbers u and set x� to be a deterministic

function x��x� u�� The reverse move from x� to x has to be de�ned symmetrically by generating

random numbers u� and setting x � x�x�� u��� For dimension matching there must be a bijection

between �x� u� and �x�� u��� i�e�� the dimensions n� and n� of u and u� must satisfy n��m� � n��m��

with m�� m� the dimensions of x and x�� respectively� The acceptance probability ��� then results

in


m�x� x�� � min

�
�
p�x�jy�j��x

��q��u
��

p�xjy�j��x�q��u�

��x�� u��

��x� u�


�
� ���

Here j�� j� are probabilities for the move types given x and x�� and q�� q� are the distributions of

u and u�� The Jacobian results from deriving the proposal of move B 	 A �qm�x�� dx�� from the

proposal of the reverse move A	 B �qm�x� dx��� using the distributions q�� q��

In practice often n� � m� � m� holds� i�e�� only for the birth step a random number u is

�



necessary� while the reverse death step is deterministic� given the element to be removed� In this

case� in ��� the terms q��u
�� and u� in the Jacobian have to be omitted�

For move types without switching between subspaces� i�e�� moves within one subspace� the

ordinary MCMC theory of Section �� holds� and the acceptance probabilities ��� and ��� are

equal� since then the Jacobian is  and all ratios depending on k cancel out� For further details on

the reversible jump MCMC method see Green �		���

� A Bayesian approach to adaptive regression splines

Consider the semiparametric generalized linear model of Section  with predictor ��� and the

function f being de�ned as spline ��� with B�spline basis functions B�� � � � � BK and basis coe�cients

c � �c�� � � � � cK��� With K � k and q � � here we consider f � NS��t�� � � � � tk�� i�e�� f is de�ned

as cubic natural spline� By means of comparisons� in Section ��� we give adjustments to the case

f � S��t�� � � � � tk� �with K � k � ���

Now assume� that both the number of knots k and the placement of these knots are not given

and so have to be estimated jointly with the model parameters� For a Bayesian approach let us

formulate the following hierarchical model
 the number k of knots is from some countable set K

�which is speci�ed in Section ��� and serves as model indicator� Each value of k de�nes a model�

that is determined by the parameters t � �t�� � � � � tk� and c � �c�� � � � � cK��� For given k� the model

for the data �yi� xi� zi�� i � � � � � � n� with y � �y�� � � � � yn�� is de�ned by the choice of the exponential

family and the semiparametric predictor ���� Including additionally the �xed e�ects � we de�ne

the model parameter

�k � �t� b� � IRk�K�p

with b � �c�� ����� Model indicator and model parameter are combined to � � �k� �k�� The hierar�

chical model is also expressed by the joint posterior

p�k� �kjy� � p�k�p��kjk�p�yjk� �k��

the product of model probability� prior and likelihood� where for notational convenience we neglect

the covariates x and z�

�



For the joint estimation of �k� �k� with variable model indicator k using the reversible jump

MCMC method� we have to develope appropriate reversible jump moves as mentioned in Section

���� The scanning of these moves may be done randomly� as in Green �		��� or in systematical

order� see Richardson and Green �		��� Following the latter approach we de�ne three move types


�� birth or death of one knot tj��� i�e�� adding or deleting a tj�� with changing k by  and

corresponding changes in c the choice between birth and death is done randomly 

��� move a given knot tj to another position �without change in k� 

��� update the coe�cients b � �c�� ���� �without change in k��

The set of move types is denoted by S � fB�D�P�Cg� where B means a birth� D a death� P a

position change� and C an update of coe�cients� One iteration or sweep of our algorithm is made

of the move types �� to ���� Working out moves �� to ���� each sweep may result in a di�erent

knot setting� i�e�� a di�erent number and location of knots� De�ning the �nal estimator �f as mean

of the estimators of f in each sweep� which are based on these di�erent settings� a great �exibility

of �f and a good �t to the data is provided�

The following section gives details to the speci�cation of the prior distributions� while Sections

��� to ��� present the reversible jump move types �� to ��� de�ned above �but in reverse order��

��� Prior speci�cations

The model indicator k is supposed to lie in a set K � fkmin� kmin��� � � � � kmaxg � IN� For f �

NS��t�� � � � � tk� kmin is restricted to kmin 
 � due to the de�nition of natural splines� otherwise

kmin 
  holds� As prior for k there are two plausible alternatives
 a Poisson distribution with

parameter � restricted to the set K� or a discrete uniform distribution on K� Both priors will be

considered�

Given k we assume the model parameters t and b to be independent� i�e�� p��kjk� � p�tjk�p�bjk��

and we treat t and b separately�

The knots t are supposed to lie in a discret set of candidate knots T� � ft��� t��� � � � � t�kmax
g�

which may consist of the sorted distinct values of covariate x� An alternative is to distribute

�



t��� � � � � t�kmax
equidistantly over the intervall �xmin� xmax�� To de�ne the prior for t we assume� that

all possible samples t � �t�� � � � � tk� out of T� have equal probability

p�tjk� �

�
kmax

k

���
�

k"�kmax � k�"

kmax"
� �	�

hence� the prior p�tjk� depends only on k and kmax�

A widely used prior for the coe�cients b � �c�� ���� of a generalized linear model is the multivari�

ate normal distribution bjk � NK�p���#�� �see e�g� Gamerman� 		��� While the basis coe�cients

c are assumed to be uncorrelated� possible correlations between the coe�cients � � ���� � � � � �p�
�

are modelled by de�ning #� � ��diag�IK � Rp� with the K�dimensional identity matrix IK and a

p�dimensional correlation matrix Rp�

��� Update of coe�cients

Move type ���� the update of the coe�cients� is a conventional update of the �xed parameters of

a generalized linear model� where ordinary MCMC methods of Section �� are applicable� The

simplest choice is a Metropolis random walk proposal with tuning of the scale parameter� Since

the dimension of the parameter b may change with k from one sweep to another� tuning is not

possible here� So we have to use more sophisticated methods which avoid tuning� but normally

need more computing time� Dellaportas and Smith �		�� use adaptive rejection sampling for Gibbs

sampling proposed by Gilks and Wild �		�� for univariate log�concave densities� To deal with

non�log�concave distributions� Gilks� Best and Tan �		�� propose a generalization� the adaptive

rejection Metropolis sampling� A completely di�erent approach for multivariate distributions� the

so�called weighted least squares proposal� is proposed by Gamerman �		��� In a single Fisher

scoring step the posterior distribution of the parameter b given the data is maximized� resulting

in a MAP estimate of b and the expected Fisher information� These two values are used as mean

and covariance of a Gaussian proposal of the Metropolis�Hastings algorithm� and so the structure

of the observation model is incorporated in the proposal distribution� Here we use the approach

of Gamerman �		��� since in contrast to adaptive rejection �Metropolis� sampling it provides

the incorporation of correlations between the �xed e�ects �� and has some advantage regarding

computing time�

	



��� Position change

In the position change� i�e�� the move of a knot tj to another position� only this knot changes� while

the remaining parameters k� tntj and b stay unchanged� So here we have a transition from state

� to state $�� where � and $� only di�er in tj � With a new value for tj the B�spline basis functions

de�ning the spline f change� but due to the local support of the basis only the �ve functions Bi�

i � j � �� � � � � j � �� have to be recomputed�

As a �rst step we have to determine the set of moveable knots� With t� � �� and tk�� � ���

a knot tj � ft�� � � � � tkg is called moveable� if the number mj of vacant candidate knots t�i � T�

with tj�� � t�i � tj�� is at least � The number n�t� of moveable knots then is de�ned as

n�t� � %f tj with mj � �� j � � � � � � k g�

The next step is to draw the knot tj uniformly from the n�t� moveable knots with probability

p�tj� � �n�t�� Given tj� again uniformly we draw the proposal $tj for the new position of tj from

the set of mj vacant candidate knots t�i � T�� with p�$tj jtj� � �mj � The proposal distribution for

the position change results as joint distribution of �tj� $tj�


qP ��� $�� � p�$tjjtj�p�tj� �


n�t�mj
�

For de�ning the acceptance probability of the position change� we need the proposal for the

reverse step from $� to �� i�e�� the move from $tj to tj� The number of moveable knots here is n�$t��

while $mj � mj holds� since all candidate knots again lie in the interval �tj��� tj���� The proposal

for the reverse move is then

qP �$�� �� � p�tjj$tj�p�$tj� �


n�$t�mj
�

Since the prior �	� of tjk only depends on k and kmax� which are unchanged here� the ratio of

priors is � and the acceptance probability is given as


P ��� $�� � min

	
�
p�yj$��

p�yj��

n�t�

n�$t�



�

�



��� Dimension change

In each sweep of the algorithm we have to choose by random� if a birth move or a death move

is performed� For this choice we de�ne the probabilities bk for birth and dk for death by bkmin
�

dkmax
� � bkmax

� dkmin
� �� and otherwise bk � dk � ����

Given the k knots t � �t�� � � � � tk�� in the birth move we add a new knot t� lying within some

interval �tj � tj���� with j � f�� � � � � � kg and t� � ��� tk�� � ��� The resulting model now is

de�ned by the new model indikator k � � the new knots $t � �$t�� � � � � $tk��� �with $ti � ti for i  j�

$tj�� � t� and $ti � ti�� for i 
 j � ��� and the new basis coe�cients $c � �$c�� � � � � $cK���� which

have to be adjusted appropriately� Hence� the function f now is from NS��t�� � � � � tk���� where in

contrast to ��� the summation in the basis function approach is over  to K � � Formally the

birth move can be de�ned as a transition from state � � �k� �k� to state $� � �k � � $�k���� With

�k � �t� c� �� and $�k�� � �$t� $c� �� there is a change in dimension from dim��k� � k � K � p to

dim�$�k��� � k � K � � � p�

The death move is symmetrically de�ned as the reverse move from $� to ��

Following Section ���� for the birth move we have to compute $�k�� as function of �k and two

random numbers t� and u� with uB � �t�� u�� The proposal knot t� is drawn uniformly with

probability p�t�� � ��kmax � k� from the set of the kmax � k vacant candidate knots t�i � T��

In the literature about B�splines there exist deterministic rules for deriving $c from c when

inserting a knot t� � �tj� tj���� According to Lyche and Str�m �		��� we only have to compute

the coe�cients

$ci � rici � �� ri�ci��� i � j� j � � j � ��

with ri � ��� � �determined by a ratio of the knots�� while for the remaining coe�cients $ci � ci�

i  j � � and $ci � ci��� i 
 j � �� hold� For j  � and j 
 k � � some boundary conditions in the

de�nition of the natural splines have to be considered� Here we only want to emphasize� that for

each j � f�� � � � � � kg $c� � c� and $ck�� � ck hold�

Using these deterministic rules� the required symmetry between the birth and the death move is

destroyed and the reversible jump method does not work� Hence� we only use these rules as a basic

idea for deriving $c as function of c and a uniform random variate u � ��� �� So for �  j  k � �





we de�ne $ci � ci� i � � � � � � j � � $ci � ci��� i � j � �� � � � � k � � and

$cj�� � ucj � �� u�cj��

$cj � cj � rj$cj�� ���

$cj�� � cj�� � �� rj�$cj���

with

rj � �t� � tj���tj�� � tj�� ��

Here $cj��� the new coe�cient corresponding to the new knot tj�� � t�� is the weighted mean of

the old coe�cients cj and cj��� where the weight u is drawn randomly� The new coe�cients $cj

and $cj��� corresponding to the knots $tj � tj and $tj�� � tj��� are determined by the old values cj

and cj��� respectively� adjusted by the new coe�cient $cj�� weighted by rj in ��� De�nition ���

ensures� that in the reverse death move� given the knot $tj�� to be deleted� the computation of c

from $c is deterministic and the required dimension matching holds


cj � $cj � rj$cj��

cj�� � $cj�� � �� rj�$cj��

and ci � $ci� i � � � � � � j � � ci � $ci��� i � j � �� � � � � k� To consider both the dimension matching

and the boundary conditions of natural splines� we de�ne for j   and j 
 k � 


j � f�� g 
 $c� � c�� $ci � ci��� i � �� � � � � k � 

$c� � uc� ���

$c	 � c� � $c�

j � fk � � kg 
 $ci � ci� i � � � � � � k � �� $ck�� � ck�

$ck � uck�� ���

$ck�� � ck�� � $ck�

Due to the de�nitions ��� and ���� the reverse death move again is deterministic� given the knot

$tj�� is to be deleted�

�



For calculating the acceptance probability for the birth move� consider the transformation


B��� $�� � min f � L � A � P � J g ���

of ���� with the ratio of likelihoods L � p�yj$���p�yj��� the ratio of priors A� the ratio of proposals

P� and the Jacobian J �

The ratio of priors results in

A �
p�k � �

p�k�

p�$�k��jk � �

p��kjk�
� s�k� ��	������� exp

�


���
�c�c� $c�$c�

�
�

where the factor s�k� depends on the alternative priors of k� speci�ed in Section ��� With the

Poisson prior k � Po��� we get s�k� � ���kmax � k�� while the discrete uniform prior on K yields

s�k� � �k � ���kmax � k��

In deriving the ratio of proposals P� we have to consider the remarks in Section ��� for the case

n� � m� � m�� where the reverse death move is deterministic given the element to be removed

�here the knot $tj���� Following these remarks� P is given as

P �
dk��

bk p�uB�
�

dk��

bk p�t��p�u�
�

However� the knot $tj�� to be removed is only known in de�ning the death step as reversal of the

birth step with new knot $tj�� � t�� In fact� in the death step the knot $tj�� to be removed is not

known and has to be drawn with probability p�$tj��� � ��k�� from the current knots $t�� � � � � $tk���

Hence� the ratio of proposals results in

P �
dk���kmax � k�

bk�k � �
�

Considering $�k�� as function of �k and uB � the Jacobian is

J �

 �$�k��

���k� uB�

 �

�������
������

jc�j� j � f�� g

jcj � cj��j� j � f�� � � � � k � �g

jck��j� j � fk � � kg�

Due to the symmetric de�nition of birth and death move� the acceptance probability of death

is just the inverse of the acceptance probability ��� of birth� i�e��


D�$�� �� � min
n

� �L � A � P � J ���
o
�

�



��	 Adjustments for the case of ordinary splines

With q � � and K � k � q� now we consider the case f � Sq�t�� � � � � tk�� which requires only little

modi�cations in the dimension change steps of Section ���� namely in the transitions between c and

$c� and hence in the de�nition of the Jacobian J �

For the de�nition of the B�spline basis of the space Sq�t�� � � � � tk�� we have to consider the so�

called &extended partition' s� � s� � � � � � sk��q� with sq�j � tj for j � � � � � � k� The additional

�q knots can arbitrarily be chosen as s� � � � � � sq � t� and tk � sk�q�� � � � � � sk��q�

In the birth step we insert a new knot t� with sq�j � t� � sq�j�� for j � f�� � � � � � kg� Since

in Sq�t�� � � � � tk� we do not need the boundary conditions of the space NSq�t�� � � � � tk� of natural

splines� now for all j � f�� � � � � � kg the de�nition ��� holds� but we have to adjust the indices to

the knots of the extended partition


$cj�	 � ucj�� � �� u�cj�	

$cj�� � cj�� � rj$cj�	

$cj�� � cj�	 � �� rj�$cj�	�

with rj � �t� � sj�����sj�
 � sj���� As a consequence� also the Jacobian simpli�es to J �

jcj�� � cj�	j� j � f�� � � � � � kg� All other de�nitions made above in Section � remain the same�

� Applications

In this section we illustrate the Bayesian approach to adaptive regression splines with three ex�

amples� The �rst two are data from the literature for curve estimation with discrete response�

the Tokyo rainfall data �see e�g� Kitagawa� 	��� or Fahrmeir and Tutz� 		�� and the coal min�

ing disaster data �see e�g� Eilers and Marx� 		��� The third example is an application of the

semiparametric model to credit�scoring data described in Fahrmeir and Tutz �		���

��� Rainfall data

The response is given by the number of occurrences of rainfall in Tokyo for each calender day during

the years 	�� and 	��
 yi � �� if there is no rainfall over  mm on day i in both years� yi � � if

�
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 Rainfall data� estimates of f with di�erent priors for k�

rain over  mm occurs on day i in only one of the two years� and yi � �� if in both years on day

i there is rainfall over  mm� The big dots in Figure  show the data� but with response rescaled

to f�� ���� g� The aim is to detect some seasonal yearly pattern for the probability 	i of rainfall�

which is modelled with the logistic response function as 	i � �� � exp��f�xi� ���

Figure  illustrates the di�erences between de�ning f as natural spline �fnat � NS��t�� � � � � tk��

or as ordinary spline �ford � S��t�� � � � � tk��� The estimates of the natural spline �solid line� and the

ordinary spline �dashed line� are rather similar� they di�er only in the boundaries� While ford shows

clear boundary e�ects� which are not explained by the data� there are none for fnat� These e�ects

result from the de�nition of natural and ordinary splines� For the latter there are no boundary

conditions� and hence they are cubic over their whole support� while the natural cubic splines are

linear at the boundaries�

The rainfall data show clear sensivity to the choice of the prior of k� A discrete uniform prior

over K and also a Poisson prior with parameter � about less or equal � yield very smooth estimates

with the shape of a parabola� where no details are recognizable� This result can be explained by

the fact that these priors lead in most iterations to a number k of knots between � and �� which

is too less for this data� A Poisson prior with � between about � and �� shows good results� i�e��

�
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Figure �
 Rainfall data� sample of k and frequency of knots�

smooth estimates with clear details� as the estimate of fnat with k � Po���� in Figure  �solid

line�� The shaded region is the pointwise one standard deviation con�dence region� The estimate

is very smooth� but re�ects the character of weather in Tokyo� as described by Kitagawa �	���


dry winter� unsettled spring� clear sky in May� rainy season in late June to mid�July� stable hot

summer in late July through August� generally �ne but with a occasional typhoon in September

and October� The dotted line in Figure  shows the estimate with prior k � Po����� which is

quite similar to the estimate in Kitagawa �	���� Figure � This estimate lies almost everywhere

in the plotted con�dence region� but it is very rough and shows mostly too much details� Similar

results for the rainfall data are obtained for smoothing splines and state space models� see Fahrmeir

and Tutz �		��� Sections ��� and ����

Figure � gives some details of the samples of k and the knots for the estimate fnat with prior

k � Po���� in Figure  �solid line�� The left part of Figure � shows the sample of k with values

between � and �� while in the middle there is the frequency of the accepted values of k� The mode

is at k � �� and we see� that in more then ��( of the iterations we use a model with  to �

knots� The right part of Figure � depicts the frequency of candidate knots t�i � T� of being used

as knot tj in the model�
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��� Coal mining disaster data

Here the response yi is given as the number of disasters in British coal mines for the years ��� to

	��� and is assumed to have a Poisson distribution with intensity modelled by �i � exp� f�xi� ��

Figure � shows the data� together with three di�erent estimates for f � The estimated natural

spline fnat �solid line� and the estimated ordinary spline ford �dashed line� again only di�er in the

boundaries� but not as distinct as in the rainfall data in Figure � A possible explanation could

be that the coal mining data are more informative than the rainfall data� and hence the boundary

e�ects of the ordinary spline are minor� The shaded region is the pointwise one standard deviation

con�dence region of fnat with k � Po����� The estimates of the natural spline fnat with di�erent

priors for k� i�e�� with k � discrete uniform �dotted line� and k � Po���� �solid line�� are similar�

where the latter one shows more details� This result indicates� that the choice of the model prior

here has less in�uence on the shape of the estimate than for the rainfall data� But it has some

in�uence on the estimation of k� In the posterior distribution of k there is for k � discrete uniform

a mode of �� while k � Po���� has a mode of 	� as can be seen in the middle of Figure �� The left

part of Figure � plots the sample of k� Here we see a better mixing of the chain in contrast to the

sample of k for the rainfall data in Figure �� The right part of Figure � depicts the frequency of
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Figure �
 Coal mining data� sample of k and frequency of knots�

candidate knots t�i � T� being used as knot tj in the model�

��� Credit�scoring data

In credit business� banks are interested to predict the probability that a client with certain risk

factors is to be considered to pay back his credits as agreed upon contract� In a data set of ���

borrowers from a South German bank� Fahrmeir and Tutz �		�� Chapters �� and ��� model

the dichotomous response &creditability' �y � � for creditworthy� y �  for not creditworthy� in

dependence of the following covariates


xnr� xgr dummies for &no running account' and &good running account'� respectively� with

reference category &medium running account' �i�e� less than ��� DM�

xd duration of credit in months� metrical

xa amount of credit in DM� metrical

xp payment of previous credits� categories &good' and &bad' �� reference category�

xu intended use� categories &private' and &professional' �� reference category�

xs marital status with reference category &living alone�'

A parametric logistic model for the probability of being not creditworthy yields a non�signi�cant

e�ect of �������� for the covariate &amount of credit' xa� This unexpected result may be investi�
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gated more thoroughly by using the semiparametric model

� � xnr�� � xgr�� � xd�	 � xp�� � xu�
 � xs�� � f�xa��

modelling the e�ect of the covariate &amount of credit' as smooth function f�xa�� For the �xed

e�ects the approach of Section � yields the following estimates� which are in agreement with the

results of the maximum likelihood approach by Fahrmeir and Tutz �		��


mean std

xnr ������� �������

xgr ������ ������	

xd ������� ��������

xp ���	���� ������

xu �������� ���	���

xs �������� ������	

Figure � shows the estimate of the smooth e�ect of the covariate xa together with the pointwise

one standard deviation con�dence region and the linear e�ect of xa in the parametric logistic model

�dotted line�� The smooth e�ect is clear nonlinear with a bath�tub shape� indicating that both

	



high and low credits increase the risk of being not creditworthy� compared to medium credits� If

we assume the in�uence of the covariate &amount of credit' to be linear� the estimated e�ect is

near zero� falsely leading to the conclusion being non�signi�cant�

� Conclusions

The proposed Bayesian regression spline approach with adaptive knot placement using reversible

jump Markov chain Monte Carlo gives a �exible but also smooth �t to the data with only few

knots �e�g� the coal mining example
 k � 	 in the mode�� In comparison to overparameterized

methods such as nonadaptive smoothing splines or state space models it is able to work out the

shape of the curve in detail� but very smoothly without disturbing spikes� see the comments in

Section �� for the rainfall data� Since the smoothness of the curve is determined by the number of

knots k� which is simultaneously chosen by the method� no further smoothing parameters have to

be found by additional methods as� e�g�� cross validation� Moreover� the results of the coal mining

example in Section ��� indicate� that the prior of the model indicator k has only little in�uence on

the smoothness of f � if there is enough information in the data� Similar results could be presented

for the credit�scoring data in Section ����

The choice between natural and ordinary splines should only be meaningful in situations with

data getting sparse in the boundaries� as in event history analysis� Here natural splines may help

to avoid boundary e�ects�

The following extensions to the approach proposed in Section � are �elds for future research


First� the adjustment of the spline basis to account for jumps and discontinuities in the function f �

Proposals for the B�spline basis are made� e�g�� in Schumaker �		�� or Lyche and Str�m �		���

Further� due to the Bayesian approach using Markov chain Monte Carlo methods� extensions of

the semiparametric model to generalized additive models �Hastie and Tibshirani� 		�� or the

more general varying�coe�cient models �Hastie and Tibshirani� 		�� are possible without much

problems� With regard to Markov chain Monte Carlo methods� other approaches for updating �xed

e�ects in the generalized linear model �Section ���� will be considered� since the applied method

of Gamerman �		�� is intensive in computing time� though it has good mixing and convergence

��



properties� A possible approach is the slicing method� recently proposed by Neal �		��� Since in

our approach the number of unknown parameters is varying� the recently de�ned Bayesian Deviance

Information Criterion �DIC� of Spiegelhalter� Best and Carlin �		�� could help to measure the

complexity and the �t of the model�
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