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Abstract

We present a general approach for Bayesian inference via Markov chain

Monte Carlo �MCMC� simulation in generalized additive� semiparametric

and mixed models� It is particularly appropriate for discrete and other

fundamentally non�Gaussian responses� where Gibbs sampling techniques

developed for Gaussian models cannot be applied� We use the close relation

between nonparametric regression and dynamic or state space models to

develop posterior sampling procedures that are based on recent Metropolis�

Hasting algorithms for dynamic generalized linear models� We illustrate the

approach with applications to credit scoring and unemployment duration�

Keywords� generalized additive models� Markov chain Monte Carlo�
mixed models� semiparametric Bayesian inference� state space models� varying

coe�cients

� Introduction

In this paper we propose a general Bayesian approach via Markov chain Monte
Carlo 
MCMC� for inference in generalized additive and varying coe�cients mod

els� including extensions to models with random e�ects� Although additive models
with Gaussian responses are also covered by the framework� our main interest lies in
models for fundamentally non
Gaussian responses� such as binary or other discrete

valued responses� For Gaussian models� Gibbs sampling can be used for full Bayesian
analyses� see for example Wong and Kohn 
�		��� who use state space or dynamic
model representations of splines� or Hastie and Tibshirani 
�		��� who derive the
Gibbs sampler as a Bayesian version of back�tting� For non
Gaussian responses�
Gibbs sampling is no longer appropriate� and more general MCMC techniques are
needed� Hastie and Tibshirani 
�		�� make a corresponding suggestion for a type
of Metropolis
Hastings algorithm�
Our approach is based on the close relationship between dynamic generalized lin

ear models 
see� e�g�� Fahrmeir and Tutz� �		�� ch��� and generalized additive or
varying coe�cient models 
Hastie and Tibshirani� �		�� �		��� To be more speci�c�
consider the classical smoothing problem� where observations y � 
y
��� � � � � y
n��
are assumed to be the sum

y
t� � f
t� � �
t�� �
t� � N
�� ��� 
��

of a smooth regression function f � evaluated at equidistant design points t � �� � � � � n�
and independent Gaussian noise variables� Within a dynamic or state space frame

work� observations are usually considered as time series data� observed at time
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points t � �� � � � � n� The observation model 
�� is supplemented by a linear Gaus

sian Markov model for the parameters or states f � 
f
��� � � � � f
n��� A common
choice as so
called smoothness prior is a second order random walk model 
RW
���

f
t� � �f
t� ��� f
t� �� � u
t�� u
t� � N
�� � ��� 
��

where i�i�d� errors u
t� are independent from the noise variables in 
��� For
given variances �� and � �� posterior means �f
t� and variances can be e�ciently
computed by the Kalman �lter and smoother� Assuming di�use initial priors for
f
��� f
�� and using the linear Gaussian models 
�� and 
��� the posterior means
�f � 
 �f
��� � � � � �f
n�� can also be derived as posterior mode estimators� that is� as
minimizers of the negative 
log
� posterior

nX
t��


y
t�� f
t��� �
��

� �

nX
t��


f
t�� �f
t� ��� f
t� ����� 
��

Obviously� the penalized least squares criterion 
��� with smoothing parameter
� � ���� �� also has a non
Bayesian interpretation and is a discretized version of
the corresponding criterion leading to cubic smoothing splines 
e�g� Green and Sil

verman� �		��� Already for a moderate number of equidistant design points� cubic
smoothing splines and the discrete version �f from 
�� are often di�cult to distin

guish visually� Basically� this equivalence extends to additive Gaussian models as
well as to non
equally spaced design points or covariate observations�
For a full Bayesian analysis with hyperpriors for the variances �� and � �� the Kalman
�lter and smoother can be exploited for e�cient� blockwise Gibbs sampling 
Carter
and Kohn� �		�� Fruehwirth
Schnatter� �		��� Alternatively� Gibbs sampling could
also be carried out as in Hastie and Tibshirani 
�		��� using the presentation f �Kf
of the penalty term with a symmetric� block diagonal penalty matrix K�
For fundamentally non
Gaussian responses as considered in this paper� the observa

tion model 
�� has to be replaced by a non
Gaussian model� and� as a consequence�
the equivalence between posterior mean and posterior mode estimation by 
�� is lost�
The linear Kalman �lter and smoother is no longer applicable and Gibbs sampling
techniques cannot be reasonably applied� Therefore� we base posterior sampling
on recent Metropolis
Hastings algorithms with so
called conditional prior propos

als� developed by Knorr
Held 
�		�� in the context of dynamic generalized linear
models� Other recently proposed procedures for MCMC inference in these models

Gamerman� �		�� Shephard and Pitt� �		�� might also be useful� The MCMC
procedure gives rich output and permits estimation of posterior means� medians�
quantiles and other functionals of regression functions� No approximations based
on conjectures of asymptotic normality have to be made� and data
driven choice of
smoothing parameters is automatically incorporated�
Bayesian generalized additive models are described in Section �� while Section �
contains details about the chosen MCMC techniques� In Section � we illustrate
our approach by reanalyzing a semiparametric additive model for the credit scoring
data given in Fahrmeir and Tutz 
�		�� and for data on unemployment durations
from the German Federal Employment O�ce� The concluding section makes some
suggestions for future research�
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� Bayesian generalized additive and varying coef�

�cient models

Let us now turn to regression situations where observations 
yi� xi�� � � � � xip�� i �
�� � � � � n� on a response y and a vector 
x�� � � � � xp� of metrical covariates are given�
In longitudinal studies� as in our application to duration of unemployment in Sec

tion �� the covariate vector will typically include one or more time scales� such as
duration and calendar time� Generalized additive models 
Hastie and Tibshirani�
�		�� assume that� given xi � 
xi�� � � � � xip�� the distribution of yi belongs to an
exponential family� with mean 	i � E
yijxi� linked to an additive predictor 
i by

	i � h

i�� 
i � f�
xi�� � � � �� fp
xip�� 
��

Here h is a known link or response function� and f�� � � � � fp are unknown smooth
functions of the covariates� For identi�ability reasons� unknown functions are cen

tered appropriately� A slightly more general predictor is


i � f�
xi�� � � � �� fp
xip� � w�
i�� 
��

where wi � 
wi�� � � � � wir� is a vector of further covariates whose e�ect is assumed
to be linear� Models with predictor 
�� are sometimes termed generalized partially
linear or semiparametric additive models� For example� wi may contain binary
indicators for categorical covariates as in our application to credit scoring in Section
�� for smoothing is not sensible for such covariates� Observation models of the form

�� or 
�� may be appropriate if heterogeneity among units is su�ciently described
by covariates� A common way to deal with this problem is the inclusion of additive
random e�ects into the predictor� This leads to mixed models with predictor of the
form


i � f�
xi�� � � � �� fp
xip� � w�
i� � bgi � 
��

where bgi is a unit
 or group
 speci�c random e�ect� with bgi � bg if unit i is in
group g� g � �� � � � � G� For example� in our application to unemployment durations�
bg is an additional e�ect for unemployed from county g� Due to the large number of
countries a �xed e�ect approach will not be feasible� and a random e�ects model is
chosen instead� A further extension leads to varying coe�cient models 
Hastie and
Tibshirani� �		��� possibly incorporating random e�ects�


i � f�
xi��zi� � � � �� fp
xip�zip � w�
i� � bgi � 
��

The design vector z � 
z�� � � � � zp� may contain components of x as well as some
additional covariates� If a design variable is identical to �� e� g� zj � �� then the
corresponding function fj is the main e�ect of xj� while terms like fp
xip�zip model
an e�ect of zp that varies over xp or� in other words� interaction between xp and zp�
For Bayesian semiparametric inference� the unknown functions f�� � � � � fp� more
exactly corresponding vectors of function evaluations� and the parameters � �

��� � � � � �r� are considered as random variables� The observation models 
���
���
��
or 
�� are understood to be conditional upon these random variables� and have to
be supplemented by appropriate prior distributions�
Priors for the unknown functions f�� � � � � fp are based on Gaussian smoothness
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priors that are common in dynamic generalized linear models� see� for example�
Fahrmeir and Tutz 
�		�� ch� ��� Let us �rst consider the case of a single covari

ate x with equally�spaced observations xi� i � �� � � � � n� Then the ordered sequence
x��� � � � � � x�t� � � � � � x�n� de�nes an equidistant grid on the x
axis� The
typical case for this situation arises if the covariate x corresponds to time t� and
the grid points correspond to time units such as weeks� months� or years� De�ne
f
t� �� f
x�t�� and let

f � 
f
��� � � � � f
t�� � � � � f
n���

denote the vector of function evaluations� Then� just as for the time trends example
in Section �� common priors for smooth functions are� respectively� �rst or second
order random walk models

f
t� � f
t� �� � u
t� or f
t� � �f
t� ��� f
t� � u
t� 
��

with Gaussian errors u
t� � N
�� � �� and di�use priors f
�� � const� and f
�� and
f
�� � const� for initial values� respectively� Of course� higher order di�erence priors
are also possible� For example if the covariate x is time t� measured in months� then
a common smoothness prior for a seasonal component f
t� is

f
t� � f
t� �� � � � �� f
t� ��� � u
t� � N
�� � ��� 
	�

Generally� we might specify Gaussian autoregressive priors of order k

f
t� �
kX

l��


lf
t� l� � u
t�� u
t� � N
�� � ��� 
���

with di�use priors assigned to initial values f
��� � � � � f
k�� The prior 
��� is equiv

alent to

f
t�jf
t� ��� � � � f
t� k�� � � � � f
��� � � � N

kX

l��


lf
t� l�� � ��� 
���

In shortened notation� write this as

f
t�j � � AR
k� � ��

for 
��� or 
���� assuming di�use priors for initial values f
��� � � � � f
k��
Due to the chronological ordering in 
��� or 
���� priors for f � 
f
��� � � � � f
n�� are
seemingly de�ned in an asymmetric way� However it is important to note that these
priors can always be rewritten in a symmetric form that is invariant to chronological
ordering� Generally� this follows from the fact that any discrete Markov process like

��� or 
���� can also be formulated in a symmetric way by conditioning not on
previous variables f
t� ��� f
t� ��� � � �� but also on future variables f
t� ��� f
t�
��� � � �� For example� a �rst order random walk prior can be rewritten as

f
t�jf
s�� s �� t� � � �

�����
N
f
��� � �� for t � �

N
�
�
f
t� �� � �

�
f
t� ��� �

�

�
� for � � t � n� �

N
f
n� ��� � �� for t � n�
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Symmetry is also evident from the multivariate Gaussian prior for the entire vector
f � 
f
��� � � � f
n�� of function evaluations� From 
�� it is easy to show that f has
a partially improper prior

f � N
�� � �K���

where K� is a generalized inverse of the precision matrix

K �

�BBBBB�
� ��

�� � ��

� � �
� � �

� � �

�� � ��

�� �

�CCCCCA�

Symmetric de�nitions of 
��� or 
��� can be derived in a similar way� Thus� the
priors are reasonable not only for time scales with natural chronological order� but
for any other metrical covariate�
Next we consider the general case with non
equally spaced observations� Let

x���j � � � � � x�t�j � � � � � x�nj�j� j � �� � � � � p

denote the nj � n strictly ordered� di�erent observations of the covariate xj� and

fj � 
fj
��� � � � � fj
t�� � � � � fj
nj��
�

with fj
t� �� fj
x�t�j�� the vector of function evaluations�
Random walk or autoregressive priors have to be modi�ed to account for nonequal
distances �tj � xt�j��xt����j� between observations� Random walks of �rst order are
now speci�ed by

fj
t� � fj
t� �� � uj
t�� uj
t� � N
�� �tj�
�
j �� 
���

i� e� � by adjusting error variances from � �j to �tj�
�
j � Random walks of second order

are

fj
t� �

	
� �

�tj
�t���j



fj
t� ���

�tj
�t���j

fj
t� �� � uj
t�� 
���

u
t� � N
��wtj�
�
j �� where wtj is an approppriate weight� The simplest weight is

wtj � �tj as in 
���� More complex weights can be derived from corresponding
continuous
time random walk models� i� e� stochastic di�erential equation priors� or
with other arguments� Based on experience with simulated and real data� we recom

mend wtj � �tj as a standard option� A related� yet di�erent proposal for a second
order autoregressive prior is given by Berzuini and Larissa 
�		��� Another possi

bility would be to use state space representations of stochastic di�erential equation
priors based on the work by Kohn and Ansley 
�	���� Biller and Fahrmeir 
�		��
follow this idea� but there are signi�cant problems associated with convergence and
mixing behaviour of posterior samples� than in the case with the simpler priors cho

sen here�
The general formulation are autoregressive priors

fj
t�jfj
t� ��� � � � fj
t� k� � N

kjX
l��


lj
t�fj
t� l��wtj�
�
j � 
���

�



with di�use priors for initial values� In shortened notation� we write this as

fj
t�j � � AR
kj�wtj�
�
j �� j � �� � � � � p� 
���

The variance parameters � �j in 
��� act as smoothness parameters in analogy to
penalized likelihood estimation� Smaller values of the variance � �j impose more
smoothness on the unknown function fj� For a fully Bayesian analysis� hyperpriors
for variances are introduced in a further stage of the hierarchy� This allows for
simultaneous estimation of the unknown function and the amount of smoothness�
A common choice are highly dispersed inverse gamma priors

p
� �j � � IG
aj� bj��

A common choice for a and b is very small a � b� for example a � b � ������� leading
to almost di�use priors for the variance parameters� An alternative proposed� for
example� in Besag et al� 
�		�� is a � � and a small value for b� such as b � ������
However since estimation results tend to be sensitive to the choice of hyperpriors�
especially in situations when data is sparse� some kind of sensitivity analysis should
always be performed�

For the �xed e�ect parameters ��� � � � � �r� we will usually assume independent di�use
priors �j � const� j � �� � � � � r� Another choice would be highly dispersed Gaussian
priors�

For random e�ects� we make the usual assumption that the bg�s are i�i�d� Gaussian�

bgjv
� � N
�� v��� g � �� � � � � G

and use again a highly dispersed hyperprior for v��
In the following� let

f � 
f�� � � � � fp�� � � � 
� �� � � � � � �
�
p �� � � 
��� � � � � �r�� b � 
b�� � � � � bG�

denote parameter vectors for function evaluations� variances� �xed� and random
e�ects� Then the Bayesian model speci�cation is completed by the following condi�

tional independence assumptions�

i� For given covariates and parameters f � � and b observations yi are conditionally
independent�

ii� Priors p
fj j �
�
j �� j � �� � � � � p� are conditionally independent�

iii� Priors for �xed and random e�ects� and hyperpriors � �j � j � �� � � � � p� are mu

tually independent�

� MCMC inference

Full Bayesian inference is based on the entire posterior distribution

�



p
f� � �� �� bjy� � p
yjf� � �� �� b�p
f� � �� �� b��

By assumption 
i�� the conditional distribution of observed data y is the product of
individual likelihoods�

p
yjf� � �� �� b� �
nY

i��

Li
yi� 
i�� 
���

with Li
yi� 
i� determined by the speci�c exponential family distribution and the
form chosen for the predictor 
�
Together with the conditional independence assumptions 
ii� and 
iii�� we have

p
f� � �� �� bjy� �
nY

i��

Li
yi� 
i�
pY

j��

fp
fjj�
�
j �p
�

�
j �g

rY
k��

p
�k�
GY

g��

p
bgjv
��p
v��

for the posterior�

Bayesian inference via MCMC simulation is based on drawings from full conditionals
of single parameters or blocks of parameters� given the rest and the data� For Gaus

sian models� Gibbs sampling can be applied� and posterior samples for the unknown
functions can be obtained by updating the entire vector fj � 
fj
��� � � � � fj
nj�� in a
so
called multimove step� see� for example� Carter and Kohn 
�		�� and Wong and
Kohn 
�		��� who use dynamic model representations of cubic splines� or Hastie and
Tibshirani 
�		��� who derive the Gibbs sampler as a stochastic generalization of
the back�tting algorithm� For fundamentally non
Gaussian responses as considered
in this paper� Gibbs sampling is no longer feasible and more general Metropolis

Hastings algorithms are needed� Single
move steps� as in Carlin� Polson and Sto�er

�		��� which update each parameter fj
t� separately� su�er from problems with
convergence and mixing� Hastie and Tibshirani 
�		�� suggest Metropolis
Hastings
multi
move steps� We adopt a computationally very e�cient M
H
algorithm with
conditional prior proposals developed recently by Knorr
Held for dynamic gener

alized linear models� Convergence and mixing is considerably improved by block
moves� where blocks fj�r� s� � 
fj
r�� � � � � fj
s�� of parameters are updated instead
of single parameters �j
s�� Suppressing conditioning parameters and data notation

ally� the full conditionals for the blocks fj�r� s� are

p
fj�r� s� j �� � L
fj�r� s�� p
fj�r� s� j fj
l�� l �� �r� s�� � �j �

The �rst factor L
fj�r� s�� is the product of all likelihood contributions in 
��� that
depend on fj�r� s�� The second factor� the conditional distribution of fj�r� s� given the
rest f
l�� l �� �r� s�� is a multivariate Gaussian distribution� Its 
conditional� mean
	j
r� s� and covariance matrix �j
r� s� are obtained from the joint Gaussian prior for
fj by the usual formulae for conditional Gaussian distributions� M
H
block
move
updates for fj�r� s� are obtained by drawing a conditional prior proposal f �j �r� s� from
the conditional Gaussian N
	j�r� s���j�r� s�� and accepting it with probability

minf��
L
f �j �r� s��

L
fj�r� s��
g�

�



see Knorr
Held 
�		�� for proofs and details� From a computational point of view�
the main advantage is the simple form of the acceptance probability� Only the
likelihood has to be computed� no �rst or second derivates etc� are involved� thus
considerably reducing the number of calculations�

The full conditionals for the variance parameters � �j � j � �� � � � � p are inverse gamma
densities

p
� �j j �� � IG
a�j� b
�
j� 
���

with parameters

a�j � aj �
nj � kj

�

and

b�j � b�
�

�

njX
t�kj��

�

wtj

kjX
l��


lj
t�fj
t� l��

respectively� Thus updating of variance parameters can be done by simple Gibbs
steps� drawing directly from the inverse gamma densities 
����

With a di�use prior p
�j� � const for the �xed e�ects parameters� the full condi

tional for � is

p
� j �� �
nY

i��

Li
yi� 
i��

Updating of � can in principle be done by MH steps with a random walk proposal
q
�� ���� but a serious problem is tuning� i�e� specifying a suitable covariance matrix
for the proposal that guarantees high acceptance rates and good mixing� Especially
when the dimension of � is high� with signi�cant correlations among components�
tuning �by hand is no longer feasible� An alternative is the weighted least squares
proposal suggested by Gamerman 
�		��� Here a Gaussian proposal is used with
mean m
�� and covariance matrix C
��� where � is the current state of the chain�
The mean m
�� is obtained by making one Fisher scoring step to maximize the
full conditional p
� j �� and C
�� is the inverse of the expected Fisher information�
evaluated at the current state � of the chain� In this case the acceptance probability
of a proposed new vector �� is

minf��
p
�� j ��q
��� ��

p
� j ��q
�� ���
g 
���

Note that q is not symmetric because the covariance matrix from C of q depends on
�� Thus in principle the fraction q
��� ���q
�� ��� can not be omitted from 
���� In
practice however experience shows that this fraction is almost always near one� so
omitting the fraction does not a�ect signi�cantly the e�ciency of the algorithm� but
rather leads to a considerable saving in computation� Further computer time� can be
saved by omitting the Fisher scoring step when computing the mean of Gamermans
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proposal� and simply taking the current state of the chain as the mean� Compared
to Gamermans original proposal our slightly modi�ed updating scheme for �xed
e�ects parameters is more e�cient and avoids tuning �by hand �

For an additional random intercept� the full conditional for parameter bg is given by

p
bg j �� �
Y

i�fj	gj�gg

Li
yi� 
i�p
bgjv
��

Here a simple Gaussian random walk proposal with mean bg and variance v� works
well in most cases� To improve mixing� tuning is sometimes required by multiplying
the prior variance v� in the proposal with a constant factor� e�g� �� An alternative is�
again� Gamerman�s weighted least squares proposal or a slight modi�cation� This
becomes especially attractive when the observation model contains one or more
random slope parameters in addition to the random intercept� By analogy to the
variance parameters �j of nonparametric terms the full conditional of v� is again an
inverse gamma distribution� so updating is straightforward�

� Applications

��� Credit�Scoring

In our �rst application� we reanalyze the credit!scoring problem described in
Fahrmeir and Tutz 
�		�� ch� ����� The aim of credit!scoring is to model or
predict the probability that a client with certain covariates 
�risk factors � is to be
considered as a potential risk� and therefore will probably not pay back his credit
as agreed upon by contract� The data set consists of ���� consumers� credits from
a South German bank� The response variable is �creditability � which is given in
dichotomous form 
y � � for creditworthy� y � � for not creditworthy�� In addition�
�� covariates assumed to in"uence creditability were collected� As in Fahrmeir
and Tutz 
�		��� we will use a subset of these data� containing only the following
covariates� which are partly metrical and partly categorical�

x� running account� trichotomous with categories �no running account 

� ��� �good running account 
� ��� �medium running account 

�less than ��� DM � � � reference category�

x� duration of credit in months� metrical
x
 amount of credit in DM� metrical
x� payment of previous credits� dichotomous with categories �good �

�bad 
�reference category�
x� intended use� dichotomous with categories �private or

�professional 
�reference category�
x
 marital status� with reference category �living alone �

E�ect coding is used for all categorical covariates� A parametric logit model for
the probability pr
y � �jx� of being not creditworthy� leads to the conclusion that
the covariate �amount of credit has no signi�cant in"uence on the risk� Here� we

	



reanalyze the data with a partial linear logit model

log
pr
y � �jx�

�� pr
y � �jx�
� �� � ��x

�
� � ��x

�
� � f�
x�� � f

x
� � ��x� � ��x� � �
x
�

where x�� and x�� are dummies for the categories �good and �medium running
account� The predictor has semiparametric additive form� The smooth functions
f�
x��� f

x
� of the metrical covariates �duration of credit and �amount of credit �
are estimated nonparametrically using second order random walk models for non!
equally spaced observations� The constant �� and the e�ects ��� � � � � �
 of the re

maining categorical covariates are considered as �xed and estimated jointly with the
curves f� and f
� assuming di�use priors�

duration of credit in months

 

-3
-2

-1
0

1

20 40 60

amount of credit in DM

 

-1
0

1
2

0 5 10 15

Figure �� Estimated e�ects of duration and amount of credit� Shown is the posterior

mean within 	
 � credible regions and for comparison cubic smoothing splines �dotted

lines�

�

Figure � shows estimates for the curves f� and f
� For comparison� cubic smoothing
splines are included in addition to posterior mean estimates� Although cubic splines

��



are posterior mode estimators and the penalty terms are not exactly the same� both
estimates are close� While the e�ect of the variable �duration of credit is almost
linear� the e�ect of �amount of credit is clearly nonlinear� The curve has a bathtub
shape� and indicates that not only high credits but also low credits increase the risk�
compared to �medium credits between ����!���� DM� Apparently� if the in"uence
is misspeci�ed by assuming a linear function �
x
 instead of f

x
�� the estimated
e�ect b�
 will be near zero� corresponding to an almost horizontal line b�
x
 near zero�
and falsely considered as nonsigni�cant�

Table � gives the posterior means together with ��# credible intervals and� for
comparison� maximum likelihood estimates of the remaining e�ects� Both estimates
are in close agreement� They also have the same signs and are quite near to the
estimates for a parametric logit model given in Fahrmeir and Tutz 
�		��� so that
interpretation remains qualitatively the same for these constant e�ects�

covariate mean �� # quantile 	� # quantile ML estimator
x�� ���� ���� ���� ����
x�� 
���	 
���� 
���� 
���	
x� 
���	 
���� 
���� 
����
x� 
���� 
���� 
���� 
����
x
 
���� 
���� 
���� 
����

Table �� Estimates of constant parameters for the credit�scoring data�

��� Duration of unemployment

In this second application� we analyze unemployment data from the German Federal
Employment O�ce 
�Bundesanstalt f�ur Arbeit �� Typical questions that arise in
studies on duration of unemployment are� How can the baseline e�ect 
duration
dependence� be modelled$ How can trend and seasonal e�ects of calendar time be
"exibly incorporated$ What e�ect has age$ Are there regional di�erences for the
probability of leaving unemployment and seeking a new job$ An important problem
in connection with persistant unemployment in the 	��s in Europe� is the e�ect of
unemployment compensation and social welfare� Are there negative side
e�ects of
public unemployment compensation$

Our analysis is based on the following covariates�

D calendar time measured in months
A age 
in years� at the beginning of unemployment
S sex� dichotomous with categories �male and �female 
� reference category�
N nationality� dichotomous with categories �german and

�foreigner 
� reference category�
U unemployment compensation� trichotomous with categories

�unemployment bene�t 
�reference category��
�unemployment assistance 
U�� and
�subsistence allowance 
U���

C county in which the unemployed have their domicil

��



Note that calendar time D and unemployment compensation U are both duration
time dependent covariates� As in our �rst application e�ect coding is used for all
categorical covariates� Since duration of unemployment is measured in months� we
use a discrete time duration model as described in Fahrmeir and Tutz 
�		�� ch� 	��
Let T � t � f�� � � � � q � �g denote end of duration in month t after beginning of
unemployment� and x�t � 
x�� � � � � xt� the history of covariates up to month t� Then
the discrete hazard function is given by

�
t� x�t � � pr
T � t j T � t� x�t �� t � �� � � � � q�

We assume that censoring is noninformative and occurs at the end of the interval�
so that the risk set Rt includes all individuals who are censored in interval t� We
de�ne binary event indicators yit� i � Rt� t � �� � � � � ti� by

yit �

�
� if t � ti and �i � �
� otherwise�

Then the duration process of individual i can be considered as a sequence of binary
decisions between remaining unemployed yit � � or leaving for the absorbing state
yit � �� i�e� end of unemployment at t� For i � Rt� the hazard function for individual
i can be modelled by binary response models

pr
yit � � j x�it� � h

it�� 
�	�

with appropriate predictor 
it and response function h � R 	 
�� ��� We choose a
logit model with semiparametric predictor


 � f�
t� � fT
� 
D� � fS

� 
D� � f�
A� � ��S � ��N � ��U
� � ��U

� � bC �

The baseline e�ect f�
t�� the calendar time trend fT
� 
D�� and the e�ect of age f�
A�

are estimated nonparametrically using second order random walks� For the seasonal
e�ect fS

� 
D� we choose the smoothness prior 
	�� The in"uences of the categorical
covariates sex� nationality� and unemployment compensation� are modelled as �xed
e�ects� To cope with regional heterogeneity� a county speci�c random e�ect bC is
incorporated into the linear predictor� The estimation results of the nonparametric
terms and the seasonal component are shown in Figure � a�
f�� The baseline e�ect

Figure a�� is downward sloping� Therefore� the possibility of �nding a job is a
decreasing function of the duration of unemployment� The e�ect of age in �gure
b� is slowly declining until age ��� dramatically declining for people older than ���
Figure c� displays the calendar time trend� For comparison with the estimated
trend� the absolute number of unemployed people in Germany from �	�� to �		� is
shown in Figure d�� Not surprisingly� a declining calendar time trend corresponds
to an increase in the unemployment rate� and vice versa� So the estimated calendar
time trend accurately re"ects the economic trend of the labor market in Germany�

��



The estimated seasonal pattern 
Figure e�� is relatively stable over the observation
period� To gain a better insight� a section of the seasonal pattern for �	�� is displayed
in Figure f�� It shows typical peaks in spring and autumn� a global minimum
in winter� and a local minimum in July� Low rates of hirings in summer can be
explained by the distribution of holidays and vacations� In Figure � the estimated
posterior mean of the county speci�c random e�ect bC is displayed� showing a strong
spatial pattern� with better chances of getting a new job in the southern part of West
Germany� and lower chances in the middle and in the north�

Table � gives results of the remaining e�ects�

covariate mean �� # quantile 	� # quantile
S ���	 ���� ����
N ���� ���� ����
U� ���� ���� ����
U� 
���	 
���� 
����

Table �� Estimates of constant parameters in the unemployment data�

Males and Germans have improved job chances compared to females and foreigners�
but the e�ects are not overwhelmingly large� The estimate of ����	 for the subsis

tance allowance is signi�cantly negative� while the e�ect of unemployment is slightly
positive� Due to e�ect coding� the e�ect of insurance based unemployment bene�ts
is ���� � ���	����� and is therefore clearly positive� At �rst sight� this result seems
to contradict the widely
held conjecture about the negative side
e�ects of unemploy

ment bene�ts� However� it may be that the variable �unemployment bene�t also
acts as a surrogate variable for those who have worked� and therefore contributed
regularly to the insurance system in the past� Further substantive research will be
necessary to give de�nite answers�

� Conclusions

Non
 and semiparametric Bayesian regression is a useful tool for practical data analy

sis� It provides posterior mean or median estimates� con�dence bands� and estimates
of other functionals� without approximate normality of estimators� Data
driven
choice of smoothing parameters is also incorporated as part of the model� Many
recent approaches based on smoothness priors or basis functions considered the case
of Gaussian or related responses� our method is particularly useful for nonparamet

ric regression with fundamentally non
Gaussian responses� The main advantage of
hierarchical Bayesian models for nonparametric regression is their modular struc

ture and "exibility� By appropriate modi�cations of observation models or priors�
generalizations and extensions to other settings are conceptually simple�
For example� inclusions of interactions between metrical covariates in the obser

vation model can be based on the suggestion of Clayton
�		�� for the interaction
e�ects between two time scales� Let x�t�j � t � �� � � � � nj� and x�s�k� s � �� � � � � nk

denote the strictly ordered� di�erent observations of two covariates xj and xk� and
fjk
t� s� �� fjk
x�t�j � x�s�k� the interaction e�ects� If the smoothness priors for the

��



main e�ects fj and fk are� for example� �rst order random walks as in 
�� or 
����
the smoothness priors for fjk are de�ned by ��rst di�erences of �rst di�erences �
This leads to the interaction smoothness prior

fjk
t� s�� fjk
s� �� t�� fjk
t� �� s� � fjk
s� �� t� �� � ujk
t� s� � N
�� �ts�jk�
�
jk�

where �ts�jk is a measure of the distance between the observation pairs 
x�t���j � x�s���k

and 
x�t�j � x�s�k�� It can be shown that this de�nes a global prior fjk � N
�� � �jkK
�
jk��

where the precision matrix is obtained as the Kronecker product Kjk � Kj 
 Kk

of corresponding precicison matrics Kj and Kk of the main e�ects� The same idea
remains valid for other main e�ect priors like second order random walk models�
and can be considered as the Bayesian analogue of modelling interactions by tensor
product splines in a penalized log
likelihood framework�
For regression data with spatial labels on them� as in our second application� the
i�i�d� prior for the random e�ects in the predictor �g could be replaced by a Markov
random �eld prior

�gj�g� ��g� v
� � N


X
g��g

� �g
ag
�
v�

ag
��

where ag is the number of neighboring regions�

To �t unsmooth functions f
x�� i�e� functions with discontinuities� edges or rather
volatile curvature� the Gaussian prior for the errors in random walk or autoregressive
models might be replaced by heavy
tail distributions� or by Gaussian distributions
with locally varying variances

uj
t� � N
�� � �tj�� � �tj � exp
htj��

with htj obeying a random walk model in a further stage of the hierarchy� We
intend to investigate these possibilities in future research�

Software�
We have implemented most of the ideas in this paper as a Windows NT
based application� The program will soon be available for public use under
http���www�stat�uni�muenchen�de� lang��
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Figure �� Estimated nonparametric functions and seasonal e�ect� Shown is the posterior
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Figure �� posterior mean of the county speci
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