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Abstract

We present a general approach for Bayesian inference via Markov chain
Monte Carlo (MCMC) simulation in generalized additive, semiparametric
and mixed models. It is particularly appropriate for discrete and other
fundamentally non-Gaussian responses, where Gibbs sampling techniques
developed for Gaussian models cannot be applied. We use the close relation
between nonparametric regression and dynamic or state space models to
develop posterior sampling procedures that are based on recent Metropolis-
Hasting algorithms for dynamic generalized linear models. We illustrate the
approach with applications to credit scoring and unemployment duration.

Keywords: generalized additive models, Markov chain Monte Carlo,
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1 Introduction

In this paper we propose a general Bayesian approach via Markov chain Monte
Carlo (MCMC) for inference in generalized additive and varying coefficients mod-
els, including extensions to models with random effects. Although additive models
with Gaussian responses are also covered by the framework, our main interest lies in
models for fundamentally non-Gaussian responses, such as binary or other discrete-
valued responses. For Gaussian models, Gibbs sampling can be used for full Bayesian
analyses, see for example Wong and Kohn (1996), who use state space or dynamic
model representations of splines, or Hastie and Tibshirani (1998), who derive the
Gibbs sampler as a Bayesian version of backfitting. For non-Gaussian responses,
Gibbs sampling is no longer appropriate, and more general MCMC techniques are
needed. Hastie and Tibshirani (1998) make a corresponding suggestion for a type
of Metropolis-Hastings algorithm.

Our approach is based on the close relationship between dynamic generalized lin-
ear models (see, e.g., Fahrmeir and Tutz, 1997, ch.8) and generalized additive or
varying coefficient models (Hastie and Tibshirani, 1990, 1993). To be more specific,

consider the classical smoothing problem, where observations y = (y(1),...,y(n))
are assumed to be the sum

y(t) = f(t) +(t),  £(t) ~ N(0,0%) (1)
of a smooth regression function f, evaluated at equidistant design pointst =1,...,n,

and independent Gaussian noise variables. Within a dynamic or state space frame-
work, observations are usually considered as time series data, observed at time



points ¢ = 1,...,n. The observation model (1) is supplemented by a linear Gaus-

sian Markov model for the parameters or states f = (f(1),...,f(n)). A common
choice as so-called smoothness prior is a second order random walk model (RW(2))
f@)=2ft-1) = ft—=2)+u(®),  u(t)~N(O 7%, (2)

where i.i.d. errors u(t) are independent from the mnoise variables in (1). For
given variances o and 72, posterior means f (t) and variances can be efficiently
computed by the Kalman filter and smoother. Assuming diffuse initial priors for
f(1), f(2) and using the linear Gaussian models (1) and (2), the posterior means
f=(fQ),...,f(n)) can also be derived as posterior mode estimators, that is, as

minimizers of the negative (log-) posterior

S (y(t) - “—2 C9f(t— 1) — f(t— ). (3)

Obviously, the penalized least squares criterion (3), with smoothing parameter
A = 02/72, also has a non-Bayesian interpretation and is a discretized version of
the corresponding criterion leading to cubic smoothing splines (e.g. Green and Sil-
verman, 1994). Already for a moderate number of equidistant design points, cubic
smoothing splines and the discrete version f from (3) are often difficult to distin-
guish visually. Basically, this equivalence extends to additive Gaussian models as
well as to non-equally spaced design points or covariate observations.

For a full Bayesian analysis with hyperpriors for the variances 0 and 72, the Kalman
filter and smoother can be exploited for efficient, blockwise Gibbs sampling (Carter
and Kohn, 1994; Fruehwirth-Schnatter, 1994). Alternatively, Gibbs sampling could
also be carried out as in Hastie and Tibshirani (1998), using the presentation f'K f
of the penalty term with a symmetric, block diagonal penalty matrix K.

For fundamentally non-Gaussian responses as considered in this paper, the observa-
tion model (1) has to be replaced by a non-Gaussian model, and, as a consequence,
the equivalence between posterior mean and posterior mode estimation by (3) is lost.
The linear Kalman filter and smoother is no longer applicable and Gibbs sampling
techniques cannot be reasonably applied. Therefore, we base posterior sampling
on recent Metropolis-Hastings algorithms with so-called conditional prior propos-
als, developed by Knorr-Held (1998) in the context of dynamic generalized linear
models. Other recently proposed procedures for MCMC inference in these models
(Gamerman, 1998; Shephard and Pitt, 1997) might also be useful. The MCMC
procedure gives rich output and permits estimation of posterior means, medians,
quantiles and other functionals of regression functions. No approximations based
on conjectures of asymptotic normality have to be made, and data-driven choice of
smoothing parameters is automatically incorporated.

Bayesian generalized additive models are described in Section 2, while Section 3
contains details about the chosen MCMC techniques. In Section 4 we illustrate
our approach by reanalyzing a semiparametric additive model for the credit scoring
data given in Fahrmeir and Tutz (1997) and for data on unemployment durations
from the German Federal Employment Office. The concluding section makes some
suggestions for future research.



2 Bayesian generalized additive and varying coef-
ficient models

Let us now turn to regression situations where observations (y;, T, ..., Zip), @ =
1,...,n, on a response y and a vector (zy,...,x,) of metrical covariates are given.
In longitudinal studies, as in our application to duration of unemployment in Sec-
tion 4, the covariate vector will typically include one or more time scales, such as
duration and calendar time. Generalized additive models (Hastie and Tibshirani,
1990) assume that, given x; = (2, ..., ), the distribution of y; belongs to an
exponential family, with mean p; = E(y;|z;) linked to an additive predictor n; by

pi = h(ni), ni = fil@a) + ..+ fp(zp). (4)

Here h is a known link or response function, and f,..., f, are unknown smooth
functions of the covariates. For identifiability reasons, unknown functions are cen-
tered appropriately. A slightly more general predictor is

mi = fi(@a) + ..+ fp@y) +wif, (5)

where w; = (wj1, ..., w;) is a vector of further covariates whose effect is assumed
to be linear. Models with predictor (5) are sometimes termed generalized partially
linear or semiparametric additive models. For example, w; may contain binary
indicators for categorical covariates as in our application to credit scoring in Section
4, for smoothing is not sensible for such covariates. Observation models of the form
(4) or (5) may be appropriate if heterogeneity among units is sufficiently described
by covariates. A common way to deal with this problem is the inclusion of additive
random effects into the predictor. This leads to mixed models with predictor of the
form

nz:fl(le)++fp($zp)+w;ﬂ+bgn (6)
where by, is a unit- or group- specific random effect, with b, = b, if unit 7 is in
group g, g = 1,...,G. For example, in our application to unemployment durations,

b, is an additional effect for unemployed from county g. Due to the large number of
countries a fixed effect approach will not be feasible, and a random effects model is
chosen instead. A further extension leads to varying coefficient models (Hastie and
Tibshirani, 1993), possibly incorporating random effects,

ni = filxi)zin + ...+ fp(@ip)zip + Wi 0 + by, (7)

The design vector z = (z1,...,2,) may contain components of x as well as some
additional covariates. If a design variable is identical to 1, e. g. z; = 1, then the
corresponding function f; is the main effect of x;, while terms like f,(z;,)z;, model
an effect of z, that varies over z, or, in other words, interaction between x, and z,.
For Bayesian semiparametric inference, the unknown functions fi,..., f,, more
exactly corresponding vectors of function evaluations, and the parameters § =
(1, ..., 0) are considered as random variables. The observation models (4),(5),(6)
or (7) are understood to be conditional upon these random variables, and have to
be supplemented by appropriate prior distributions.

Priors for the unknown functions fi,..., f, are based on Gaussian smoothness



priors that are common in dynamic generalized linear models, see, for example,
Fahrmeir and Tutz (1994, ch. 8). Let us first consider the case of a single covari-
ate x with equally-spaced observations x;, © = 1,...,n. Then the ordered sequence
ray < ... < xy < ... < Ty defines an equidistant grid on the x-axis. The
typical case for this situation arises if the covariate x corresponds to time ¢, and
the grid points correspond to time units such as weeks, months, or years. Define
f(t) == f(zw) and let
f=0Q), . f@),.... f(n)

denote the vector of function evaluations. Then, just as for the time trends example

in Section 1, common priors for smooth functions are, respectively, first or second
order random walk models

f@)=f{t=1)+ult) or f(t)=2f(t—1)—= f(t)+u(t) (8)

with Gaussian errors u(t) ~ N(0;72) and diffuse priors f(1) o< const, and f(1) and
f(2) o const, for initial values, respectively. Of course, higher order difference priors
are also possible. For example if the covariate x is time ¢, measured in months, then
a common smoothness prior for a seasonal component f(t) is

f)+ ft—1)+ ...+ f(t—11) = u(t) ~ N(0,7?). (9)

Generally, we might specify Gaussian autoregressive priors of order k

F@) = af(t =1 +u(t), ult) ~ N(0,7°), (10)

with diffuse priors assigned to initial values f(1),..., f(k). The prior (10) is equiv-
alent to

FOIFE=1) . flt=Fk), . ), T2~ NO_ o f(t—1),7). (11)

=1

In shortened notation, write this as
f@O1 ~ AR(k;7?)

for (10) or (11), assuming diffuse priors for initial values f(1),..., f(k).

Due to the chronological ordering in (10) or (11), priors for f = (f(1),..., f(n)) are
seemingly defined in an asymmetric way. However it is important to note that these
priors can always be rewritten in a symmetric form that is invariant to chronological
ordering. Generally, this follows from the fact that any discrete Markov process like
(10) or (11), can also be formulated in a symmetric way by conditioning not on
previous variables f(t — 1), f(t — 2),. .., but also on future variables f(t+ 1), f(¢t +

2),.... For example, a first order random walk prior can be rewritten as
N(f(2).7%) for t =1
FOIf(s), s #t,7° ~ & NGft—1D)+Lft+1),2) for2<t<n-—1
N(f(n—1),72) for t = n.



Symmetry is also evident from the multivariate Gaussian prior for the entire vector
f=(f(),...f(n)) of function evaluations: From (8) it is easy to show that f has
a partially improper prior

f~NO;7°K7),
where K~ is a generalized inverse of the precision matrix
1 -1
-1 2 -1
K = . .
-1 2 -1
-1 1

Symmetric definitions of (10) or (11) can be derived in a similar way. Thus, the
priors are reasonable not only for time scales with natural chronological order, but
for any other metrical covariate.

Next we consider the general case with non-equally spaced observations. Let

m(l)j<---<l‘(t)j<...<l‘(nj)j, jzl,,p
denote the n; < n strictly ordered, different observations of the covariate z;, and

fi= ), £, fi(ng)

with f;(t) :== f;j(z@);), the vector of function evaluations.

Random walk or autoregressive priors have to be modified to account for nonequal
distances d;; = x4(j) — x4_1,(j) between observations. Random walks of first order are
now specified by

Fi®) = fi(t = 1) +u;(t), w;(t) ~ N(0;0477), (12)

i. e. , by adjusting error variances from 7']-2 to 6tj7j2. Random walks of second order
are

Otj

Ot-1,5

fi(t) = (H )fj(t—l)— b Fit = 2) +u;(2), (13)

Ot—1,j

u(t) ~ N(0;wy7}), where wy; is an approppriate weight. The simplest weight is
wy; = 0y as in (12). More complex weights can be derived from corresponding
continuous-time random walk models, i. e. stochastic differential equation priors, or
with other arguments. Based on experience with simulated and real data, we recom-
mend wy;; = d;; as a standard option. A related, yet different proposal for a second
order autoregressive prior is given by Berzuini and Larissa (1996). Another possi-
bility would be to use state space representations of stochastic differential equation
priors based on the work by Kohn and Ansley (1988). Biller and Fahrmeir (1997)
follow this idea, but there are significant problems associated with convergence and
mixing behaviour of posterior samples, than in the case with the simpler priors cho-
sen here.

The general formulation are autoregressive priors

O =1), . fit = k) ~ N(Zj: i (1) £t — D) wyy) (14)
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with diffuse priors for initial values. In shortened notation, we write this as

i@ - ~AR(kj; wy?), j=1,...,p. (15)

The variance parameters Tj2 in (14) act as smoothness parameters in analogy to

penalized likelihood estimation. Smaller values of the variance 7']-2 impose more
smoothness on the unknown function f;. For a fully Bayesian analysis, hyperpriors
for variances are introduced in a further stage of the hierarchy. This allows for
simultaneous estimation of the unknown function and the amount of smoothness.
A common choice are highly dispersed inverse gamma priors

p(1}) ~ IG(aj; b).

A common choice for ¢ and b is very small a = b, for example a = b = 0.0001, leading
to almost diffuse priors for the variance parameters. An alternative proposed, for
example, in Besag et al. (1995) is « = 1 and a small value for b, such as b = 0.005.
However since estimation results tend to be sensitive to the choice of hyperpriors,
especially in situations when data is sparse, some kind of sensitivity analysis should
always be performed.

For the fixed effect parameters (31, ..., 3., we will usually assume independent diffuse
priors 3; oc const, j = 1,...,7r. Another choice would be highly dispersed Gaussian
priors.

For random effects, we make the usual assumption that the b,’s are i.i.d. Gaussian,
by|v* ~ N(0,v%), g¢g=1,...,G

and use again a highly dispersed hyperprior for v?.
In the following, let

= 1) 7'2:(7'12,...,7'5), B= (P, - 0), b=1(b,...,bq)

denote parameter vectors for function evaluations, variances, fixed, and random
effects. Then the Bayesian model specification is completed by the following condi-
tional independence assumptions:

i) For given covariates and parameters f, 3 and b observations y; are conditionally
independent.

ii) Priors p(f; | 7']-2), j =0,...,p, are conditionally independent.

iii) Priors for fixed and random effects, and hyperpriors T]-Q,j =1,...,p, are mu-
tually independent.

3 MCMC inference

Full Bayesian inference is based on the entire posterior distribution



p(f7727ﬁ7b|y)“p(y|f77—27/87b)p(f77—27/87b)'

By assumption (i), the conditional distribution of observed data y is the product of
individual likelihoods:

n

p(y|f77_27ﬁ7 b) = HLz(yzanz)a (16)
i=1
with L;(y;;7;) determined by the specific exponential family distribution and the
form chosen for the predictor 7.
Together with the conditional independence assumptions (ii) and (iii), we have

T

p(f7 T27ﬂab|y) X 12[1[’2(%7772) f[l{p(f]|7_j2)p(7_j2)} H p(ﬂk) H p(bg|?)2)p(’l]2)

k=1 g=1

for the posterior.

Bayesian inference via MCMC simulation is based on drawings from full conditionals
of single parameters or blocks of parameters, given the rest and the data. For Gaus-
sian models, Gibbs sampling can be applied, and posterior samples for the unknown
functions can be obtained by updating the entire vector f; = (f;(1),..., f;(n;)) in a
so-called multimove step, see, for example, Carter and Kohn (1994) and Wong and
Kohn (1996), who use dynamic model representations of cubic splines, or Hastie and
Tibshirani (1998), who derive the Gibbs sampler as a stochastic generalization of
the backfitting algorithm. For fundamentally non-Gaussian responses as considered
in this paper, Gibbs sampling is no longer feasible and more general Metropolis-
Hastings algorithms are needed. Single-move steps, as in Carlin, Polson and Stoffer
(1992), which update each parameter f;(¢) separately, suffer from problems with
convergence and mixing. Hastie and Tibshirani (1998) suggest Metropolis-Hastings
multi-move steps. We adopt a computationally very efficient M-H-algorithm with
conditional prior proposals developed recently by Knorr-Held for dynamic gener-
alized linear models. Convergence and mixing is considerably improved by block
moves, where blocks f;[r,s] = (f;(r),..., fj(s)) of parameters are updated instead
of single parameters 3;(s). Suppressing conditioning parameters and data notation-
ally, the full conditionals for the blocks f;[r, s| are

p(fj[ra S] | ) X L(fj[ra S]) p(fj[ra S] | fj(l)al ¢ [7“, 8]77]'2)

The first factor L(f;[r, s]) is the product of all likelihood contributions in (16) that
depend on f;[r, s]. The second factor, the conditional distribution of f;[r, s] given the
rest f(l), l ¢ [r,s], is a multivariate Gaussian distribution. Its (conditional) mean
(7, s) and covariance matrix 3,(r, s) are obtained from the joint Gaussian prior for
f; by the usual formulae for conditional Gaussian distributions. M-H-block-move
updates for f;[r, s] are obtained by drawing a conditional prior proposal f7[r, s] from
the conditional Gaussian N (y;[r, s],X;[r, s]) and accepting it with probability

o LU s))
min{1, STEARE

G



see Knorr-Held (1998) for proofs and details. From a computational point of view,
the main advantage is the simple form of the acceptance probability. Only the
likelihood has to be computed, no first or second derivates etc. are involved, thus
considerably reducing the number of calculations.

The full conditionals for the variance parameters Tf, j=1,...,p are inverse gamma
densities
(7} | +) o 1G(aj, b)) (17)

with parameters

nj—kj
2

J— .
aj—a]+

and

. 1 nj 1 k;
bj:b+§ > szlj(t)fj(t_l)a
t=k;+1 “tJ =0
respectively. Thus updating of variance parameters can be done by simple Gibbs
steps, drawing directly from the inverse gamma densities (17).

With a diffuse prior p(f;) = const for the fixed effects parameters, the full condi-
tional for [ is

n

p(B]-) o< IT Li(yi; mi)-

=1

Updating of 3 can in principle be done by MH steps with a random walk proposal
q(f3, %), but a serious problem is tuning, i.e. specifying a suitable covariance matrix
for the proposal that guarantees high acceptance rates and good mixing. Especially
when the dimension of 3 is high, with significant correlations among components,
tuning “by hand” is no longer feasible. An alternative is the weighted least squares
proposal suggested by Gamerman (1997). Here a Gaussian proposal is used with
mean m(3) and covariance matrix C(/3), where [ is the current state of the chain.
The mean m(f3) is obtained by making one Fisher scoring step to maximize the
full conditional p(3 | -) and C'(f) is the inverse of the expected Fisher information,
evaluated at the current state 3 of the chain. In this case the acceptance probability
of a proposed new vector 3* is

p(8 | Ja(8", B)
P71 V4. 5) | (18)

Note that ¢ is not symmetric because the covariance matrix from C' of ¢ depends on
(. Thus in principle the fraction ¢(5*, 5)/q(3, 5*) can not be omitted from (18). In
practice however experience shows that this fraction is almost always near one, so
omitting the fraction does not affect significantly the efficiency of the algorithm, but
rather leads to a considerable saving in computation. Further computer time, can be
saved by omitting the Fisher scoring step when computing the mean of Gamermans

min{1,



proposal, and simply taking the current state of the chain as the mean. Compared
to Gamermans original proposal our slightly modified updating scheme for fixed
effects parameters is more efficient and avoids tuning “by hand”.

For an additional random intercept, the full conditional for parameter b, is given by

p(by | ) o H Li(yi;m)p(bgW)

i€{j:g;=9}

Here a simple Gaussian random walk proposal with mean b, and variance v? works
well in most cases. To improve mixing, tuning is sometimes required by multiplying
the prior variance v? in the proposal with a constant factor, e.g. 2. An alternative is,
again, Gamerman’s weighted least squares proposal or a slight modification. This
becomes especially attractive when the observation model contains one or more
random slope parameters in addition to the random intercept. By analogy to the
variance parameters 7; of nonparametric terms the full conditional of v? is again an
inverse gamma distribution, so updating is straightforward.

4 Applications

4.1 Credit-Scoring

In our first application, we reanalyze the credit-scoring problem described in
Fahrmeir and Tutz (1994, ch. 2.1). The aim of credit—scoring is to model or
predict the probability that a client with certain covariates (“risk factors”) is to be
considered as a potential risk, and therefore will probably not pay back his credit
as agreed upon by contract. The data set consists of 1000 consumers’ credits from
a South German bank. The response variable is “creditability”, which is given in
dichotomous form (y = 0 for creditworthy, y = 1 for not creditworthy). In addition,
20 covariates assumed to influence creditability were collected. As in Fahrmeir
and Tutz (1997), we will use a subset of these data, containing only the following
covariates, which are partly metrical and partly categorical:

xp running account, trichotomous with categories “no running account”
(= 1), “good running account” (= 2), “medium running account”
(“less than 200 DM” = 3 = reference category)

x3 duration of credit in months, metrical

x4 amount of credit in DM, metrical

x5 payment of previous credits, dichotomous with categories “good”,
“bad” (=reference category)

¢ intended use, dichotomous with categories
“professional” (=reference category)

xg marital status, with reference category “living alone”.

“private” or

Effect coding is used for all categorical covariates. A parametric logit model for
the probability pr(y = 1|z) of being not creditworthy, leads to the conclusion that
the covariate “amount of credit” has no significant influence on the risk. Here, we



reanalyze the data with a partial linear logit model

pr(y = 1|v)
1—pr(y =1lz)

where z} and 22 are dummies for the categories “good” and “medium” running

account. The predictor has semiparametric additive form: The smooth functions
f3(23), fa(zy) of the metrical covariates “duration of credit” and “amount of credit”,
are estimated nonparametrically using second order random walk models for non—
equally spaced observations. The constant [y and the effects f3i,..., 3s of the re-
maining categorical covariates are considered as fixed and estimated jointly with the
curves f3 and f4, assuming diffuse priors.

= G + 5135% + ﬁﬂ% + fs(x3) + fa(za) + Bsxs + Boxs + Pes,

log

20 40 60

duration of credit in months

amount of credit in DM

Figure 1: Estimated effects of duration and amount of credit. Shown is the posterior
mean within 80 % credible regions and for comparison cubic smoothing splines (dotted
lines)

Figure 1 shows estimates for the curves f; and f;. For comparison, cubic smoothing
splines are included in addition to posterior mean estimates. Although cubic splines
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are posterior mode estimators and the penalty terms are not exactly the same, both
estimates are close. While the effect of the variable “duration of credit” is almost
linear, the effect of “amount of credit” is clearly nonlinear. The curve has a bathtub
shape, and indicates that not only high credits but also low credits increase the risk,
compared to “medium” credits between 3000-6000 DM. Apparently, if the influence
is misspecified by assuming a linear function 4z, instead of fy(z4), the estimated
effect 34 will be near zero, corresponding to an almost horizontal line 34354 near zero,
and falsely considered as nonsignificant.

Table 1 gives the posterior means together with 80% credible intervals and, for
comparison, maximum likelihood estimates of the remaining effects. Both estimates
are in close agreement. They also have the same signs and are quite near to the
estimates for a parametric logit model given in Fahrmeir and Tutz (1997), so that
interpretation remains qualitatively the same for these constant effects.

covariate | mean | 10 % quantile | 90 % quantile | ML estimator
.’E% 0.86 0.63 1.07 0.86
22 -1.09 11.32 -0.85 -1.09
Ts -0.49 -0.74 -0.25 -0.50
Tg -0.22 -0.37 -0.07 -0.22
Ty -0.26 -0.42 -0.11 -0.26

Table 1: Estimates of constant parameters for the credit—scoring data.

4.2 Duration of unemployment

In this second application, we analyze unemployment data from the German Federal
Employment Office (“Bundesanstalt fiir Arbeit”). Typical questions that arise in
studies on duration of unemployment are: How can the baseline effect (duration
dependence) be modelled? How can trend and seasonal effects of calendar time be
flexibly incorporated? What effect has age? Are there regional differences for the
probability of leaving unemployment and seeking a new job? An important problem
in connection with persistant unemployment in the 90's in Europe, is the effect of
unemployment compensation and social welfare. Are there negative side-effects of
public unemployment compensation?

Our analysis is based on the following covariates:

calendar time measured in months

age (in years) at the beginning of unemployment

sex, dichotomous with categories “male” and “female” (= reference category)
nationality, dichotomous with categories “german” and

“foreigner” (= reference category)

unemployment compensation, trichotomous with categories

“unemployment benefit” (=reference category),

“unemployment assistance” (U;) and

“subsistence allowance” (Us).

C'  county in which the unemployed have their domicil

S ZuneU
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Note that calendar time D and unemployment compensation U are both duration
time dependent covariates. As in our first application effect coding is used for all
categorical covariates. Since duration of unemployment is measured in months, we
use a discrete time duration model as described in Fahrmeir and Tutz (1997, ch. 9).
Let T =t € {1,...,q + 1} denote end of duration in month ¢ after beginning of
unemployment, and x; = (z1, ..., ;) the history of covariates up to month ¢. Then
the discrete hazard function is given by

Mba) =pr(T =t | T>ta)), t=1,...q

We assume that censoring is noninformative and occurs at the end of the interval,
so that the risk set R; includes all individuals who are censored in interval t. We
define binary event indicators vy, 1 € Ry, t =1,...,1;, by

Yt =1 0 otherwise.
Then the duration process of individual 7 can be considered as a sequence of binary
decisions between remaining unemployed y; = 0 or leaving for the absorbing state
yir = 1, i.e. end of unemployment at ¢. For ¢ € R;, the hazard function for individual
1 can be modelled by binary response models

pr(yi = 1| x3,) = h(n), (19)

with appropriate predictor 7;; and response function h : R — (0,1). We choose a
logit model with semiparametric predictor

n=folt) + f (D) + f5 (D) + f3(A) + B1S + BN + BU" + U + be.

The baseline effect fo(t), the calendar time trend fI (D), and the effect of age f3(A)
are estimated nonparametrically using second order random walks. For the seasonal
effect f5 (D) we choose the smoothness prior (9). The influences of the categorical
covariates sex, nationality, and unemployment compensation, are modelled as fixed
effects. To cope with regional heterogeneity, a county specific random effect b¢ is
incorporated into the linear predictor. The estimation results of the nonparametric
terms and the seasonal component are shown in Figure 2 a)-f). The baseline effect
(Figure a)) is downward sloping. Therefore, the possibility of finding a job is a
decreasing function of the duration of unemployment. The effect of age in figure
b) is slowly declining until age 53, dramatically declining for people older than 53.
Figure c) displays the calendar time trend. For comparison with the estimated
trend, the absolute number of unemployed people in Germany from 1980 to 1995 is
shown in Figure d). Not surprisingly, a declining calendar time trend corresponds
to an increase in the unemployment rate, and vice versa. So the estimated calendar
time trend accurately reflects the economic trend of the labor market in Germany.

12



The estimated seasonal pattern (Figure e)) is relatively stable over the observation
period. To gain a better insight, a section of the seasonal pattern for 1988 is displayed
in Figure f). It shows typical peaks in spring and autumn, a global minimum
in winter, and a local minimum in July. Low rates of hirings in summer can be
explained by the distribution of holidays and vacations. In Figure 3 the estimated
posterior mean of the county specific random effect b¢ is displayed, showing a strong
spatial pattern, with better chances of getting a new job in the southern part of West
Germany, and lower chances in the middle and in the north.

Table 2 gives results of the remaining effects.

covariate | mean | 10 % quantile | 90 % quantile
S 0.19 | 0.17 0.20
N 0.08 | 0.04 0.12
Ut 0.11 | 0.07 0.16
U? -0.49 | -0.57 -0.42

Table 2: Estimates of constant parameters in the unemployment data.

Males and Germans have improved job chances compared to females and foreigners,
but the effects are not overwhelmingly large. The estimate of —0.49 for the subsis-
tance allowance is significantly negative, while the effect of unemployment is slightly
positive. Due to effect coding, the effect of insurance based unemployment benefits
is 0.38 = 0.49—0.11 and is therefore clearly positive. At first sight, this result seems
to contradict the widely-held conjecture about the negative side-effects of unemploy-
ment benefits. However, it may be that the variable “unemployment benefit”also
acts as a surrogate variable for those who have worked, and therefore contributed
regularly to the insurance system in the past. Further substantive research will be
necessary to give definite answers.

5 Conclusions

Non- and semiparametric Bayesian regression is a useful tool for practical data analy-
sis. It provides posterior mean or median estimates, confidence bands, and estimates
of other functionals, without approximate normality of estimators. Data-driven
choice of smoothing parameters is also incorporated as part of the model. Many
recent approaches based on smoothness priors or basis functions considered the case
of Gaussian or related responses, our method is particularly useful for nonparamet-
ric regression with fundamentally non-Gaussian responses. The main advantage of
hierarchical Bayesian models for nonparametric regression is their modular struc-
ture and flexibility. By appropriate modifications of observation models or priors,
generalizations and extensions to other settings are conceptually simple.

For example, inclusions of interactions between metrical covariates in the obser-
vation model can be based on the suggestion of Clayton(1996) for the interaction
effects between two time scales. Let x¢y;, t = 1,...,n;, and 2, s = 1,...,m
denote the strictly ordered, different observations of two covariates z; and zj, and
fik(t,s) == fix(w();, 7)) the interaction effects. If the smoothness priors for the
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main effects f; and f; are, for example, first order random walks as in (8) or (12),
the smoothness priors for fj, are defined by “first differences of first differences”.
This leads to the interaction smoothness prior

Fie(t,s) = fin(s = 1,8) = fix(t = 1,8) + fie(s — Lt — 1) = uje(t, s) ~ N(0, s jx75)

where 6 j;, is a measure of the distance between the observation pairs (x(t_l)j, T(s—1)k
and (z(y;, T(s)r). It can be shown that this defines a global prior fjz ~ N(0,75,K5,),
where the precision matrix is obtained as the Kronecker product K, = K; @ K,
of corresponding precicison matrics K; and K of the main effects. The same idea
remains valid for other main effect priors like second order random walk models,
and can be considered as the Bayesian analogue of modelling interactions by tensor
product splines in a penalized log-likelihood framework.

For regression data with spatial labels on them, as in our second application, the
i.i.d. prior for the random effects in the predictor 3, could be replaced by a Markov
random field prior

I
,UZ

ﬁgmg’#gaUQ ~ N(Z 2 —),

7
g'~g a’g ag
where a4 is the number of neighboring regions.
To fit unsmooth functions f(x), i.e. functions with discontinuities, edges or rather
volatile curvature, the Gaussian prior for the errors in random walk or autoregressive

models might be replaced by heavy-tail distributions, or by Gaussian distributions
with locally varying variances

uj(t) ~ N(OaTtQj)a 7—t2j = 6.’L‘p(ht]’),

with h;; obeying a random walk model in a further stage of the hierarchy. We
intend to investigate these possibilities in future research.

Software:

We have implemented most of the ideas in this paper as a Windows NT
based application. The program will soon be available for public use under
http://www.stat.uni-muenchen.de/ lang/.
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Figure 2: Estimated nonparametric functions and seasonal effect. Shown is the posterior
mean within 80 % credible regions
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