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Abstract

The reliable analysis of interval data (coarsened data) is one of the
most promising applications of imprecise probabilities in statistics. If one
refrains from making untestable, and often materially unjustified, strong
assumptions on the coarsening process, then the empirical distribution
of the data is imprecise, and statistical models are, in Manski’s terms,
partially identified. We first elaborate some subtle differences between
two natural ways of handling interval data in the dependent variable of
regression models, distinguishing between two different types of identifi-
cation regions, called Sharp Marrow Region (SMR) and Sharp Collection
Region (SCR) here. Focusing on the case of linear regression analysis, we
then derive some fundamental geometrical properties of SMR and SCR,
allowing a comparison of the regions and providing some guidelines for
their canonical construction.
Relying on the algebraic framework of adjunctions of two mappings be-
tween partially ordered sets, we characterize SMR as a right adjoint and
as the monotone kernel of a criterion function based mapping, while SCR
is indeed interpretable as the corresponding monotone hull. Finally we
sketch some ideas on a compromise between SMR and SCR based on a
set-domained loss function.
This paper is an extended version of a shorter paper with the same ti-
tle, that is conditionally accepted for publication in the Proceedings of
the Eighth International Symposium on Imprecise Probability: Theories
and Applications. In the present paper we added proofs and the seventh
chapter with a small Monte-Carlo-Illustration, that would have made the
original paper too long.

Keywords: partial identification, imprecise probabilities, interval data,
sharp identification regions, coarse data, adjunctions, partially ordered
sets, linear regression model, best linear predictor, set-domained loss func-
tion.

1 Introduction

The methodology of imprecise probabilities offers powerful methods for reliable
handling of coarse(ned) data, see, e.g., the ISIPTA contributions by [18, 44,
40, 37, 41, 7, 20]. The term coarsened data, or epistemic data imprecision, is
an umbrella term, comprising all situations where data are not observed in the
resolution intended in the subject matter context. This means, there is a certain
true precise value y ∈ Y of a generic variable Y of material interest, but we only
observe a set A ⊇ {y}. An extreme special case of coarse data are missing data,
where the missingness of value yi of unit i can be interpreted as having observed
the whole sample space Y. In the case where A is an interval [y, y] for y, y ∈ R
coarse data are commonly called interval data.

Before turning to the formal framework, two issues with fundamental im-
portance for practical applications shall be recalled.
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First of all, it must be stressed that the term ‘coarse’ is a relative term. Whether
data are coarse or not depends on the specified sample space, and therefore on
the subject matter context to be investigated. If, for instance, the sample space
is taken to consist of some a priori specified ranges for income data, and that is
all what is needed, then data are not coarse, while if precise income values are
of interest, the data are coarse.1

Secondly, it is important to emphasize that coarse data typically are not just
the result of sloppy research, like an insufficient study design or improper data
handling. On the contrary, coarse data are an integral part of data collec-
tion, in particular in social surveys. Interval data arise naturally from the use
of categories in order to avoid refusals in the case of sensitive questions, and
are a means to model roughly rounded responses (see, e.g., [24]). Coarsened
categorical data are, for instance, produced by matching data sets with not
fully overlapping categories, are the direct outcome of data protection by some
anonymization techniques (see, e.g., [13]), or may be produced by the combina-
tion of spaces with given marginals by Frechèt bounds (see, e.g., [19]). Another
prototypic setting is the case of systematically missing data, arising from treat-
ment evaluations in non-randomized designs like observational studies.2

By confining themselves to precise probabilities, traditional statistical approaches
to cope with coarse data are inevitably forced to try to escape the imprecision
in the data eventually. An immediate way in the case of interval data [y

i
, yi]

for each unit i = 1, . . . , n in the sample is to replace each interval by the cor-
responding central value ẙi = (y

i
+ yi)/2, and then to proceed with a standard

analysis based on that fictitious sample. More sophisticated approaches add
complex, typically untestable assumptions, either to explicitly model the coars-
ening process by a precise model, or to characterize idealized situations where
the coarsening can be included in standard likelihood and Bayesian inference
without biasing the analysis systematically.3

In recent years, awareness in statistics and econometrics has grown that such
strong assumptions quite often cannot be justified by substantive arguments,
and thus the – too high – price for the seemingly precise result of the statistical
analysis is the loss of credibility of the conclusions, and in the end consequen-

1Indeed, even unions of intervals may constitute precise observations, for instance as
the response to the question ‘When did you live in Munich?’, measured in years. Then
{[1986; 1991]∪ [1997; 2000]} is a precise observation in the sample space of all finite unions of
closed intervals [a, b] with a, b ∈ N+. (See in particular the distinction between conjunctive
and disjunctive random sets in [14, Section 1.4], from which also this example is adopted.)

2To evaluate effects of treatment or intervention A over treatment B, in principle, it would
be necessary to have information from a parallel universe, so-to-say, i.e. to know in addition
how the units treated with A would have reacted if they had been given the treatment B and
vice versa.
This question has in particular attracted intensive attention in the partial identification liter-
ature in econometrics (see, for instance, the survey [39] or the instructive case study [36].

3Most prominent is here Little and Rubin’s [22] classification, distinguishing situations of
missingness completely at random (MCAR) or missing at random (MAR) from missing not
at random (MNAR) settings, where a systematic bias has to be expected. This classification
has been extended to coarsening by [16].
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tially the practical relevance of the statistical analysis.4 In the light of this, it
is of particular importance to develop approaches that reflect the underlying
imprecision in the data properly, resulting in potentially imprecise, but reliable
results. The fascinating insight, corroborated by a variety of applications mainly
in econometrics (see the exemplary references below), is that in many studies
these results are still enough to answer important substantive science questions,
and if not, the scientist is alerted that strong conclusions drawn from the data
may be mere artefacts.
Related approaches, considering all possible data compatible with the observed
set of values, have been developed almost independently in different settings,
ranging from reliable computing and interval analysis in engineering (e.g., [29])
and extensions of generalized Bayesian inference [10, 45] to reliable descriptive
statistics in social sciences ([32, Chapter 17f], [30]). This cautious way to pro-
ceed is closely related to set-based (profile-)likelihood approaches ([47, 7]) and
to the methodology of partial identification, in particular propagated by Man-
ski (e.g., [23]) in econometrics, and to systematic sensitivity analysis (e.g. [42])
in biometrics, where a general framework for imprecise data models, i.e. sets
of observationally equivalent statistical models, has been developed. In these
models instead of single valued parameters one obtains so-called identification
regions, i.e. sets of all parameters compatible with the data. On the inferen-
tial side, there has been important progress in the development of appropriate
confidence procedures (see, e.g., [5, 27, 6]), and computational techniques have
maturated to the extent that routine use of basic procedures has become feasible
(e.g., [8, 1, 38, 33]). As a result, applied contributions are now rather common
and are particularly influential in econometrics and allied fields see, e.g., [28] for
an analysis of income poverty measures based on coarsened survey data, [21] for
a study of the German reform of unemployment compensation based on register
data and [26] for an analysis of treatment effects in observational studies with
an illustration based on the National Longitudinal Survey of Youth.

The paper is organized as follows. After some basic definitions (Section
2), we emphasize in Section 3 the distinction between different understandings
and goals of regression models, leading to two different types of identification
regions, called SMR and SCR here. Section 4 formulates some basic geometrical
properties, while sections 5 applies an algebraic framework for investigating
mappings between partially ordered sets. We recall the basic concepts needed
here, and explain them exemplary in the context of Dempster-Shafer-Theory
and by describing coherent lower previsions as hulls. Then SMR and SCR are
characterized as the monotone kernel and monotone hull of a criterion function
based mapping, respectively. Section 6 suggests another type of identification
regions that is based on a strict set-valued perspective, relying on a loss function
depending on sets of parameters. Section 7 illustrates all the three identification
regions and the predictions made by these regions while Section 8 concludes.

4See Manski’s Law of Decreasing Credibility [23, p. 1].
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2 Basic Definitions

Let Θ be a parameter space and P := {Pθ | θ ∈ Θ} a corresponding statisti-
cal model on a measurable space (Ω,F) with the associated observable random
variables X,Y,Y and the unobserved random variable Y . We are interested in
the relationship between X and Y , but we have no full information about Y , we
only know that the unobserved variable Y is related to the observed Y and Y
in the sense that Y fulfills a certain relation, for example P(Y ≤ Y ≤ Y) = 1 or
E(Y | X) ≤ E(Y | X) ≤ E(Y | X)5. In the sequel, we assume the second condi-
tion with the additional assumption that E(Y | x) and E(Y | x) are continuous
in x. With P we denote the unknown true model and with E the corresponding
expectations. The expectations for a model Pθ are denoted with Eθ. The joint
distribution of the random variables X,Y,Y,Y under a model Pθ is denoted

with F
X,Y,Y,Y
θ (or short Fθ) and the joint distribution under the true model P is

denoted with FX,Y,Y,Y (or short F ). Analogously, the distribution of a subset of

random variables, eg. {X,Y } is denoted with FX,Yθ and FX,Y respectively. For
arbitrary random variables like e.g. X,Z,Y,Y we denote their joint distribution

with FX,Z,Y,Y. Because Y is not observable, we have not the full information
about Y , which generally leads to partially identified models, which we define
in the sequel: Two parameters θ1, θ2 ∈ Θ are undistinguishable (i.e. θ1 ∼ θ2) if
the corresponding models Pθ1 and Pθ2 are empirically undistinguishable, which
means that the distributions of the observable variables are the same. A statis-
tical model P is called point-identified, if any two different parameters θ1 and
θ2 are empirically distinguishable. Otherwise it is called partially identified.

Example 1 The simple linear model with interval outcomes:

Θ = B ×R
with B = R2 the actually interesting parameter space and R = RΩ×RΩ

≥0×RΩ
≥0

describing the error-terms and the coarsening-process: For θ = (β, (ε, δl, δu)) ∈
Θ the associated variables are defined as

Y = Xβ + ε,

Y = Xβ + ε− δl
Y = Xβ + ε+ δu

with ε, δl, δu measurable and ε with existing conditional expectations E(ε | x) =
0. The coarsening process is modeled by the random variables δl and δu that are
nonnegative, which ensures Y ≤ Y ≤ Y. By abuse of notation we identify the
random variable X with the matrix (1, X) to use matrix notations like above,
if useful. Furthermore, in the sequel we assume X as a fixed random variable
with support R and therefore omit it in the parameter space Θ. It is clear
that this model is only partially identified. For example ((β0, β1), (ε, 0, 1)) ∼
((β0 + 1, β1), (ε, 1, 0)). Moreover, the quotient space Θ/∼ is not of the form

5This means ∀x : E(Y | x) ≤ E(Y | x) ≤ E(Y | x).
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Θ/∼ = B/∼B
× R/∼R

for some relations ∼B and ∼R, so we must factorize the
whole space Θ and not only the interesting part B to make the model point-
identified.

3 Two Types of Identification Regions

There are two ideal type senses of what a statistical model is and what it should
render. One can assume a statistical model as the exact true underlying prob-
abilistic structure, from which one only has to know all details and then one
knows the exact distributions of all involved random variables and can make
inferences with this knowledge. In contrast one can see a statistical model not
as a truth, but as a rough approximation of truth and use it as a parsimonious
tool to predict for example future observations of some variables or to get a
rough insight into the real underlying structure that is actually more complex.
As examples for this differentiation one could see firstly the estimation of the
intercept and the slope of a linear model and secondly the problem of finding
the best linear predictor in the sense of [2], which makes predictions that are
linear in the covariates, but the underlying model needs not to be linear. The
main difference is here that in the first case we really assume a linear model and
rely on it, whereas in the second case we use the linearity of the predictions only
to have a parsimonious model for predictions or explanations, but we assume
nothing about the true statistical model.
These views lead to different problem formulations, which we want to state
now as we need it in our context. In order to efficiently tackle our goal, we
leave the statistical perspective and join Manski ([23, p. 7]), who recommends
that problems of identification become much clearer when one firstly separates
non-identifiability from sample variation, and assumes all distributions to be
known for the analytic treatment6 (later on then sample counterparts may be
constructed in the usual way). In particular, we also assume that the distribu-
tion of Y is known (and we have no variables Y and Y) and later we generalize
this to the case of an unobserved Y , which leads to different sharp identification
regions that are then our objects of interest.

The first problem statement is: Given the distribution FX,Y of (X,Y ), which

is an element of the class {FX,Yθ | θ ∈ Θ}, find all θ, such that (X,Y ) ∼ FX,Yθ ,

which is equivalent to find all θ with L(FX,Yθ , FX,Y ) = 0 for an arbitrary
distance-function L(·, ·) or a similar function, which is zero if and only if both
arguments are equal. Here we think of a kind of loss function and introduce this
equivalent formulation to indicate the analogy to the second problem formula-
tion:

Given the distribution FX,Y , which is an element of the class {FX,Yθ | θ ∈
Θ}, find all θ, such that L(FX,Yθ , FX,Y ) is minimal. In contrast to the first

6The identification regions arising in this limit case are called sharp identification regions.
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problem, this problem definition is also meaningful if FX,Y /∈ {FX,Yθ | θ ∈ Θ},
i.e. if the model is not correctly specified. If the model is correctly specified,
then both problems are often essentially the same in the sense that for example
for a linear model, the BLUE-estimator and the best linear predictor (with a
quadratic loss-function) are solving different tasks, but the parameter estimates
are identical. The actual problem is now that FX,Y is unknown. One part of
the problem is that also if we could observe Y , we could not know the exact
distribution of Y and so we have to estimate it. In particular, we cannot decide
with certainty, if FX,Y is an element of the class {FX,Yθ | θ ∈ Θ}, and so the
two problem formulations are moving together a little bit. The other part of the
problem is that the variable Y , we are actually interested in, is not observable.
As argued above for the moment we only address this second part of the problem
and assume that we know the exact distribution of all observable variables.
Later in section 5.2 we also address the other part. If now Y is unobserved,
we can generalize the two problems by applying them to all possible Y that
are consistent with (Y,Y).This leads to different regions of parameters that
were proposed in different papers: The region related to the first problem was
introduced slightly differently in [9] and the other region was proposed as the
sharp identification region for the best linear predictor in [2].

Definition 1 Let P = {Pθ | θ ∈ Θ} be a statistical model with the corresponding

joint distributions {FX,Yθ | θ ∈ Θ} and X,Y,Y given random variables.

(i) The sharp marrow region (SMR) is defined as:

SMR := {θ ∈ Θ | E(Y | X) ≤ Eθ(Y | X) ≤ E(Y | X)}.

Note that the Y in the definition is the Y coming from the model Pθ, not
the Y from the true model. If the model is correctly specified (or if at least
SMR 6= ∅), this region can also be written as:7

SMR = argmin
θ∈Θ

[
min

Z∈E([Y,Y]|X)
L
(
FX,Yθ , FX,Z,

)]

with an arbitrary loss function L. Here with E([Y,Y] | X) we denote
the set of all random variables Z fulfilling E(Y | X) ≤ E(Z | X) ≤
E(Y | X). This equivalent characterization of SMR is valid because a
parameter θ ∈ Θ is in SMR if and only if there exists a Z ∈ E([Y,Y] | X)

with Fθ = FX,Z,Y,Y or equivalently L(Fθ, F
X,Z,Y,Y) = 0. From the above

representation of SMR we can see that SMR can be written as the solution
of a decision problem with a minimin decision rule.

(ii) The sharp collection region (SCR) is defined as:

SCR :=
⋃

Z∈[Y,Y]

argmin
θ∈Θ

L
(
Fθ, F

X,Z,Y,Y
)
.

7Note that we use the set-valued definition of argmin.
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With [Y,Y] we denote the set of all random variables Y that lie between
Y and Y for all ω ∈ Ω.

A first comparison of this two regions that emphasizes the case of misspecifica-
tion and interpretational problems for the sharp marrow region in this case can
be found in [31]: While the interpretation of the sharp collection region as the
collection of all best linear predictors is clear, the interpretation of SMR seems
to be not so useful under misspecification, especially if SMR is empty.8 From
an empty SMR we can conclude, that the model is misspecified, but not more.
Furthermore in the above-mentioned paper the authors make clear that a tight
SMR “cannot be viewed as an indicator that the underlying model contains
a lot of information about the true but partially identified parameter.”9. An
illustration of these considerations, that we pick up in chapter 7 can also be
found in [31].

4 Geometrical Properties of Identification Re-
gions

From now on, we concentrate on the case of a linear model like in example 1
and the classical quadratic loss function. Since we are only interested in the
components (β0, β1) of an element θ = ((β0, β1), (ε, δl, δu)) ∈ SMR, by abuse
of notation, we also denote the set {(β0, β1) | ((β0, β1), (ε, δl, δu)) ∈ SMR} as
the sharp marrow region (analogously for the sharp collection region). Then we
have

SMR =
{
β ∈ B|E(Y | X) ≤ Xβ ≤ E(Y | X)

}
and

SCR = {argmin
β∈B

E((Xβ − Y )2) | Y ∈ [Y,Y]}.

Remark 4.1 The sharp marrow region is always a subset of the sharp collection
region, and this is the reason for calling it sharp marrow region, it is the marrow
of all truly linear models that fit to some Z ∈ [Y,Y]. In contrast, the sharp
collection region collects the best fitting parameters for every possible Z ∈ [Y,Y].

Proof: With β ∈ SMR we have E(Y | x) ≤ xβ ≤ E(Y | x) for all x and

therefore we can choose Y (x) := λ(x) Y +(1 − λ(x)) Y with λ(x) ∈ [0, 1] such that

E(Y | x) = xβ. It is clear that Y ∈ [Y,Y] and with ε := Y −Xβ we get E((Xβ−Y )2) =

E((Xβ − Xβ + ε)2) = E(ε2) and for all further β̃ ∈ R2 we have E((Xβ̃ − Y )2) =

E((Xβ̃ −Xβ + ε)2) = E((Xβ̃ −Xβ)2) + E(ε)2 + E(2(Xβ̃ −Xβ) · ε) ≥ E(ε2), since all

conditional expectations of ε are zero. Thus we have shown β ∈ SCR.

It is easy to see that the sharp marrow region is convex and closed. Further-
more, all convex, compact sets can be represented as a sharp marrow region:

8But compare the remarks in the next to last paragraphs of chapters 5.1 and 5.2.
9[31, p. 202].
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Proposition 4.1 Let I ⊂ R2 be a compact convex set. Then there exist random
variables Y,Y such that SMR(Y,Y) = I, namely:

Y = min{Xβ | β ∈ I}
Y = max{Xβ | β ∈ I}.

Proof: From β ∈ I it follows E(Y | X) = Y ≤ Xβ ≤ Y = E(Y | X), which

means that β is in SMR(Y,Y). If β /∈ I because of the separation lemma (see

e.g. [17]), there exists a linear functional on R2, represented by a vector (x0, x1) with

x0β0 +x1β1 < inf
β∈I

x0β0 +x1β1. If x0 > 0 it follows β0 + x1
x0
β1 < inf

β∈I
β0 + x1

x0
β1 = Y(x1

x0
),

which shows that β /∈ SMR(Y,Y). For x0 = 0 we have x1β1 < inf
β∈I

x1β1, which leads

to β0 + nx1β1 < inf
β∈I

β0 + inf
β∈I

nx1β1 ≤ inf
β∈I

β0 + nx1β1 = Y(nx1) if n is large enough.

The case x0 < 0 can be proved analogously to the case x0 > 0.

For the sharp collection region, the situation is more complicated. To analyze
this, we need some definitions from geometry (cf. [46]):

Definition 2 The Minkowski sum

M =
n⊕

i=1

li =

{
n∑

i=1

pi

∣∣∣∣∣ pi ∈ li
}

of n line segments li ⊆ Rd is called a zonotope. A zonotope is a convex, compact and
centrally symmetric polytope with finite many extreme points and centrally symmetric
facets. A closed, centrally symmetric convex set Z ⊆ Rd is called a zonoid if it can
be approximated arbitrarily closely by zonotopes (w.r.t. a metric, e.g. the Hausdorff
distance). For d = 2 the zonoids are exactly the closed, centrally symmetric convex
sets (see, e.g., [3]).

Proposition 4.2 Let E(Y),E(Y),E(Y ·X),E(Y ·X) be finite and Var(X) 6= 0.
Then the sharp collection region is a zonoid.

Proof: The estimator ˆSCR := {(x′x)−1x′y | y ∈ [y, y]} for SCR proposed in [2] is,

as the linear image of a cuboid, a zonotope (see [8, p. 36]). Since (, as shown in [2,

p. 784]) ˆSCR is a consistent estimator of SCR with respect to the Hausdorff distance,

it is clear that every sharp collection region is a limit object of zonotopes, thus a

zonoid.

Now, the question arises, if every zonoid can be represented as a sharp collection
region. At first glance this seems to be not the case. By looking at examples
of (estimates of) sharp collection regions, like that in figure 1 one observes
that this regions often have two points on its boundary at which the boundary
is not smooth. Note that the situation for SMR is similar, if X has finite or
compact support. If the separating functional of the proof of Proposition 4.1 has
x0 = 0, the argument nx1 of Y(nx1) could have such a high absolute value that
this value only occurs with probability zero, which leads to similar unsmooth
situations, see figure 1. Fortunately one can prove that every zonotope Z in
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Figure 1: SCR and SMR with unsmooth boundary

general position (and, by looking on suitable limit-processes, also every zonoid)
can be represented as a sharp collection region if we define the distribution of
X,Y and Y in a certain way10.

Proof: Without loss of generality, we have a zonotope Z generated by n line-

segments that start in the origin of coordinates and have length di and slope si. With

general position, we mean si < ∞. Now for i = 1, . . . , n take xi := si, y
i

= 0, yi =

di√
1+x2i

and add further xn+1, . . . , xm such that ( 1
m
x′x) =

(
1 x̄
x̄ x̄2

)
=

(
1 0
0 1

)

and y
n+1

= . . . = y
m

= yn+1 = . . . = ym = 0. Then we have ˆSCR = {(x′x)−1x′y |

y ∈ [y, y]} =

{
1
m

( ∑
yi∑
xiyi

)
| y ∈ [0, y]

}
which is exactly the Minkowski addition of

n line segments with slope xi = si and length 1
m

√
y2
i + x2

i y
2
i = yi

m

√
1 + x2

i = di.

The last question is now, how independently from each other the regions
SMR and SCR can be generated.

Proposition 4.3 Let I = SCR(Y∗,Y
∗
) ⊆ R2 be a zonoid and E ⊆ SMR(Y∗,Y

∗
)

an arbitrary compact convex set. Then for every ε > 0 there exist random vari-
ables Y,Y such that:

d(SCR(Y,Y), I) ≤ ε

d(SMR(Y,Y), E) ≤ ε,

10The main difference to SMR is that there we could construct regions for every arbitrary
X with support R.
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where d is a metric on subsets of R2, e.g. the Hausdorff distance.

Proof: For ε > 0 define S ⊆ R such that the distance from any point x to S and

the distance from x to SC and P(X ∈ S) tends to zero as ε goes to zero. Then set

(Y,Y) to (Y∗,Y
∗
) if x ∈ SC and if x ∈ S set (Y,Y) to the random variables (Z,Z)

that generate E. Then SMR((Y,Y)) −→ SMR((Z,Z)) = E and SCR((Y,Y)) −→
SCR((Y∗,Y

∗
)) = I.

5 An Algebraic View on Identification Regions

In the next section, we want to look at SMR and SCR as mappings. To analyze
the algebraic structure of these mappings, we need some facts about adjunctions.
Adjunctions arise in many contexts and often make life a bit easier, see the next
examples. For an introduction to partially ordered sets and adjunctions see,
e.g., [11, 15].

Definition 3 Let (P,≤) and (Q,v) be partially ordered sets. A pair (f, g) of
mappings f : P −→ Q and g : Q −→ P is called adjunction, if:

∀p ∈ P∀q ∈ Q : p ≤ g(q) ⇐⇒ f(p) v q.

In this case, f is called left adjoint and g is called right adjoint.

Lemma 5.1 Let (f, g) be an adjunction. Then the following holds:

A1 g ◦ f is extensive and f ◦ g is intensive, i.e.:
∀p ∈ P, q ∈ Q : g(f(p)) ≥ p & f(g(q)) v q.

A2 f and g are order-preserving (monotone).

A3 f ◦ g ◦ f = f and g ◦ f ◦ g = g and thus f ◦ g and g ◦ f are idempotent.

A4 From A1 - A3 it follows that g ◦ f is a closure operator and f ◦ g is a
kernel operator.11

A5 The adjoints f and g are determining each other unambiguously.

A6 f preserves existing joins and g preserves existing meets.

To illustrate the concept of adjunctions, we apply it to two areas of the
theory of imprecise probability.

Example 2 Dempster-Shafer-Theory12:
In [12] we have the multivalued mapping Γ : X −→ 2S with which we can
associate a set-domained version

Γ̃ : (2X ,⊆) −→ (2S ,⊆) : A 7→
⋃

a∈A
Γ(a).

11A closure operator is a monotone, extensive and idempotent mapping and a kernel oper-
ator is a monotone, intensive and idempotent one.

12For an introduction, see [12] and [34].
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Furthermore we have the operator

∗ : (2S ,⊆) −→ (2X ,⊆) :

T 7→ T∗ := {x ∈ X | Γ(x) ⊆ T}.

Then it is obvious that the pair (Γ̃, ∗) is an adjunction because both A ⊆ T∗ and

Γ̃(A) ⊆ T are meaning exactly that all a ∈ A are mapped to subsets of T . From
this, the ∞-monotonicity of a belief function B = P ◦ ∗ with P a probability-
measure follows immediately, since P is ∞-monotone and ∗ is meet-preserving:

B(
k⋃
i=1

Ti) = P ((
k⋃
i=1

Ti)∗) ≥ P (
k⋃
i=1

(Ti)∗)

≥ ∑
J 6=∅

(−1)|J|+1P (
⋂
i∈J

(Ti)∗)=
∑
J 6=∅

(−1)|J|+1P ((
⋂
i∈J

Ti)∗)

=
∑
J 6=∅

(−1)|J|+1B(
⋂
i∈J

Ti).

Furthermore, it is clear that also the composition of a belief function and ∗ or another
meet-preserving mapping is ∞-monotone.

Example 3 Lower Coherent Previsions13:
With (RL(Ω),≤) the set of all previsions that are defined on all gambles and
avoid sure loss, equipped with the dominance relation P 1 ≤ P 2 : ⇐⇒ ∀X ∈
L(Ω) : P 1(X) ≤ P 2(X) and (2P(Ω),⊇) the set of all nonempty sets of finitely
additive probability-measures on Ω with the ordinary superset relation, we can
construct the following adjunction:

f : (RL(Ω),≤) −→ (2P(Ω),⊇) : P 7→ M(P )

g : (2P(Ω),⊇) −→ (RL(Ω),≤) : M 7→ PM

with M(P ) = {p ∈ P(Ω) | ∀X ∈ L(Ω) : p(X) ≥ P (X)}, where P(Ω) is the
set of all finitely additive probability-measures and PM : L(Ω) −→ R : X 7→
inf
p∈M

p(X). In this language, because of the lower envelope theorem14 coherent

lower previsions are exactly the hulls15 of the closure operator g ◦f , which maps
a lower prevision that avoids sure loss to its natural extension. It is now easy to
see that the natural extension of a prevision P is the lowest coherent prevision
that dominates P : If P 2 ≥ P is another coherent prevision that dominates
P , then it is a hull (g ◦ f)(Q) for some Q and with the idempotence and the
monotonicity of g ◦ f we have P 2 = (g ◦ f)(Q) = (g ◦ f ◦ g ◦ f)(Q) ≥ (g ◦ f)(P ),
where the right hand side is the natural extension of P .

13For an introduction, see [43].
14See [43, p. 134].
15Hulls are the images of a closure operator and similarly kernels are the images of a kernel

operator.
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5.1 SMR as a Right Adjoint

Proposition 5.2 Let (Y ,≤) be the set of pairs of numeric random variables
Y = (Y,Y), equipped with the relation ≤ defined by

Y1 ≤ Y2 : ⇐⇒ E(Y1 | X) ≤ E(Y2 | X) &

E(Y1 | X) ≥ E(Y2 | X).

This means that if Y1 ≤ Y2, the observable variables (Y1,Y1) are more infor-
mative than (Y2,Y2) or equally informative, because from (Y1,Y1) we can learn
more or the same about the conditional expectations of the unobserved variable
Y , we are actually interested in. The mapping

SMR : (Y ,≤) −→ (2B ,⊆) :

(Y,Y) 7→ {β | E(Y |X) ≤ Xβ ≤ E(Y |X)}

is a right adjoint. The corresponding left adjoint is the prediction-operator16:

PR : (2B ,⊆) −→ (Y ,≤) :

Γ 7→
(

inf
β∈Γ

Xβ, sup
β∈Γ

Xβ

)
.

Proof: We show Γ ⊆ SMR(Y) ⇐⇒ PR(Γ) ⊆ Y: ⇒: Let Z = (Z,Z) := PR(Γ)

and Y = (Y,Y)). Then we have Z(x) = inf
β∈Γ

xβ ≥ inf
β∈SMR(Y)

xβ ≥ E(Y | x) and

Z(x) = sup
β∈Γ

xβ ≤ sup
β∈SMR(Y)

xβ ≤ E(Y | x).

⇐: Let β ∈ Γ. We have to show β ∈ SMR(Y) or equivalently ∀x : E(Y | x) ≤ xβ ≤
E(Y | x):

xβ ≤ sup
β∈Γ

xβ ≤ E(Y | x) and xβ ≥ inf
β∈Γ

xβ ≥ E(Y | x).

Because SMR is a right adjoint, it has the properties A1−A6. The mono-
tonicity A2 means that SMR(Y) is more informative if Y is more informative.
The idempotence A3 means that if we estimate, predict and then estimate again,
we get the same information as if we had only estimated one time. Analogously
if we predict, estimate and then predict once more, we get the same prediction
as we would get, if we predicted only once. This property is often satisfied
by classical estimators, for example the classical least squares estimator has an
idempotent prediction matrix. Because PR◦SMR is a kernel operator, we can
now give a clear interpretation of SMR, which is also valid in the misspecified
case: The sharp marrow region is the largest region for which the correspond-
ing predictions constitutes the largest inner approximation of the conditional
expectations17. This interpretation may be not so useful in the misspecified
situation, but it is clearly stated. The monotonicity is also shared by SCR,

16Here, the empty infimum is defined as ∞ and the empty supremum is defined as −∞.
17An empty SMR means, that there is no inner approximation induced by the prediction of

a set of parameters.
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but SCR is no right adjoint, since it is not meet-preserving, because the inter-
section of two zonoids is generally not a zonoid. Furthermore, generally only
(SCR ◦ PR ◦ SCR)(Y) ⊃ SCR(Y) holds, which means that we generally loose
information if we predict and estimate once more.

5.2 SMR and SCR as a Kernel and a Hull

In [9] a criterion function based identification region is proposed. The criterion
function (see Prop. 5.3) is based on a generalization of the expected squared
errors to the expected squared minimal errors. The proposed sharp identification
region is the argmin of this criterion function and it is very similar to SMR, but
it is not monotone. It shows up that SMR is the highest lower and SCR is the
lowest upper monotone approximation of this region.

Definition 4 Let E : (P,≤) −→ (Q,v) be a mapping. The monotone hull of
E is defined as:

H(E) : (P,≤) −→ (Q,v) : X 7→
∨

Y≤X
E(Y ).

The monotone kernel of E is defined as:

K(E) : (P,≤) −→ (Q,v) : X 7→
∧

Y≥X
E(Y ).

These set-valued mappings are both order-preserving. Furthermore, the mapping
E 7→ H(E) is a closure operator and the mapping E 7→ K(E) is a kernel
operator, thus indeed H(E) is a hull and K(E) is a kernel. In particular, H(E)
is the lowest order-preserving mapping that is higher than E. Analogously, K(E)
is the highest order-preserving mapping that is lower than E.

Proposition 5.3 Let the criterion function
Q : B → R be defined as

Q(β) =

∫
(E(Y |x)− xβ)

2
+ +

(
E(Y |x)− xβ

)2
− dP(x)

=

∫
min

Y ∈[Y,Y]
(E(Y | x)− xβ)2dP(x).

Then the criterion function based mapping

EQ : (Y ,≤) −→ (2B ,⊆) :

(Y,Y) 7→ argmin
β∈B

Q(β)

is a source of SMR and SCR:

SMR = K(EQ) and SCR = H(EQ).
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Proof: First, we mention that SCR is the monotone hull of the ordinary least squares
estimator defined as OLS : (Y ,≤) −→ (2B ,⊆) :

(Y,Y) 7→





argmin
β∈B

E((Xβ −Y)2) if Y = Y

∅ else .

It is clear that OLS is lower than EQ, because, for precise Y = Y = Y they are
the same and otherwise OLS(Y) is empty. with the monotonicity of the mapping
E 7→ H(E) we get SCR = H(OLS) ⊆ H(EQ).18 Furthermore, if we have a β that
minimizes Q, then we can look on that variable Y ∈ [Y,Y] with minimal distance to
Xβ and see that for this Y , β also minimizes E((Xβ − Y )2). So we have EQ ⊆ SCR.
Since SCR is monotone and H(EQ) is the lowest monotone mapping that is greater
than EQ, we have H(EQ) ⊆ SCR, which completes the proof of the first statement
SCR = H(EQ). To show SMR(Y) = (K(EQ))(Y) for all Y ∈ Y , we distinguish two
cases:

a) min
β∈B

Q(β) = 0 or equivalently SMR(Y) is not empty. Then we have β ∈ EQ(Y) ⇐⇒
E(Y | X) ≤ Xβ ≤ EY | X), which shows SMR(Y) = EQ(Y) and further-
more, the implication Z ≥ Y =⇒ EQ(Z) ⊇ EQ(Y) shows that in this case also
SMR(Y) = (K(EQ))(Y).

b) min
β∈B

Q(β) > 0 or equivalently SMR(Y) is empty. Because of the strict convexity of

Q, the argmin is unique and we denote it with β∗. Because the minimum of Q is
not zero, there exists a set S ⊆ Ω with P(S) > 0 and i): E(Y | x(s)) + δ < x(s)β∗

or ii): E(Y | x(s)) − δ > x(s)β∗ for some δ > 0 and all s ∈ S. In case i), with
Z = (Z,Z) defined by

Z = Y, Z(ω) =

{
Y(ω) + δ

2
if ω ∈ S

Y(ω) else

we get Y ≤ Z. Because for this Z, the corresponding min
β∈B

Q(β) is also greater than

zero and the therefore unique argmin is different from β∗. From this it follows
(K(EQ))(Y) ⊆ EQ(Y) ∩ EQ(Z) = ∅ = SMR(Y). The case ii) can be shown in an
analogous way.

From all above, the region SMR seems to be (at least in algebraic terms)
a more satisfying region, but note that this region assumes that the model is
in fact linear, which is generally untestable in this context. But the linearity
assumption could be understood differently, firstly as an assumption on the true
model and secondly as something like a regularization or simplification method
to avoid overfitting or to have a parsimonious model. The first case points to
the sharp marrow region and the second seemingly to the sharp collection re-
gion, but the parsimoniousness is decreasing if we allow for sets of paramters
β instead of a single parameter and it is not a matter of course, if the SCR,
constructed as the union of all reasonable best linear predictors, is still a useful

18Note that the relation ⊆ is defined pointwise: E1 ⊆ E2 :⇐⇒ ∀Y : E1(Y) ⊆ E2(Y).
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model of the data.19

The region SCR can be estimated from samples in a consistent, monotone and
nonpartial way. With nonpartial we mean that no pair y ≤ y of data would lead
to the empty set as the estimate for SCR. One possibility is the estimator pro-
posed in [2]. In contrast, also a nonempty SMR cannot be estimated in such a

way20. To see this, take a sample (y, y) = (e−x
2

, e−x
2

), (z1, z1) = (0, y) ≥ (y, y)

and (z2, z2) = (y, 1) ≥ (y, y). If an estimator ˆSMR is consistent and mono-

tone then for n large enough it should satisfy ˆSMR((y, y)) ⊆ ˆSMR((z1, z1)) ∩
ˆSMR((z2, z2)) ≈ {(0, 0)} ∩ {(1, 0)} = ∅. Furthermore SMR could not be esti-

mated robustly in the sense that if one has a mixture in the sense of the proof
of Proposition 4.3 then for ε small enough it is not clear what should be the
estimated SMR, because that part of the data from the smaller region could be
outliers or not, which would lead to different regions.

6 An Identification Region Based on a
Set-Domained Loss Function

Now we try to establish a region, which could be understood as a compromise
between SMR and SCR. The idea here is that we look on loss functions that
are dependent on sets of parameters instead of single parameters. So in a sense
we take the fact seriously that the region is a whole set that constitutes an
imprecise probability structure. We do not look explicitly at every point of the
set and then temporarily forget that the envisaged point is only one point of
the set and maltreat it with a classical method. Instead, we see the set as a
whole and do not look into it too deeply. We will construct a distance function
between the set of conditional expectations of Y that cannot be refuted and the
set of conditional expectations that are predicted by a set Γ of parameters. Here
we do not assume that the true model is a linear one (if we would make this
assumption, then we would get the region SMR again). Since we have to measure
the distance between the two sets A(Y) := {(x,E(Y | x)) | Y ∈ [Y,Y], x ∈ R}
and B(Γ) := {(x, xβ) | β ∈ Γ, x ∈ R}, we could use for example the Hausdorff
distance

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

with some metric d of R2, which possibly takes the distribution of X into account
and weights the distance according to the density f(x). For a fixed x we have
the possible conditional expectations of Y and the conditional expectations that
are predicted by the parameter set Γ. Thus, both point sets are matched in a
sense. Because the Hausdorff distance does not match the points of the two
sets but compares all points of the two sets to each other, this distance seems

19In terms of parsimoniousness SMR is comparable to SCR and in fact SMR sometimes
describes the data better, e.g., if Y = PR(Γ) for some Γ because then we have PR(SMR(Y)) =
Y but generally only PR(SCR(Y)) > Y.

20Note that the estimator proposed in [9] assumes a finite support of X and is not monotone.
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to be a little bit counterintuitive. Thus, we propose a slightly different matched
distance:

dM (A,B) :=

∫ (
sup

(x,a2)∈A
a2 − sup

(x,b2)∈B
b2

)2

+

(
inf

(x,a2)∈A
a2 − inf

(x,b2)∈B
b2

)2

dP(x).

Now we can define a set-domained loss function as

LS(Y,Γ) = dM (A(Y),B(Γ))

and construct the sharp identification region for the minimizers of the set-
domained loss (short: sharp setloss region) SSR :=

⋃
argmin

Γ⊆B
LS(Y,Γ). Note

that the argmin is not always unique, so that we have to take the union
of all sets that minimizes LS . To compute SSR one can look at the space
K = {PR(Γ) | Γ ⊆ B} of all pairs of random variables (Z,Z) that are predicted
by some set Γ. Since the predicted variables are only dependent on x, we treat
them as functions from R to R. The set K is then exactly the set of all (Z,Z)
satisfying ∀x3 /∈ [x1, x2] :

Z(x1) + (x3 − x1) · Z(x2)− Z(x1)

x2 − x1
∈ [Z(x3),Z(x3)] & (1)

Z(x1) + (x3 − x1) · Z(x2)− Z(x1)

x2 − x1
∈ [Z(x3),Z(x3)].

That implies particularly that Z is convex and Z is concave. The task is now to
find a pair (Z∗,Z

∗
) ∈ K that minimizes
∫

(Z(x)−Y(x))2 + (Z(x)−Y(x))2dP(x).

This problem is nothing else than the problem of finding the projection of (Y,Y)
on K and since Y is a Hilbert space and K is a closed convex set, this projec-
tion is unique. The candidate for the sharp setloss region is then SMR((Z∗,Z

∗
)).

Because of (Z∗,Z
∗
) = PR(Γ) for some Γ, we have

PR(SMR((Z∗,Z
∗
)) = PR(SMR(PR(Γ))) = PR(Γ) = (Z∗,Z

∗
),

which means that our region predicts exactly (Z∗,Z
∗
). Furthermore, every other

set that also predicts (Z∗,Z
∗
) has to be a subset of our region and thus we have

SSR = SMR((Z∗,Z
∗
)). From the construction of SSR it is also clear that the

compositions PR ◦ SSR and SSR ◦ PR are also idempotent. To estimate the
region SSR from a sample, we can analogously project the pair of vectors (y, y)
on the set of pairs of vectors (z, z) satisfying

∀xk /∈ [xi, xj ] : zi +(xk − xi)
zj − zi
xj − xi

∈ [zk, zk] &

zi +(xk − xi)
zj − zi
xj − xi

∈ [zk, zk].
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With θ = (z1, . . . , zn, z1, . . . zn) this problem can be written as the minimization
of θ′Qθ + c′θ subject to Aθ ≥ 0 for a (positive definite) matrix Q, a matrix A
and a vector c. To compute the solution, one can use for example the algorithm
proposed in [25]. To compute the final set SMR((z∗, z∗)), one can use standard
linear programming techniques. The method can be robustified by modifying
the loss function, but then, the solution may be not unique anymore. The
minimization problem would get nonlinear, but the dimension of the problem
would be n, which is maybe still acceptable21. Another idea is to allow only
special sets of parameters. Here especially sets of sets of parameters that are
closed under Minkowski convex-combinations are interesting, because this would
ensure the uniqueness of the solution, because then the set of predictions made
by such sets is convex. Such sets of sets are e.g. the set of all zonoids or the set
of all zonotopes that are generated by line-segments that have a special angle.
The minimization of LS is then still tractable if the set of sets is parametrizable
with a not too high number of parameters. An advantage of using special sets
is that these sets are possibly better interpretable, especially if one has a higher
number of covariates. For example an arbitrary high dimensional convex point
set represented by all its extreme points is harder to figure out than a high
dimensional ellipsoid represented by its location and the direction and spread
of all main axes.

7 A small Monte Carlo Illustration

We now ran a small Monte Carlo experiment to illustrate the three regions.
We use the same two simulation settings as in [31]. That is first a dependent
variable Y with E(Y | x) = 5 + x with corresponding Y = Y − 0.5 − 0.2 · X2

and Y = Y + 2.5 + 0.5 · X2 where X is uniformly distributet on [0, 5]. This
first setting represents the correctly specified case. For the second situation,
we change only the formula for Y to E(Y | x) = 5 + (x − 2)3 − x2 to have
a misspecified case. The conditional Expectations are illustrated in figure 2.
Figure 3 shows the corresponding identification regions. In the misspecified
case the sharp marrow region is empty. Since SSR is a superset of SMR it also
contains the true parameter in the correctly specified case. In the misspecified
case, the parameters are meaningless in the first place, but we can compare the
predictions made by the different identification regions, which are illustrated in
figure 4.

21Note that the naive robustification of SCR seems to be not so easy, because one has to
look at the robust estimates for all y ∈ [y, y] and this is not as easy as the computation of the
image of [y, y] under a linear mapping.
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Figure 2: The conditional expectations E(Y | x) (green), E(Y | x) (blue) and
E(Y | x) (red) for a well-specified (left) and a misspecified (right) situation.

−2 −1 0 1 2 3 4 5

−
2

0
2

4
6

8
10

12

ß1

ß
0

●

−3 −2 −1 0 1 2 3 4

−
6

−
4

−
2

0
2

4
6

8

ß1

ß
0

●
●

Figure 3: The identification regions SMR (red), SCR (black) and SSR (blue) for
a well-specified (left) and a misspecified (right) situation. The true Parameter
is dotted green (for the misspecified situation the green point is the best linear
predictor for y). In the misspecified case SMR is empty and the grey point
indicates the unique argmin of the criterion function Q.

If we really want to predict the value y for a next observation with the
covariate-value x we can generally only predict an interval [ŷ, ŷ]. Here the
question arises, if the collection of all possible best linear predictions induced
by all possible Y ∈ [Y,Y] is a useful tool for this kind of prediction. Generally,
the predictions are too rough and are getting rougher and rougher if we estimate
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Figure 4: The predictions made by the regions SMR (red), SCR (black) and
SSR (blue). The original conditional expectations are dashed (E(Y | x) green,
E(Y | x) blue and E(Y | x) red).

and predict again and again, which is illustrated in figure 5.
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Figure 5: Different powers (0-3) of the operator PR ◦ SCR applied to
SCR((Y,Y)) for the correctly specified (left) and the misspecified (right) case:
the predictions are getting rougher and rougher if we estimate and predict again
and again.

Of course, if one is interested in the set of all possible best linear predictors,
one can get it with SCR, but what to do with this region? If one only needs
possible moments of X, Y and XY then SCR would be helpful, but if we are
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forced to make interval-valued predictions on outcomes y, we possibly use better
SMR if we can rely on the linearity assumption, or SSR if we cannot do this,
because it describes at least the bounds E(Y | x) and E(Y | x) better than SCR
in the sense that the loss function LS is smaller or equal. One can now argue,
that SCR is, as a zonoid, a more regular or parsimonious region and therefore
prefer SCR, but note that also if we restrict the problem to cases, were SMR is
already a zonoid, then also in this restricted situation SCR is bigger than SMR.
This is a main difference to e.g. the decision between a linear and a quadratic
model: if we fit a quadratic model to a linear setting then we would get the
same model as if we had chosen a linear model.

8 Concluding Remarks

We have worked out some differences between two types of identification regions
in regression analysis under interval data, and discussed some of their proper-
ties. Indeed, SMR, relying so-to-say on the marrow of the regression model,
and SCR, taking in a collection procedure all potential combinations of data
points equally seriously, can be characterized as the monotone kernel and the
monotone hull of a criterion function based mapping.
Furthermore, we sketched an appealing, rigorously set-based compromise, whose
properties have still to be investigated in more detail. Other topics of further
research include the additional inclusion of coarse covariates and an extension
to generalized linear models. For generalized linear predictors in [35] a charac-
terization of the sharp collection region is already given. If also covariates are
interval-valued, the description of SCR becomes more complicated and a refor-
mulation relying on roots of likelihood-based score-functions seems promising.22

For the sharp marrow region the crucial role the conditional expectation E(Y |X)
plays in the definition of SMR provides an immediate, promising link. Another
direction of future research might be the analysis of models with instrumental
variables. For this case a sharp characterization of SCR in terms of the sup-
port function of the identified set as well as some asymptotics of corresponding
estimates can be found in [4].
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