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Abstract

This paper presents a fully Bayesian approach to regression splines with automatic knot selection
in generalized semiparametric models for fundamentally non—Gaussian responses. In a basis
function representation of the regression spline we use a B—spline basis. The reversible jump
Markov chain Monte Carlo method allows for simultaneous estimation both of the number of
knots and the knot placement, together with the unknown basis coefficients determining the
shape of the spline. Since the spline can be represented as design matrix times unknown (basis)
coefficients, it is straightforward to include additionally a vector of covariates with fixed effects,
yielding a semiparametric model. The method is illustrated with data sets from the literature
for curve estimation in generalized linear models, the Tokyo rainfall data and the coal mining

disaster data, and by a credit—scoring problem for generalized semiparametric models.

Keywords: B-spline basis; knot selection; nonnormal response; nonparametric regression;

reversible jump Markov chain Monte Carlo.



1 Introduction

Let us consider observations (y;, z;, 2;), ¢ = 1,...,n, on p+ 1 explanatory variables, with a metrical
covariate z and a p—vector z = (21, ..., %p), and on a univariate nonnormal response y, e.g. a discrete
or nonnegative response. The aim is to analyze the dependence of the response on the covariates in
a semiparametric generalized linear model. That means, the distribution of y; given the covariates
x;, zj is assumed to belong to an exponential family where the mean p; = E(y;|z;, 2;) is linked
to the predictor 7; by an appropriate response function h, i.e., u; = h(n;). Since we consider a

semiparametric approach, the predictor is of the form

ni = f(z:) + 2, (1)

with an unknown real valued regression function f and a p-dimensional parameter vector (3.
A common approach to estimate the unknowns f and (§ from the data is maximizing the

penalized log-likelihood

n
PIU) = S blul) — 2 [ (7)o @)
1=

over f and [, where the log-likelihood contribution /;(y;|n;) is defined as the logarithm of the
probability density function p(y;|n;) of the response y;. Here the parameter A controls the compro-
mise between faith with the data and smoothness of the maximizing function f' , which is a natural
cubic smoothing spline with knots at each distinct z;, see Green and Yandell (1985) or Green and
Silverman (1994). For rather small A, f will nearly interpolate the data, while a large X yields a
very smooth and nearly linear f . Data driven methods for choosing the smoothing parameter A

exist, see e.g. Fahrmeir and Tutz (1997), Chapter 5.
Another approach starts by defining the unspecified function f as a spline. With a certain
number k of knots ¢ < ... < ¢, with ¢; € [Zmin, Zmax], We consider the space Sy(ti,...,tx) of

splines of order ¢. In this space of dimension K = k + g we can represent f by

K
flz) =) ¢iBj(x) = B(x) (3)
=1

with (known) basis functions B(z) = (Bi(z),...,Bk(z)) of S;(t1,...,t), and unknown basis

coefficients ¢ = (c1, ..., ck)'. As alternative one may define f to lie in a subspace of Sy(t1,...,t),



the k—dimensional space N'S,(t1,...,t;) of natural splines of order ¢ = 2m, m € IN. For ¢ = 4,
NSy(tr,...,t) is the space of natural cubic splines, where the function f , resulting from the
maximization of the penalized log-likelihood (2), lies in. Defining K =k, f € NSy(t1,...,t;) has
the representation (3), too. An appropriate basis Bj(z),...,Bg(z) for both spaces is the widely
used B—spline basis with local support. For details and efficient algorithms for computing this basis
see Eubank (1988) or Schumaker (1993), and especially for natural splines Lyche and Schumaker
(1973) or Lyche and Strgm (1996).

Both with f € Sy(t1,...,t;) and with f € NSy(t1,...,t;) the predictor (1) now has the form

mi = Bla)) e+ 2z = (B(x:), =) ; , (4)

i.e., we have a generalized linear model with fixed coefficients ¢ and (3, that can be estimated by
standard methods. The shape and smoothness of the estimator f is given by the number k£ and
the location of the knots ¢1,...,%;. With only a few knots the function f is very smooth, while
increasing the number k£ of knots allows a more wiggly and flexible f . Placement of a knot in a
certain aera yields more flexibility of f in that aera. Since finding the right number and location of
knots by visual inspection of the data is impossible in most cases (see Eubank, 1988, Section 7.2),

we need data driven methods for knot placement to get (in some sense) nearly optimal estimators

I

For normal response y, such data driven methods exist. Friedman and Silverman (1989) present
an adaptible knot placement algorithm with forward and backward steps. In the forward steps
they add knots which are optimal with respect to the average squared residual criterion, while in
the backward steps they delete knots yielding the model being optimal for the generalized cross-
validation score. A Bayesian approach using reversible jump Markov chain Monte Carlo (RJIMCMC,
see Green, 1995) is presented by Denison, Mallick and Smith (1998). In each iteration they choose
the set of knots by RJIMCMC methods, and given these knots the spline is estimated by the
usual least squares approach. The estimator f then is built by averaging over all iterations. For
generalized linear models, Stone, Hansen, Kooperberg and Troung (1997) also propose forward and

backward steps. They add basis functions using Rao statistics until a maximum number of knots



is reached. Subsequently, basis functions are deleted using Wald statistics. Out of the complete
sequence of models, the one optimal with respect to the AIC criterion is chosen.

This paper presents a Bayesian approach to automatic knot selection in generalized semipara-
metric models (1) with nonnormal response using RIMCMC methods for knot selection and (or-
dinary) MCMC methods for estimating the resulting generalized linear model (4). So, in contrast
to Denison et al. (1998), where the estimation of the basis coefficients given the knots is done by
ordinary least squares methods for normal response, we use a fully Bayesian approach in nonnormal
cases. And contrary to Friedman and Silverman (1989) and Stone et al. (1997), where the result is
one somehow ‘optimal’ knot placement, the RIMCMC method can neither find one optimal num-
ber k£ of knots nor an optimal placement of these k£ knots. But in each iteration of the RIMCMC
algorithm both the number of knots and the knot placement may vary. So in each iteration the
estimation of the coefficients ¢ and consequently the estimation of f is based on different knot
settings. The final estimator of f is built as the mean of the estimators in each iteration, and hence
a great flexibility of f is provided. Hence, this procedure is a sort of Bayesian model averaging.

The paper is organized as follows: Section 2 gives a brief overview over ordinary and reversible
jump MCMC methods, which are applied in Section 3 to the Bayesian approach to adaptive re-
gression splines. Applications of the proposed method to curve estimation in the generalized linear
model and to the generalized semiparametric model follow in Section 4. Some concluding remarks

and possible extensions of the model are given in Section 5.

2 Markov chain Monte Carlo methods

Here we give a brief summary of Markov chain Monte Carlo (MCMC) theory. The emphasis,
in Section 2.2, is on reversible jump MCMC, proposed by Green (1995), which allows Bayesian
estimation in hierarchical models where the parameter dimension varies. As introduction, Section
2.1 contains the ‘ordinary’ MCMC methods, but restricted to the Metropolis—Hastings algorithm,
one of the most popular methods in MCMC computation. For more details including other methods,
e.g. the Gibbs sampler, see Tierney (1994), Besag, Green, Higdon and Mengersen (1995) or Gilks,

Richardson and Spiegelhalter (1996). In contrast to the remainder of the paper, where x is the



metrical covariate, in this section the parameters of interest are denoted by zx.

2.1 Metropolis—Hastings MCMC

Consider a distribution 7(x), which in Bayesian inference is the posterior of the parameters of
interest z = (z1,...,x,) given the data. Since in most cases m(z) is not completely known, e.g. due
to analytically intractable normalizing constants, direct sampling from the distribution of interest

is not possible. To overcome this problem, in MCMC computation we create a Markov chain

2 (V)

yo o, 2V whose transition kernel P(xz,z’) has the limiting distribution 7(x). This sample is
used for estimating parameters of interest, e.g. E(z) is estimated by the sample mean. In the
Metropolis—-Hastings method, we have to construct the kernel P(z,z') in a way that it satisfies

aperiodicity and irreducibility, and also the detailed balance
n(z)P(z,2') = n(z")P(z',2) Vax,z'. (5)

Often the vector z = (z1,...,x,) is split up into components zp, with 7" a subset of {1,...,n},
and we consider the so—called full conditionals 7(z7|z_7) instead of 7(x), where x_7 = {x;,i ¢ T'}.
Given the current state zp of the Markov chain, a new value 2/ is drawn from an arbitrarily chosen

proposal density gr(zp,z). With probability

(x| _7)qr (T, 27) } (6)

! .
ar(zr,xpr) = min<g 1
(e 27) { r(erla_r)qr@r. 7))

the proposed value is accepted as new state of the chain, otherwise we leave zp unchanged. Defi-
nition (6) ensures, that the necessary properties of the transition kernel P(z,z’) hold.
2.2 Reversible jump MCMC

Consider the following hierarchical model: let & € IC be an indicator from a countable set C; given
k we have a parameter vector 8) € ©¥): finally the data y. Here each k determines a model My
defined by the parameter #%), with dimension of parameter space ©*) possibly varying with k.

The hierarchy is also reflected in the joint probability

p(k,0®. y) = p(k)p(0™|k)p(y|k, 0%)),



the product of model probability, prior and likelihood, and in the joint posterior p(k,0®)|y) o
p(k,H(k),y), on which Bayesian inference is based on. For convenience we abbreviate (k,O(k))
as z, and p(k,0®|y) = p(z|y) as w(z). Given k, = lies in C; = {k} x O while generally
z € C = Upex Ck-

For a fully Bayesian analysis with joint estimation of both model parameter #*) and model
indicator k£, we need a method, that switches between parameter subspaces A, B C C of possibly
different dimension. For that reason we use different move types m, and for each of these move

types we construct a transition kernel P,,, which satisfies the detailed balance

// (dz) Py, (z,dz") // (dz') Py (2',dz), YA,BCC.

That means, the equilibrium probability of moves from A to B equals that from B to A. Given
the current state z, a move of type m is proposed to state dz’ with probability ¢,,(z,dz'), and is

accepted with probability

apm(z, ') = min {1, m(de’) g (2, do) } . (7)

7(dz) qm (z, dx')
The ratio (7) makes sense for moves between subspaces A and B from C, if we consider that proposal
degrees of freedom are matched. This ‘dimension matching’ assumption is attained as follows. For
a move from state x to state ' we generate random numbers u and set z’ to be a deterministic
function z'(z,u). The reverse move from z' to z has to be defined symmetrically by generating
random numbers v’ and setting z = z(z’,u’). For dimension matching there must be a bijection
between (x,u) and (z',u'), i.e., the dimensions n; and ns of u and v’ must satisfy ny+m; = ny+mao,

with mq, mo the dimensions of z and z', respectively. The acceptance probability (7) then results
in
!/

Pl ) e o) (Do)
p(zly)ii(z)qi(u) ‘(9(:1:,u } (8)

(2, 2') = min {1,

Here ji, jo are probabilities for the move types given x and z’, and g1, ¢go are the distributions of
u and u’. The Jacobian results from deriving the proposal of move B — A (g, (2, dz)) from the
proposal of the reverse move A — B (g (z,dz")) using the distributions q1, ¢o.

In practice often n; + m; = mg holds, i.e., only for the birth step a random number u is



necessary, while the reverse death step is deterministic, given the element to be removed. In this
case, in (8) the terms ¢o(u') and v’ in the Jacobian have to be omitted.

For move types without switching between subspaces, i.e., moves within one subspace, the
ordinary MCMC theory of Section 2.1 holds, and the acceptance probabilities (6) and (8) are
equal, since then the Jacobian is 1 and all ratios depending on k cancel out. For further details on

the reversible jump MCMC method see Green (1995).

3 A Bayesian approach to adaptive regression splines

Consider the semiparametric generalized linear model of Section 1 with predictor (4) and the
function f being defined as spline (3) with B-spline basis functions By, ..., Bx and basis coefficients
¢=(c1,...,cx). With K = k and ¢ = 4 here we consider f € NSy(t1,...,t), i.e., f is defined
as cubic natural spline. By means of comparisons, in Section 3.5 we give adjustments to the case
fe€S8u(ty,... tg) (with K =k +4).

Now assume, that both the number of knots £ and the placement of these knots are not given
and so have to be estimated jointly with the model parameters. For a Bayesian approach let us
formulate the following hierarchical model: the number k& of knots is from some countable set
(which is specified in Section 3.1) and serves as model indicator. Each value of k£ defines a model,
that is determined by the parameters ¢t = (¢1,...,%) and ¢ = (c1,...,ck)’. For given k, the model
for the data (y;, 24, 2;), % = 1,...,n, withy = (y1,...,yn), is defined by the choice of the exponential
family and the semiparametric predictor (4). Including additionally the fixed effects 5 we define
the model parameter

Or = (t,b) € RFFEFP

with b = (¢, #')". Model indicator and model parameter are combined to 6 = (k, 6y). The hierar-

chical model is also expressed by the joint posterior

p(k, Okly) oc p(k)p(Ok|k)p(ylk, k),

the product of model probability, prior and likelihood, where for notational convenience we neglect

the covariates x and z.



For the joint estimation of (k,6)) with variable model indicator k using the reversible jump
MCMC method, we have to develope appropriate reversible jump moves as mentioned in Section
2.2. The scanning of these moves may be done randomly, as in Green (1995), or in systematical

order, see Richardson and Green (1997). Following the latter approach we define three move types:

(1) birth or death of one knot t;q, i.e., adding or deleting a t;; with changing k¥ by 1 and

corresponding changes in ¢; the choice between birth and death is done randomly;
(2) move a given knot t; to another position (without change in k);
(3) update the coefficients b = (¢’, 8')’ (without change in k).

The set of move types is denoted by S = {B, D, P,C}, where B means a birth, D a death, P a
position change, and C' an update of coefficients. One iteration or sweep of our algorithm is made
of the move types (1) to (3). Working out moves (1) to (3), each sweep may result in a different
knot setting, i.e., a different number and location of knots. Defining the final estimator f as mean
of the estimators of f in each sweep, which are based on these different settings, a great flexibility
of f and a good fit to the data is provided.

The following section gives details to the specification of the prior distributions, while Sections

3.2 to 3.4 present the reversible jump move types (1) to (3) defined above (but in reverse order).

3.1 Prior specifications

The model indicator k is supposed to lie in a set K = {kmin, kmin+1,-- -, kmax} C IN. For f €
NSy(t1, ... tk) kmin is restricted to kyin > 4 due to the definition of natural splines, otherwise
kmin > 1 holds. As prior for k£ there are two plausible alternatives: a Poisson distribution with
parameter A restricted to the set /C, or a discrete uniform distribution on K. Both priors will be
considered.

Given k we assume the model parameters ¢ and b to be independent, i.e., p(6x|k) = p(t|k)p(b|k),
and we treat t and b separately.

The knots ¢ are supposed to lie in a discret set of candidate knots To = {01, 02, - - - T0kmax |+

which may consist of the sorted distinct values of covariate z. An alternative is to distribute



101, - -+ tOkme, €quidistantly over the intervall [Zmin, Tmax|- To define the prior for ¢ we assume, that

all possible samples t = (¢1,..., ;) out of 7y have equal probability

-1
D) = (knlzax> _ W, 9)

max:

hence, the prior p(t|k) depends only on k and kpax.

A widely used prior for the coefficients b = (¢, ')’ of a generalized linear model is the multivari-
ate normal distribution b|k ~ Nk ,(0,X0) (see e.g. Gamerman, 1997). While the basis coefficients
c are assumed to be uncorrelated, possible correlations between the coefficients 5 = (f1,...,05p)’
are modelled by defining ¥y = o3diag(If, Rp) with the K—dimensional identity matrix Ix and a

p-dimensional correlation matrix R,.

3.2 Update of coefficients

Move type (3), the update of the coefficients, is a conventional update of the fixed parameters of
a generalized linear model, where ordinary MCMC methods of Section 2.1 are applicable. The
simplest choice is a Metropolis random walk proposal with tuning of the scale parameter. Since
the dimension of the parameter b may change with k& from one sweep to another, tuning is not
possible here. So we have to use more sophisticated methods which avoid tuning, but normally
need more computing time. Dellaportas and Smith (1993) use adaptive rejection sampling for Gibbs
sampling proposed by Gilks and Wild (1995) for univariate log—concave densities. To deal with
non-log—concave distributions, Gilks, Best and Tan (1995) propose a generalization, the adaptive
rejection Metropolis sampling. A completely different approach for multivariate distributions, the
so—called weighted least squares proposal, is proposed by Gamerman (1997). In a single Fisher
scoring step the posterior distribution of the parameter b given the data is maximized, resulting
in a MAP estimate of b and the expected Fisher information. These two values are used as mean
and covariance of a Gaussian proposal of the Metropolis—Hastings algorithm, and so the structure
of the observation model is incorporated in the proposal distribution. Here we use the approach
of Gamerman (1997), since in contrast to adaptive rejection (Metropolis) sampling it provides
the incorporation of correlations between the fixed effects 3, and has some advantage regarding

computing time.



3.3 Position change

In the position change, i.e., the move of a knot #; to another position, only this knot changes, while
the remaining parameters k, t\t; and b stay unchanged. So here we have a transition from state
0 to state 6, where 6 and 6 only differ in tj. With a new value for ¢; the B-spline basis functions
defining the spline f change, but due to the local support of the basis only the five functions B;,
1=75—2,...,7 + 2, have to be recomputed.

As a first step we have to determine the set of moveable knots. With tg = —oo and 541 = 400,
a knot t; € {t1,...,t;} is called moveable, if the number m; of vacant candidate knots ty; € 7o

with t;_1 < to; < tj41 is at least 1. The number n(t) of moveable knots then is defined as
n(t) = #{t; withm; >0,j=1,...,k}.

The next step is to draw the knot ¢; uniformly from the n(t) moveable knots with probability
p(t;) = 1/n(t). Given t;, again uniformly we draw the proposal ¢; for the new position of ¢; from
the set of m; vacant candidate knots to; € 7o, with p(Z;|t;) = 1/m;. The proposal distribution for

the position change results as joint distribution of (t;,;):

ap(6.0) = plEslt)p(t)) = -

For defining the acceptance probability of the position change, we need the proposal for the
reverse step from @ to 6, i.e., the move from t~j to tj. The number of moveable knots here is n(t),
while m; = m; holds, since all candidate knots again lie in the interval (¢;_1,%;41). The proposal

for the reverse move is then

ar(0,0) = p(t;lE;)p(E;) = s

Since the prior (9) of t|k only depends on k and kpx, which are unchanged here, the ratio of

priors is 1, and the acceptance probability is given as

L Pl ()
ar(6,0) = {l’pme n<£>}‘

3

~—

10



3.4 Dimension change

In each sweep of the algorithm we have to choose by random, if a birth move or a death move
is performed. For this choice we define the probabilities by for birth and d; for death by b . =

Ao = 1, Okpo = die;, = 0, and otherwise by, = dj, = 0.5.

Given the k knots ¢ = (¢1,...,%x), in the birth move we add a new knot ¢* lying within some
interval (t;,%j41), with j € {0,1,...,k} and ty = —o0, t44+1 = +00. The resulting model now is
defined by the new model indikator & + 1, the new knots ¢ = (£1,...,%;41) (with #; = t; for i < j,
t~j+1 =t and t; = t; 1 for i > j +2), and the new basis coefficients ¢ = (¢1,...,¢x 1), which
have to be adjusted appropriately. Hence, the function f now is from N'S4(ty,...,t,11), where in
contrast to (3) the summation in the basis function approach is over 1 to K + 1. Formally the
birth move can be defined as a transition from state 6 = (k, ;) to state = (k + 1,04). With
0p = (t,c,) and O, = (f,¢ ) there is a change in dimension from dim(f;) = k+ K + p to
dim(Op1) =k + K +2+p.

The death move is symmetrically defined as the reverse move from 6 to 6.

Following Section 2.2, for the birth move we have to compute ék+1 as function of 6 and two
random numbers t* and u, with up = (t*,u). The proposal knot ¢* is drawn uniformly with
probability p(t*) = 1/(kmax — k) from the set of the kp.x — k vacant candidate knots tg; € To.

In the literature about B-splines there exist deterministic rules for deriving ¢ from ¢ when
inserting a knot t* € (tj,¢j41). According to Lyche and Strgm (1996), we only have to compute

the coeflicients

¢ =rici+ (L—ri)ci1, 1=4,7+1,5+2,

with 7; € (0,1) (determined by a ratio of the knots), while for the remaining coefficients ¢; = ¢;,
1<j—1,and ¢; = ¢;—1,% > 7+ 3, hold. For 5 <2 and 5 > k — 2 some boundary conditions in the
definition of the natural splines have to be considered. Here we only want to emphasize, that for
each j € {0,1,...,k} é = ¢; and éx1 = ¢ hold.

Using these deterministic rules, the required symmetry between the birth and the death move is
destroyed and the reversible jump method does not work. Hence, we only use these rules as a basic

idea for deriving ¢ as function of ¢ and a uniform random variate u € (0,1). Sofor 2 < j <k —2

11



we define ¢; =¢;,1=1,...,5—1,¢=¢_1,1=35+3,...,k+1, and

Ciy1 = ucj+ (1 —u)cjpq
¢j = ¢j—rjCiy1 (10)
Civz = G1— (L —r5)¢t,
with
rj = (" = 1)/(tj1 = 15). (11)

Here ¢j41, the new coefficient corresponding to the new knot ¢;; = t*, is the weighted mean of
the old coefficients ¢; and c;i1, where the weight u is drawn randomly. The new coefficients ¢;
and ¢;9, corresponding to the knots fj =t; and t~j+2 = t;j11, are determined by the old values c;
and c;j1, respectively, adjusted by the new coefficient ¢;,1 weighted by r; in (11). Definition (10)
ensures, that in the reverse death move, given the knot fjH to be deleted, the computation of ¢

from ¢ is deterministic and the required dimension matching holds:

¢ = 5]‘ + Tj5j+1
cjiy1 = Cira+ (1 —1j)¢n
and ¢; =¢,1=1,...,5—1,¢; =¢Ciy1,t =7+ 2,...,k. To consider both the dimension matching

and the boundary conditions of natural splines, we define for j <1 and 7 > k — 1:

j€{0,1}: ¢4 = ¢, ¢G=c¢i1,1=4....,k+1
Co = ucCy (12)
C3 = Co2—C
jel{k—1k}: G = c¢yi=1,...,k—2, k41 = c,
Ck = UCk—1 (13)
Ch—1 = Ck—1— Ck.

Due to the definitions (12) and (13), the reverse death move again is deterministic, given the knot

t~j+1 is to be deleted.

12



For calculating the acceptance probability for the birth move, consider the transformation
ap(0,0) =min{1, L - A-P-J} (14)

of (8), with the ratio of likelihoods £ = p(y|§)/p(y|0), the ratio of priors 4, the ratio of proposals
P, and the Jacobian J.
The ratio of priors results in

p(k+1) p(Op41]k + 1)
p(k) p(Ok|k)

where the factor s(k) depends on the alternative priors of k, specified in Section 3.1. With the

A:

— s(k) (2n02) "2 exp [%(dc _ é’a)] ,
0

Poisson prior k ~ Po(\) we get s(k) = A/(kmax — k), while the discrete uniform prior on K yields
s(k) = (k+1)/(kmax — k)-

In deriving the ratio of proposals P, we have to consider the remarks in Section 2.2 for the case
n1 + m1 = mg, where the reverse death move is deterministic given the element to be removed

(here the knot #;,1). Following these remarks, P is given as

po ket e
bpp(up)  brp(t*)p(u)

However, the knot Zj+1 to be removed is only known in defining the death step as reversal of the

birth step with new knot fjH = t*. In fact, in the death step the knot t~j+1 to be removed is not
known and has to be drawn with probability p(¢;+1) = 1/(k+1) from the current knots 1, ..., g1

Hence, the ratio of proposals results in

P = dk—l—l(kmax - k)
bk + 1)

Considering ék+1 as function of 0, and up, the Jacobian is

~ |c2|7 jE {0,1}
0011 .
J:‘m lc; —cjy1], 7€42,...,k—2}
|ck—1l; je{k—1,k}.

Due to the symmetric definition of birth and death move, the acceptance probability of death

is just the inverse of the acceptance probability (14) of birth, i.e.,

ap(0,0) :min{l, (ﬁ-A-P-j)—l}.

13



3.5 Adjustments for the case of ordinary splines

With ¢ = 4 and K = k + ¢, now we consider the case f € Sy(t1,...,t), which requires only little
modifications in the dimension change steps of Section 3.4, namely in the transitions between ¢ and
¢, and hence in the definition of the Jacobian J.

For the definition of the B-spline basis of the space Sy(t1,. .., ), we have to consider the so—
called “extended partition” s; < s3 < ... < Sg4o4, With s44; =t for j = 1,..., k. The additional
2q knots can arbitrarily be chosen as s1 < ... <sy <t1 and t}, < Sppg41 < ... < Sgy2q-

In the birth step we insert a new knot t* with s,4; < t* < sqyj41 for j € {0,1,...,k}. Since
in S;(t1,...,tx) we do not need the boundary conditions of the space N'Sy(t1,...,%) of natural
splines, now for all j € {0,1,...,k} the definition (10) holds, but we have to adjust the indices to

the knots of the extended partition:

Cits = ucjpa + (1 —u)cjys

Ci+2 = Cjt2 — TjCjt3

Civa = cjrz — (1 —1j)¢jys,
with 7; = (t* — sj44)/(Sj45 — Sj44). As a consequence, also the Jacobian simplifies to J =
lcjyo —cjt3l, 7€ {0,1,...,k}. All other definitions made above in Section 3 remain the same.

4 Applications

In this section we illustrate the Bayesian approach to adaptive regression splines with three ex-
amples. The first two are data from the literature for curve estimation with discrete response,
the Tokyo rainfall data (see e.g. Kitagawa, 1987, or Fahrmeir and Tutz, 1997) and the coal min-
ing disaster data (see e.g. Eilers and Marx, 1996). The third example is an application of the

semiparametric model to credit-scoring data described in Fahrmeir and Tutz (1997).

4.1 Rainfall data

The response is given by the number of occurrences of rainfall in Tokyo for each calender day during

the years 1983 and 1984: y; = 0, if there is no rainfall over 1 mm on day 4 in both years, y; = 1, if
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Figure 1: Rainfall data, estimates of f with different priors for k.

rain over 1 mm occurs on day ¢ in only one of the two years, and y; = 2, if in both years on day
1 there is rainfall over 1 mm. The big dots in Figure 1 show the data, but with response rescaled
to {0,0.5,1}. The aim is to detect some seasonal yearly pattern for the probability m; of rainfall,
which is modelled with the logistic response function as m; = 1/(1 + exp(—f () )).

Figure 1 illustrates the differences between defining f as natural spline (fuat € NSq(ty, ..., 1))
or as ordinary spline (forq € S4(t1,...,tx)). The estimates of the natural spline (solid line) and the
ordinary spline (dashed line) are rather similar, they differ only in the boundaries. While f,,q shows
clear boundary effects, which are not explained by the data, there are none for f,,;. These effects
result from the definition of natural and ordinary splines. For the latter there are no boundary
conditions, and hence they are cubic over their whole support, while the natural cubic splines are
linear at the boundaries.

The rainfall data show clear sensivity to the choice of the prior of k. A discrete uniform prior
over K and also a Poisson prior with parameter A about less or equal 10 yield very smooth estimates
with the shape of a parabola, where no details are recognizable. This result can be explained by
the fact that these priors lead in most iterations to a number £ of knots between 4 and 5, which

is too less for this data. A Poisson prior with A between about 15 and 40 shows good results, i.e.,
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Figure 2: Rainfall data, sample of £ and frequency of knots.

smooth estimates with clear details, as the estimate of fa¢ with & ~ Po(30) in Figure 1 (solid
line). The shaded region is the pointwise one standard deviation confidence region. The estimate
is very smooth, but reflects the character of weather in Tokyo, as described by Kitagawa (1987):
dry winter, unsettled spring, clear sky in May, rainy season in late June to mid-July, stable hot
summer in late July through August, generally fine but with a occasional typhoon in September
and October. The dotted line in Figure 1 shows the estimate with prior & ~ Po(100), which is
quite similar to the estimate in Kitagawa (1987), Figure 11. This estimate lies almost everywhere
in the plotted confidence region, but it is very rough and shows mostly too much details. Similar
results for the rainfall data are obtained for smoothing splines and state space models, see Fahrmeir
and Tutz (1997), Sections 5.3 and 8.3.

Figure 2 gives some details of the samples of £ and the knots for the estimate fn,z with prior
k ~ Po(30) in Figure 1 (solid line). The left part of Figure 2 shows the sample of k with values
between 7 and 21, while in the middle there is the frequency of the accepted values of k. The mode
is at £ = 12, and we see, that in more then 50% of the iterations we use a model with 11 to 14
knots. The right part of Figure 2 depicts the frequency of candidate knots to; € Tg of being used

as knot #; in the model.
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Figure 3: Coal mining data, estimates of f with different priors for k.

4.2 Coal mining disaster data

Here the response y; is given as the number of disasters in British coal mines for the years 1850 to
1962, and is assumed to have a Poisson distribution with intensity modelled by p; = exp( f(z;) ).
Figure 3 shows the data, together with three different estimates for f. The estimated natural
spline fya¢ (solid line) and the estimated ordinary spline f,;q (dashed line) again only differ in the
boundaries, but not as distinct as in the rainfall data in Figure 1. A possible explanation could
be that the coal mining data are more informative than the rainfall data, and hence the boundary
effects of the ordinary spline are minor. The shaded region is the pointwise one standard deviation
confidence region of fn,s with & ~ Po(20). The estimates of the natural spline f,,; with different
priors for k, i.e., with k ~ discrete uniform (dotted line) and k¥ ~ Po(20) (solid line), are similar,
where the latter one shows more details. This result indicates, that the choice of the model prior
here has less influence on the shape of the estimate than for the rainfall data. But it has some
influence on the estimation of k. In the posterior distribution of k there is for k ~ discrete uniform
a mode of 6, while £ ~ Po(20) has a mode of 9, as can be seen in the middle of Figure 4. The left
part of Figure 4 plots the sample of k. Here we see a better mixing of the chain in contrast to the

sample of k for the rainfall data in Figure 2. The right part of Figure 4 depicts the frequency of
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Figure 4: Coal mining data, sample of k and frequency of knots.

candidate knots to; € Ty being used as knot ¢; in the model.

4.3 Credit—scoring data

In credit business, banks are interested to predict the probability that a client with certain risk
factors is to be considered to pay back his credits as agreed upon contract. In a data set of 1000
borrowers from a South German bank, Fahrmeir and Tutz (1997, Chapters 2.1 and 4.1) model
the dichotomous response “creditability” (y = 0 for creditworthy, y = 1 for not creditworthy) in

dependence of the following covariates:
Znr, Tgr dummies for “no running account” and “good running account”, respectively, with
reference category “medium running account” (i.e. less than 200 DM)
x4 duration of credit in months, metrical
z, amount of credit in DM, metrical
xp payment of previous credits, categories “good” and “bad” (= reference category)
x, intended use, categories “private” and “professional” (= reference category)
s marital status with reference category “living alone.”

A parametric logistic model for the probability of being not creditworthy yields a non—significant

effect of 0.000032 for the covariate “amount of credit” z,. This unexpected result may be investi-
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Figure 5: Credit—scoring, smooth and linear effects of “amount of credit”.

gated more thoroughly by using the semiparametric model

N = Tnefr + 3791"52 + z403 + xpﬁ4 + zufs + 506 + f($a)a

modelling the effect of the covariate “amount of credit” as smooth function f(z,). For the fixed
effects the approach of Section 3 yields the following estimates, which are in agreement with the

results of the maximum likelihood approach by Fahrmeir and Tutz (1997):

mean std

ZTnr  0.647371  0.174005
Tgr -1.301150 0.201329
zqg 0.041674 0.007775
zp -0.986134 0.231512
Ty -0.423103  0.159075
zs -0.534271 0.158749

Figure 5 shows the estimate of the smooth effect of the covariate z, together with the pointwise
one standard deviation confidence region and the linear effect of z, in the parametric logistic model

(dotted line). The smooth effect is clear nonlinear with a bath-tub shape, indicating that both
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high and low credits increase the risk of being not creditworthy, compared to medium credits. If
we assume the influence of the covariate “amount of credit” to be linear, the estimated effect is

near zero, falsely leading to the conclusion being non-significant.

5 Conclusions

The proposed Bayesian regression spline approach with adaptive knot placement using reversible
jump Markov chain Monte Carlo gives a flexible but also smooth fit to the data with only few
knots (e.g. the coal mining example: & = 9 in the mode). In comparison to overparameterized
methods such as nonadaptive smoothing splines or state space models it is able to work out the
shape of the curve in detail, but very smoothly without disturbing spikes, see the comments in
Section 4.1 for the rainfall data. Since the smoothness of the curve is determined by the number of
knots k, which is simultaneously chosen by the method, no further smoothing parameters have to
be found by additional methods as, e.g., cross validation. Moreover, the results of the coal mining
example in Section 4.2 indicate, that the prior of the model indicator k£ has only little influence on
the smoothness of f, if there is enough information in the data. Similar results could be presented
for the credit—scoring data in Section 4.3.

The choice between natural and ordinary splines should only be meaningful in situations with
data getting sparse in the boundaries, as in event history analysis. Here natural splines may help
to avoid boundary effects.

The following extensions to the approach proposed in Section 3 are fields for future research:
First, the adjustment of the spline basis to account for jumps and discontinuities in the function f.
Proposals for the B—spline basis are made, e.g., in Schumaker (1993) or Lyche and Strom (1996).
Further, due to the Bayesian approach using Markov chain Monte Carlo methods, extensions of
the semiparametric model to generalized additive models (Hastie and Tibshirani, 1990) or the
more general varying—coefficient models (Hastie and Tibshirani, 1993) are possible without much
problems. With regard to Markov chain Monte Carlo methods, other approaches for updating fixed
effects in the generalized linear model (Section 3.2) will be considered, since the applied method

of Gamerman (1997) is intensive in computing time, though it has good mixing and convergence
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properties. A possible approach is the slicing method, recently proposed by Neal (1997). Since in
our approach the number of unknown parameters is varying, the recently defined Bayesian Deviance
Information Criterion (DIC) of Spiegelhalter, Best and Carlin (1998) could help to measure the

complexity and the fit of the model.
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