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Abstract

Most statistical methods for assessing activated voxels in fMRI experiments are based
on correlation or regression analysis. In this context the main assumptions are that the
baseline can be described by a few known basis-functions or variables and that the effect
of the stimulus, i.e. the activation, stays constant over time. As these assumptions are in
many cases neither necessary nor correct, a new dynamic approach that does not depend
on those suppositions will be presented. This allows for simultaneous nonparametric es-
timation of the baseline as well as the time-varying effect of stimulation.

This method of estimating the stimulus related areas of the brain furthermore provides the
possibility of an analysis of the temporal and spatial development of the activation within

an fMRI-experiment.



1 Introduction

In the analysis of functional MRI time series the main goal is the assessment of stimulus-
related activated areas of the brain on the basis of a stimulus-induced MR-signal variation.
This is equivalent to the detection of a dependency between the time-courses of the meas-
ured MR signal of the voxels in the brain, and a stimulus, that has been presented to the
subject. For this purpose the most commonly used techniques are correlation methods
(1) or linear regression analysis (2). But even if these methods are well known and estab-
lished, due to a huge number of noise sources the analysis appears easier than it actually
is. Whereas the physical noise produced by the scanner (e.g. Quantum noise, thermal
noise) and the environmental sources can usually be described as a stationary white-noise
process, the characterisation of other sources is far more difficult. Respiratory and cardiac
cycles as well as other kinds of physiological noise are well known non-stationary con-
founds, which have to be considered. A common measure to do this is a detrending of
the signal with a few polynomial or trigonometric basis-functions (3, 4). But this imposes
two questions: up to which order of the basis-functions should one detrend and what is
the interpretation of the estimated elements of the trend? Another difficulty lies in the
principle of the above methods. They describe in a simple parametric way the relation
between the signal and a reference stimulus. The latter is assumed to be similar to the
time-course of the evoked activation and to be nearly always identical for all voxels in the
brain. The estimated parameters are then, after standardisation and thresholding at a
certain value, displayed in a so-called activation map. This should show the regions, where
the stimulus has a significant influence on the MR signal thought to be activation-related
via the BOLD mechanism. But there are no apparent reasons for the evoked activation,
and consequently for the temporal delay or the shape of the signals increase, to be identical
over the entire brain (3). Also, the assumption that one single parameter can describe the
stimulus-related effect in a voxel is questionable. In many cases it can be observed, that
the amplitude of the activation varies quite strongly and unpredictably between the stim-
ulation periods. Here an adequate description with a prespecified reference function and

a single temporally constant parameter is nearly impossible. But, ignoring this variability



leads to biassed estimates of the parameters and activation maps.

Even though these facts are well known, the insufficiencies of the existing methods have
usually been neglected until now. The aim of our studies was to evaluate a new approach
that can handle these problems in a very intuitive and elegant way and thus, provide
an appropriate description of the measured time-series. By means of a dynamic model
we present a nonparametric method that works without introducing any new covariables
or basis-functions or constraining the parameters to any prespecified parametric form.
Furthermore a solution for omitting the restrictions applied to the lag and shape parameters

will be proposed, before some examples will illustrate this approach.

2 Theory

The Model

In the following we look at a familiar fMRI experiment. A certain number 7" of MR images
Yt t=1,...,T was obtained from a subject during the presentation of any kind of ON-
OFF-Stimulus X (e.g. 30s of rest, 30s stimulation, 30s rest, ...). Each of these T" images
consists of I pixels or voxels, for which a whole time-series Y; = (vi1, ¥i2, - ., vir) 0 =
1,...,I of measured MR signals exists. Aim of the analysis is to assess those voxels, whose
time-series show a significant connection to the presented stimulus.

Without any loss of generality, our considerations start from an ordinary linear regression
model, which under certain conditions is transformable to a correlation model and can be

formulated as follows:

Y;=Wa; + Zb; +¢;, €~ N(0,071), i=1,...,1, [1]
or in componentwise notation

Vi = wia; + zb + e, €~ N(0,07), i=1,...,1.

This model describes the signal Y; at voxel ¢ as a linear combination of the design matrices

W and Z superimposed by a white-noise error term ¢;. In this context W denotes a known
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vector or matrix, which is supposed to model the trend or the baseline drift. Matrices
that contain linear and quadratic trends or the first few terms of a Fourier expansion are
common examples. The variable Z denotes the transformed stimulus, in other words Z is
a function of the presented ON-OFF-stimulus X. With regard to the transformation, we
consider a temporal shift of the original stimulus by a time-delay d and a convolution with
a parametric hemodynamic response function (HRF) h, so that:
t—d

Ze = z%h(s, Ny g s. [2]
In general Poisson (Po(\)) or Gamma (Ga(\, u)) densities are chosen for this purpose.
These transformations model that (a) due to hemodynamic latencies the cerebral blood-
flow (CBF), the source of the MR signal, increases approximately 6-8s after the onset of the
stimulus, and that (b) the flow responses do not occur suddenly, but rather continuously
and delayed. The question, how the parameters d and 6 can be estimated will be addressed
later. At this point, we suppose that they are known. Finally, the unknown parameters a;
and b; are a measure for the influence of the covariables W and Z on the MR signal.
After having estimated a; and b;, one can test whether b; is zero or not, i.e. whether 7,
respectively X, has an influence on Y. This yields the familiar activation maps, images of
the standardised test statistics of all voxels thresholded at a certain value, that determines

the p-value.

As mentioned above, we believe that some assumptions made in the above model are in-
correct in many cases. Therefore, an alternative approach, based on the theory of dynamic
linear models, which works without these suppositions, will be proposed in the following.
As it is quite difficult to formulate an appropriate trend modelling matrix W for often
highly nonlinear trends in the baselines of the MR-signals, in a first step the arbitrarily
chosen matrix W will be omitted. We do not introduce any new artificial covariables,
but we allow the parameter a; = (a;,...,a;r) to be a function of time to describe the
baseline directly without specifying any particular parametric form for it. This is achieved
by modelling a;; nonparametrically. The only applied restriction is that a;; and thus the

baseline should vary smoothly. In dynamic or state space models this is guaranteed by



imposing a so called random walk smoothness prior on a;;. For a single observation we can

formulate this extension as follows:

Yir = Qip + 2b; + €5, €ir ~ N (0, 01'2)7 3]

with it = 2041 — Qig—2 + Cit, Gt ~ N (0, U?i)-

The second term can be regarded as a kind of penalty term, which penalises all kinds of
variation in the parameter a; that deviate from a linear trend. For example, for a straight
line this penalty is zero. So, a trade-off has to be found between data fit and smoothness of
the curve. It should be mentioned, that in the estimation algorithm, which we will discuss
later, this compromise is achieved entirely data-driven.

In a next step, the temporal variability in the amplitude of the activation should also be
considered, i.e. the assumption that a single parameter can describe the whole fMRI time
series is dropped. This effect will also be modelled nonparametrically. This means that we
also allow the parameter b; to vary over time, implying that the transformed stimulus Z
may have a variable influence on the processes in a particular voxel. As for the parameter
a;t, the only condition imposed is that b;; should vary smoothly. Thus, again a random

walk prior on the parameter is assumed and the result is the new model:

Yir = Qir + 2ebip + €0, € ~ N(0,07), [4]
Aip = 231 — Qi + Gty G ~ N(0, Ué)-
bit = 2bit—1 — bir—2 + Nie, it ~ N(0, 072“)-

with [5]
At a first glance this extension might look a bit confusing, because it is not straightforward
how to handle this parameter. But the underlying idea is quite simple and intuitive: When
the amplitude of the response to a constant stimulus varies, then the parameter, which
reflects the dependency between these two variables, should vary correspondingly. If the
response to the stimulus becomes weaker or disappears altogether with time, then this
particular parameter should be able to indicate this. An elegant way to do this (without
prespecifying the temporal behaviour via a parametric form), is to have as many paramet-
ers as observations. These parameters show for every point in time the actual strength of

the influence of the stimulus. As a consequence of this fact and because in this model the



estimated parameters by are distributed normally, doing this analysis for all voxels, one
can calculate an activation map for every image or time point. This parameter map then
shows the regions of the brain that are ‘activated’ (i.e. significantly stimulus-related) at
this particular point in time. This is an important aspect of this model. To our knowledge
it provides for the first time the possibility to investigate the temporal behaviour of a
stimulus-induced signal variation within an fMRI experiment. Through the sequential dis-
play of all T" activation maps the temporal and spatial evolution of the cortical activation
during the experimental procedure can be studied.

As it is sometimes useful or even necessary to get only a single activation map out of an ex-
periment, defining b,y = b;; and af, = 0 in the above model results in the familiar approach
with a temporally constant parameter b;, so that this case also can be considered without
leaving this particular framework. Another possibility is to take the semiparametric model
(3) and to apply an estimation algorithm for mixed models as proposed in Biller (5).
The last assumption to be omitted, is the one of an identical reference function for the
whole brain. As well the lag and the shape of the activation should be allowed to differ
between the voxels and therefore, pixelwise parameters d; and 6; for the stimulus trans-

formations are introduced. Thus, the final model can be formulated as follows:
Yir = @it + Zitbie + €3, [6]

with the error distributions and priors of the parameters a and b as defined in Eq[5].

Estimation

This section will give a brief description of the method of estimation in the presented
model. Because most algorithms used for the above model have already been described
very well and detailed in other publications, we refer for a more comprehensive introduc-

tion to Fahrmeir/Tutz (6), Harvey (7), De Jong (8) and Press et al. (9).

The estimation of the parameters is carried out in two major steps. The first, a more
technical one, is calculating pixelwise pilot-estimates of the lag and shape parameters d;

and #;, while the second one yields the estimates of the model parameters and variances.



For the pilot-estimate a modified Gauss-Newton algorithm is used, which for each voxel
minimises the quadratic distance between the MR signal ¥; and a reference function z(d;, 6;)
as defined in Eq.[2]. As hemodynamic response function a Poisson density Po()\) is as-
sumed, so that 6, = \; and
t—d;
Zie = Z::O ge”xtdis-

We adapted the original algorithm (9) by first applying the ordinary algorithm for the
parameter )\;, and then heuristically minimising the resulting sum of squares (SSQ) after
each iteration with regard to the discrete lag d;. This was done by comparing the SSQs
for the current value of d; and its direct neighbours d; — 1,d; + 1. An upper bound for
d; is defined naturally by the beginning of the next stimulation period. Moreover for \;
a limit was set to the value of 15s, based on plausibility considerations and to keep the
computational effort acceptable. Once the parameters A or d reached these bounds, they
were set equal to them for the further analysis.

Two alternative ways of estimating the model parameters could be considered. First,
Markov chain Monte Carlo (MCMC) methods. That means to sample from the posterior
distribution of the parameters, which can be calculated as a combination of the distribu-
tion of the measured data for a given set of parameters and the prior distribution of the
parameters according to Bayes’ Theorem. Due to the huge amount of data this would
be a very time-consuming procedure. The second possibility is a linear Kalman filter and
smoother. Under the assumptions that the error terms are normal it also estimates the
posterior mean together with the standard deviations and is computationally more effi-
cient. Therefore, we decided on the filter. To apply the latter, the model only has to be

transformed into state space form:
Yit = Vi Qg + €it, e ~ N(0,07), [7]

i = Fay_1 + ¢, Gy ~ N(0,Q), 8]

with v, = (1,0, 2, 0), o = (@it @ie—1, bir, bir—1)',



and

2 -1 0 0 O'gi 0O 0 O

0O 1 0 O O 0 0 0
F= ) Qz =

0O 0 2 -1 0 0 Ugi 0

0O 0 0 1 O 0 0 O

The filter estimates in an recursive procedure the means and the variances of the posterior
distribution of the parameters «;;, the effects we are mainly interested in. To minimise
the influence of arbitrarily chosen starting values, an extended version of the Kalman filter
and smoother with diffuse initial value priors can be used, as proposed in De Jong (6).
Further, to consider the unknown variances o7 and @Q;, the filter is embedded in an EM-
Type algorithm (6) for estimating the unknown hyperparameters. This algorithm is of an
iterative structure. In a first step the conditional expectation of the log-likelihood for a
given set of observations and hyperparameters is built and then in a second one maxim-
ised with regard to these hyperparameters. This procedure is repeated until convergence.
For the presented approach the expectation step is carried out via the Kalman filter and
smoother and the maximisation can be solved analytically. For a detailed outline of the
applied methods we refer the interested reader to Fahrmeir/Tutz (4) and Harvey (5).

As mentioned already the algorithm finds a trade-off between data fit and smoothness of
the curves of the fitted effects. This compromise is mainly controlled by the relation of
the variances of the observation model (Eq.[7]) and the transition model (Eq.[8]). Con-
sequently, because the EM algorithm estimates the unknown variances on the basis of the
data, it performs this trade-off completely data-driven simultaneously to the estimation of

the time-varying effects. A supervision by the user is not necessary.

3 F-MRI data analysis

The Data

The data sets to illustrate the above method were fMRI time series of photic and acoustic
stimulation experiments. They were acquired on a 1.5 T system (Echospeed, GE Med-

ical Systems, Milwaukee) using a single shot Gradient Echo EPI sequence with echo and
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repetition times of 60 ms and 3000 ms, respectively. Seven slices parallel to the intercom-
missural line with a nominal voxel size of 2.2 X 2.2 X 5 mm were positioned to cover the
occipital lobes in the visual and the temporal lobes in the acoustic stimulation. 73 images
were acquired with the initial three images being discarded to avoid non-steady-state ef-
fects. With regard to the stimulation paradigm, the subsequent 70 images were divided
into four rest and three activation periods, with each period consisting of 10 images (30s
long). During the visual stimulation periods a 32 x 24 element rectangular checkerboard
that alternated at a frequency of 4 Hz was displayed, whereas a uniformly dark screen
with a small fixation point in the centre was displayed in the rest periods. The stimula-
tion pattern was projected into the magnet room through the observation window using
an LCD projector. For acoustic stimulation, a tape recorded novel read by a professional
speaker was presented via headphones that also reduced scanner noise in the rest periods.
Data were transferred to a separate workstation (Sparc 20, Sun Microsystems, CA) for
processing and calculation. For the data of the acoustic experiment a 3D motion correc-
tion was performed using version 3.08 of the public domain image registration program

AIR (10, 11).

The algorithm

The starting values for the estimation of the pixelwise lag and shape parameters were set
to d = 6s and A\ = 65, the convergence criterion was a relative change of A smaller than
0.001 in subsequent iterations.

The variances of the observation and transition model at the beginning of the EM-Type
algorithm were set to 100 and 1. The convergence criterion for the variance of the obser-
vation model was chosen as above.

A diffuse Kalman filter and smoother was used and the time series were mean correc-
ted prior to the analysis. For the activation maps, the estimated means of the posterior
distribution of the effects were taken as point estimators. They were normalised to unit
variance and then tested to be non-zero. This was simply carried out by thresholding the
parametric map at a certain value, without defining a particular p-value. We renounced

the latter, due to the non-existence of a sufficient solution of this highly complex problem.

10



The arbitrary threshold was set to the value of 3.5, which seemed to be an appropriate
value to suppress most of the noise artefacts on the one hand and on the other not to be
too restrictive with respect to the ’activated’ voxels. At this point we did not apply any

kind of spatial analysis, for not biassing the results. These aspects will be discussed later.

Results

Figure (1) shows the time series of a voxel from the visual cortex and its estimated effects.
In the upper row the most simple regression model is displayed with an intercept term
in the second column and a fixed effect for the boxcar reference stimulus in the third.
The resulting fitted curve is superimposed on the data. The residuals are plotted in the
last column. The second row displays an approach with the nonparametrically modelled
baseline (Eq.[3]) but still a fixed effect for the pixelwise estimate of the reference function.
In the last row the effects of the fully dynamic model (Eq.[6]) are plotted. Here, for
illustration, the estimated dynamic effect of the stimulus was multiplied with the reference
function.

As it is indicated through the residual plots, in both models with a single fixed parameter
for the influence of the stimulus, an adequate fit to the data is not given. The only model
that provides an appropriate description of the MR-signal is the completely nonparametric
approach (Eq.[6]).

It can be seen that the dynamic effect varies quite strongly over time. This means that for a
single voxel the significance of the stimulus influence can change within the experiment. As
mentioned above the nonparametric approach generates as many parameters as there are
observations for one effect. Doing the same analysis for all voxels of the brain, standardising
and thresholding the estimated stimulus effects results in 7" parametric maps which display
for every time-point all voxels that at this time exceed the threshold. One would expect
that these maps reflect the temporal variation. Three activation maps taken from each
stimulation period at 9s, 15s, and 21s after stimulus onset clearly show (Fig. 2a) a major
variability of the extent of activation between periods especially in extrastriatal areas.
The anatomical location of detected activation is fairly comparable to standard correlation

maps (Fig. 2b). Compared to the well defined simple photic stimulus, presentation of a
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spoken text also implies cognitive components that may furthermore fluctuate over time
depending on the story and the subject’s interest. The same nine representative maps (Fig.
3a) taken from fixed time points within the stimulation periods illustrate a remarkable
variation of activation in frontal cortex, right thalamus and secondary acoustic cortex
including posterior language areas, while the extent of activation in the primary acoustic
cortex stays rather constant. The single correlation map (Fig. 3b) shows similar anatomical
activation, but time resolution proves the transient nature of thalamic activation which
does not occur in the third stimulation period.

Furthermore, it could be stated that the motion correction had no influence on the spatial

variability in these and 10 other tested data sets.

4 Discussion

The work presented here demonstrates that dynamic linear models are an appropriate
means to model fMRI time series. They are capable of accounting accurately for signal-
drifts and other non-stationary baseline effects using a simple and intuitive nonparametric
approach, without requiring any prior knowledge of the underlying processes. Because the
baseline is modelled with only one parameter, also the interpretation of the estimated effect
is simplified. It is not necessary to explain the meaning of several trend modelling cov-
ariables or basis-functions. Moreover, such a splitting does not seem to be advantageous.
The source of background signal changes in fMRI time series is not completely understood,
apart from breathing, cardiac cycles and CSF pulsations, also residual motion has to be
considered. Further, the complexity of the modelled trend is not restricted by the number
of included basis-functions, but is adjusted dynamically. Thus, it is independent of the
operators supervision and therefore provides an interesting tool for a more comprehensive
study of the nature of baseline changes.

The dynamically modelled stimulus effect reflects in a very flexible way the variability
of stimulus-induced signal variations. Especially this variability is quite informative and
important for the temporal investigation of the stimulus-related processes. This model

provides the possibility to really examine the temporal evolution of activated brain areas
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and thus to analyse the spatio-temporal development of a given activation, which is im-
possible with a single parameter. Whereas the commonly used correlation and regression
techniques calculate a single activation map, i.e. they compress the time series to a single
parameter, the nonparametric approach yields a parametric map for every image, keeping
the temporal dimension of the experiment. This does not only offer the possibility to in-
vestigate the temporal differences in the responses of several voxels as by the approach of
Friston et al. (3), but also to analyse the amplitudinal variation.

As shown for the language task, temporal resolution of the fMRI maps enables the detec-
tion of transient variations in the activation pattern possibly reflecting differential cognition
during prolonged listening to a complex story. Thus, a potentially much finer detection
level for specific answers to short stimuli can be foreseen. Further studies will be neces-
sary to define the physiological limitation of temporal resolution, i.e. necessary minimum
persistence of activation in order to be detected with this approach. However, this time-
resolved approach together with carefully designed temporally varying stimuli affords a
better exploitation of the inherent information from fMRI time series. Another advantage
that can be expected for robustness of results in simple sensory or motor tasks, where
habituation effects or other subject dependant sources of variation like attention, drowsi-
ness or motor weakness may affect BOLD responsiveness. Systematic comparison of this
model with correlation techniques for analysis of event-related versus prolonged steady
state stimulation designs will finally provide insight into optimal adaptation of temporal
stimulation schedules for specific neurobiological applications.

Up to now an important aspect of the analysis of fMRI experiments has not been taken
into account. Critical in the analysis of fMRI experiments is the treatment of spatial
dependencies between the voxels. The whole analysis was carried out pixelwise. Even
though the spatial connectivity is a highly nontrivial problem, its consideration should not
be neglected. To regard the voxels in the analysis as independent individuals is certainly
not correct. But it is questionable whether the present approaches, cluster-analysis (12)
or applying the theory of Gaussian random fields (13), can meet the requirements of this
task. Whereas cluster-analysis more or less keeps existing contours in the parametric map,

it does not account for the quantitative differences of the adjacent voxels and is strongly
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dependent on the choice of the threshold. Further, it cannot provide any objective confid-
ence level. Applying some distributional assumptions and the theory of Gaussian random
fields yield such p-values. But this imposes another problem. The necessary blurring prior
to the analysis smoothes out the contours and edges of the map. Also, it is not evident
whether activation maps fulfil the assumption of a stationary Gaussian random field.
Possible ways to overcome these problems might be approaches that incorporate spatial
aspects already on the stage of the time series models. This will get close to the idea of
a really spatio-temporal analysis. In other areas of research such models exist already. In
the field of epidemiological investigations fully Bayesian approaches for a spatio-temporal
analysis are actually made (14). Here the spatial connectivity is explicitly considered
in Markovian random fields defining neighbourhood systems. The temporal and spatial
interactions enter in the model simultaneously and are equally weighted. However, the
challenging task of a transfer to fMRI data is not trivial. The huge amount of data and
some unpleasant characteristics of the data, like the small signal to noise ratio, partial
volume effects in the signal intensities or spatial inhomogeneities, are aspects that com-
plicate this endeavour.

Until its realisation more extensive validation studies will have to be performed to prove
that the described positive properties of the presented model have not only occurred by
chance. A comparison with other imaging techniques that have a higher temporal resolu-
tion would be very informative. First approaches in the direction of an inclusion of EEG

methods are done but have to be looked at in greater detail.
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Legends for figures

Figure 1: Fitted Models, effects and residual-plots for a selected example. The upper
row shows a simple linear regression, the centre row a nonparametrically modelled baseline

and the lower row the completely nonparametric approach.

Figure 2a: Time-dependent activation maps for visual stimulation, estimated with the

nonparametric model.
Figure 2b: Cross-correlation map for visual stimulation

Figure 3a: Time-dependent activation maps for acoustic stimulation, estimated with the

nonparametric model.

Figure 3b: Cross-correlation map for acoustic stimulation
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Figure 1: Fitted Models, effects and residual-plots for a selected example. The upper
row shows a simple linear regression, the centre row a nonparametrically modelled baseline

and the lower row the completely nonparametric approach.
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Figure 2a: Time-dependent activation maps for visual stimulation, estimated with the

nonparametric model.
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Figure 2b: Cross-correlation map for visual stimulation
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delay after stimulus onset

early (9s) intermediate (15s) late (21s)
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Figure 3a: Time-dependent activation maps for acoustic stimulation, estimated with the

nonparametric model.
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Figure 3b: Cross-correlation map for acoustic stimulation
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