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Abstract

The generalized additive model is a well established and strong tool that
allows to model smooth effects of predictors on the response. However, if
the link function, which is typically chosen as the canonical link, is mis-
specified, substantial bias is to be expected. A procedure is proposed that
simultaneously estimates the form of the link function and the unknown
form of the predictor functions including selection of predictors. The pro-
cedure is based on boosting methodology, which obtains estimates by using
a sequence of weak learners. It strongly dominates fitting procedures that
are unable to modify a given link function if the true link function devi-
ates from the fixed function. The performance of the procedure is shown
in simulation studies and illustrated by a real world example.

Keywords: Variable Selection, Generalized Additive Models, Single Index Mod-
els, Link Function Estimation.

1 Introduction

Methods for the estimation of the unknown link function have been considered in
particular within the framework of single index models (SIMs). Let data be given
by (yi, xi), i = 1, . . . , n, where yi denotes the response and xi = (xi1, ..., xip)

T

the vector of p covariates. In SIMs, as discussed, for example, by Weisberg and
Welsh (1994), Ruckstuhl and Welsh (1999), Härdle et al. (1993), and Yu and
Ruppert (2002), the conditional expectation of yi given xi, is modeled by

E(yi|xi) = µi = hT (ηi),
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where hT (.) is the true unknown response function and ηi = xTi γ is the linear
predictor that contains no intercept. The unknown hT (.) has to be estimated
nonparametrically. Härdle et al. (1993) used kernel functions whereas Yu and
Ruppert (2002) and Muggeo and Ferrara (2008) used a P-Spline approach. For
uniqueness, typically the Euclidean norm of the parameter vector γ is fixed at 1,
that is, ‖γ‖ = 1, and the intercept is absorbed into the response function hT (.).
To guarantee uniqueness of the estimates of a SIM an additional constraint is
needed. Yu and Ruppert (2002) and Cui et al. (2009) set one specific component
of γ to be positive. Alternatively, a monotonicity restriction on the response
function guarantees uniqueness. We will consider only monotonically increasing
(isotone) response functions with ∂hT (t)/∂t > 0. An advantage is that mono-
tonicity entails invertibility of the response function, which is fundamental in
generalized linear models (GLMs). Within the framework of GLMs the inverse
of the response function is usually called link function, h−1T (.) = gT (.). With the
monotonicity constraint SIMs are equivalent to GLMs with unknown response
function. Typically, when GLMs are used the response function is considered
fixed and known. In most applications the canonical response function is cho-
sen. However, among others, Czado and Santner (1992) showed that misspecified
response functions can lead to a substantial bias in the estimate of γ.

The same holds for the more general class of generalized additive models
(GAMs). In contrast to GLMs, where the predictor is a linear combination of
covariates, in GAMs the predictor is given as a sum of unspecified functions of
covariates. The conditional expectation is modeled by a transformation hT (.) of
a sum of covariate functions and an intercept β0 in the form

µi = E(yi|xi) = hT (β0+

p∑

j=1

fj(xij)), s.t.

∫ max{xj}

min{xj}
fj(t)dt = 0, j = 1, ..., p. (1)

The constraint
∫ max{xj}
min{xj} fj(t)dt = 0, j = 1, ..., p is needed to guarantee unique-

ness because a shift of the function f̃j(.) = fj(t) + cj can be compensated by a

shift of the intercept β̃0 = β0 − cj. An extensive discussion of GAMs was given
by Hastie and Tibshirani (1990) and Wood (2006).

As in GLMs, in GAMs usually the canonical response function is chosen and
substantial bias has to be expected if the true response function differs strongly
from the canonical response function. The focus of the present paper is on GAMs
for which the response function is unknown and has to be estimated. In addition
we allow for the selection of predictors. The advantages of variable selection
in GAMs are the same as in GLMs. If variables with low or no influence are
excluded noise is eliminated and the predictive performance of the estimated
model increases. In particular when many predictors are available selection of
predictors is unavoidable.

Nowadays many procedures for variable selection are available in the case of
known link functions. For GLMs, in particular L1-penalization is a very popular
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way to obtain variable selection, see for example Tibshirani (1996), Park and
Hastie (2007), Goeman (2010). More general penalty terms that work for GAMs
were considered by Avalos et al. (2007) and Marra and Wood (2011). An alter-
native strategy is componentwise boosting with early stopping. Tutz and Binder
(2006) and Bühlmann and Hothorn (2007) presented such boosting techniques for
GLMs and GAMs. For variable selection in the case of unknown link functions
not much seems to be available. A procedure that works for GLMs was proposed
by Tutz and Petry (2012). For single index models, which allow non-monotonic
response functions, and will not be considered here, selection procedures were
proposed, for example, by Naik and Tsai (2001) and Kong and Xia (2007).

In Section 2 the model with flexible link and estimation procedures are in-
troduced. In Section 3 the performance is evaluated in simulation studies. An
application to the modelling of deaths rates in Sao Paulo is given in Section 4.

2 Flexible Link Generalized Additive Models (FLGAM)

The model that is assumed to hold has the form

µi = E(yi|xi) = hT (

p∑

j=1

fj(xij)). (2)

But, in contrast to conventional GAMs, the functions fj(.) as well as the response
function hT (.) are unknown. For unspecified link function the model is not iden-
tifiable because it is equivalent to the model E(yi|xi) = h̃T (

∑p
j=1 a · fj(xij) + b)

for constants a, b and appropriately chosen response function h̃T . Therefore ad-
ditional constraints are needed. Similar to the constraints in SIMs, where the
norm of the parameter vector is held constant, we postulate that for a fixed value
c > 0 the constraint

p∑

j=1

∫ max{xj}

min{xj}
fj(t)

2dt = c (3)

holds. In addition, each predictor function is centered by postulating

∫ max{xj}

min{xj}
fj(t)dt = 0, j = 1, ..., p. (4)

Moreover, we assume that the response function is monotonically increasing, that
is,

∂hT (t)

∂t
≥ 0. (5)

In summary, the data generating model is given by (2) together with the con-
straints (3), (4), and (5).
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In the estimating model the true response function is approximated by a
composition of functions of the form hT (.) = h0(h(.)), where h0(.) is a fixed re-
sponse function, typically the canonical response function. The inner (unknown)
function h(.) that has to be estimated is specified by a basis expansion

h(ηi) = ΦT (ηi)α =

mh∑

k=1

φk(ηi)αk,

where Φ(ηi) = Φi is the vector of the mh B-spline basis functions evaluated at ηi
and α is the corresponding basis coefficient vector of the inner function. B-spline
basis expansions have been proposed by De Boor (1978) and have become very
popular in many fields (see Eilers and Marx, 1996; Ramsey and Silverman, 2005).

For the estimation of the functions fj(.), which are also unknown in the clas-
sical GAM we also use a B-spline basis expansion given by

fj(x) = ψT
j (x)βj, j = 1, ..., p, (6)

where ψj(x) is the vector of the mj basis functions evaluated at x and βj is the
corresponding coefficient vector. Let ψij := ψij(xij) denote the vector of basis
function evaluated at observation xij. The estimating model in the case of GAMs
becomes

µi = E(yi|xi) = hT

(
β0 +

p∑

j=1

ψT
ijβj

)
.

In summary, the estimating model for the ith observation is

µi = h0

(
ΦT

(
p∑

j=1

ψT
ijβj

)
α

)
(7)

subject to the constraints given by (3), (4), and (5).

2.1 Estimation Procedure

For a compact notation, let Ψj = (ψ1j, ..., ψnj)
T denote the n×mj-dimensional

matrix of basis function evaluated at all observation of the jth covariate and
Ψ = (Ψ1, .., Ψp) denote the n×(

∑p
j=1mj) total design matrix without intercept.

Let Φ = (Φ1, ..., Φn)T denote the basis expansion evaluate at each observation.
Note that the intercept and a multiplicative factor is absorbed into the inner
function h(η) = ΦT (η)α.

Then the estimating model (7) for all observations can be given in vector form
as

µ(α, β) = h0 (Φ(Ψβ)α) . (8)
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As in GAMs we assume that the response is from a simple exponential family

f(yi|θi, φ) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (9)

where θi is the natural parameter of the family, φ is a dispersion parameter and
b(.), c(.) are specific functions corresponding to the type of the family.

While the log-likelihoods of GAMs depends only on β the log-likelihood func-
tion for the more general model is

l(α, β) =
n∑

i=1

(yiθi − b(θi))/φ.

It depends on α by h(ηi) = ΦT
i α and on β by µi = h0(h(xTi β)). Estimates are

obtained by minimizing the log-likelihood function l(α, β), subject to constraints.
We present an algorithm which is based on boosting techniques. Each boosting
iteration splits into two steps

1. Update of the response function with the predictor fixed.

2. Update of the predictor with the response function fixed.

Both updates are based on penalized and constrained Fisher scoring, respectively.
In each boosting iteration only one of these steps is carried out. For the updating
of the predictor we use componentwise boosting. Therefore, only one predictor
function is updated within one iteration. Early stopping ensures that not all vari-
ables are updated and variable selection is obtained. First we give an unrestricted
version of the algorithm and then we will add the necessary constraints.

2.1.1 Estimation of Response Function for Fixed Predictor

Let η̂(l−1) = Ψβ̂
(l−1)

be the fixed estimate of the predictor of the previous step.
Then the estimation of the response function corresponds to fitting the model

µ = h0(Φ̂
(l−1)

α̂(l−1) + Φ̂
(l−1)

â(l)) where Φ̂
(l−1)

α̂(l−1) is the previously fitted value,
which is included as an offset. Note that Φ(l−1) denotes the evaluation of basis
functions at the current value η̂(l−1). One step of penalized Fisher scoring has
the form

â(l) = νh

(
(Φ̂

(l−1)
)TD̂

(l−1)
h (Σ̂

(l−1)
)−1D̂

(l−1)
h Φ̂

(l−1)
+ λhKh

)−1
·

×(Φ̂
(l−1)

)TD̂
(l−1)
h (Σ̂

(l−1)
)−1(y − µ̂(l−1)),

(10)

where

D̂
(l−1)
h = diag

{
∂h0(ĥ

(l−1)(η̂(l−1)i ))

∂ĥ(l−1)(η)

}n

i=1

(11)
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is the estimated derivative matrix evaluated at the estimate of the previous step
h0(ĥ

(l−1)(η)) and

Σ̂
(l−1)

= diag
{
σ2(h0(ĥ

(l−1)(η̂(l−1)i )))
}n
i=1

(12)

is the matrix of variances evaluated at h0(ĥ
(l−1)(η)) and Kh is the penalty matrix

which penalizes the second derivative of the estimated (approximated) response
function. The matrix Kh is symmetric and each entry has the form

Kh = {kij}, with kij =

∫
(
d2

dη2
φi(t))(

d2

dη2
φj(t))dt. (13)

The main idea of boosting is to approximate the optimum in small steps. If
the step size is too large the procedure suffers. Therefore, one uses the concept of
weak learning proposed by Shapire (1990), see also Bühlmann and Yu (2003). In
our procedure the weakness of learners is enforced by large λh and small νh. The
latter is fixed by using νh = 0.1. Since λh only penalizes the second derivative
of the functions an additional shrinkage parameter νh = 0.1 is helpful to make
the learner weak (see also Tutz and Binder, 2006; Schmid and Hothorn, 2008;
Hothorn et al., 2010).

2.1.2 Componentwise Boosting for Fixed Response Function

Let ĥ(l−1)(.) be the fixed estimate of the response function of the previous step.
The design matrix of the predictor is Ψ = (Ψ1, ..., Ψp) and βT = (βT1 , ..., β

T
p )

is the corresponding parameter vector. Componentwise boosting for additive
predictors means that within one boosting step only one subvector βj of β is

updated. So we fit the model µ = h0(ĥ
(l−1)(Ψβ̂

(l−1)
+ Ψjbj)), where Ψβ̂

(l−1)
is

a fixed offset representing the previous update. Therefore only the covariate xj
is included in the model. The penalized Fisher scoring for parameter βj has the
form

b̂
(l)

j =νf

(
ΨT
j D̂

(l−1)
η (Σ̂

(l−1)
)−1D̂

(l−1)
η Ψj + λfKj

)−1

×ΨT
j D̂

(l−1)
η (Σ̂

(l−1)
)−1(y − µ̂(l−1)),

(14)

where νf = 0.1 is a fixed shrinkage parameter and

D̂
(l−1)
η = diag

{
∂h0(ĥ(l−1)(η̂

(l−1)
i ))

∂η

}n

i=1

= diag

{
∂h0(ĥ(l−1)(η̂

(l−1)
i ))

∂h(l−1)(η)
· ∂ĥ(l−1)(η̂

(l−1)
i )

∂η

}n

i=1

(15)

is the matrix of derivatives evaluated at the values of the previous iteration, and

Σ̂
(l−1)

= diag
{
σ2(h0(ĥ(η̂

(l−1)
i )))

}n
i=1

(16)
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is the variance from the previous step and Kj is a penalty matrix which penalizes
the second derivatives of the predictor functions. K is a symmetric matrix and
is similar to (13). Let ψjk(.) be the kth basis function of the jth basis function
then

Kj = {kj|kl} =

∫
(
d2

dη2
ψjk(t))(

d2

dη2
ψjl(t))dt.

As for the update of the response function we fix νf = 0.1 to make the procedure
a weak learner.

2.1.3 Constraints

As already mentioned, for uniqueness three constraints must be fulfilled. First
we consider the constraints of the predictor. The predictor is constrained in two
ways. The first set of constraints is

∫ max{xj}

min{xj}
ψT
j (t)β̂jdt =

∫ max{xj}

min{xj}

mj∑

k=1

ψjk(t)β̂jk0, j = 1, ..., p.

It is fulfilled if in each update step

mj∑

k=1

wjkβjk = 0, j = 1, ..., p with wjk =

∫
ψjk(t)dt (17)

holds for all predictor functions. The restricted quadratic optimization problem
that corresponds to one penalized Fisher scoring step (14) with the constraints
(17) is

b̂j = νf argminb∈IRmj

{
bTj

(
ΨT
j D̂

(l−1)
η (Σ̂

(l−1)
)−1D̂

(l−1)
η Ψj + λfKj

)
bj

−2bTj ΨT
j D̂

(l−1)
η (Σ̂

(l−1)
)−1(y − µ̂(l−1)), s.t. (17)

}
.

(18)

The linear restricted quadratic optimization problem is solved by use of the R-
package quadprog from Turlach (2009).

The second constraint of the predictor is

p∑

j=1

∫ max{xj}

min{xj}
fj(t)

2dt = c,

which for the expansion in basis functions has the form

p∑

j=1

∫ max{xj}

min{xj}

(
mj∑

k=1

(βjkψjk(t))

)2

dt = c, (19)
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where the choice of c is arbitrary. After updating the jth subvector of β by
(18) we scale β to Euclidean norm 1, ‖β‖ = 1, which determines the value c.
We use natural cubic B-splines (compare Dierckx, 1993). This basis expansion
is provided by the fda package in R (Ramsay et al., 2010). For illustration the
B-spline basis for 8 equidistant inner knots within [−1, 1] are shown in Figure 1.

Since the basis functions ψjk(t) for fixed j sum up to 1 it follows fom the
Cauchy-Schwarz inequality and ‖β‖ = 1 that the range of the linear predictor
η =

∑p
j=1ψj(xj)

Tβj is in [−√p, √p]. So the domain of h(.) is known and the
knots of its basis expansion are fixed on this range.

Figure 1: The cubic natural B-spline basis for 8 equidistant inner knots on the

interval [−1, 1].

2.1.4 Constraints for the Response Function

We assume that the response function hT (.) = h0(h(.)) is monotonically non-
decreasing. Since the canonical link function is non-decreasing we have to esti-
mate a monotonically non-decreasing inner function h(.). The inner function is
approximated by a basis expansion h(ηi) = ΦT (ηi)α, where ΦT (ηi) is a vector
of basis functions evaluated at ηi and α is the corresponding coefficient vec-
tor. h(η) = ΦT (η)α is monotonically non-decreasing if the components of the
coefficient vector α are monotonically non-decreasing, i.e. αi ≤ αi+1 for all
i = 1, ..., mh − 1. A boosting update has the form α̂(l) = α̂(l−1) + â(l). So
after each update step the system of inequations α̂

(l−1)
i + â

(l)
i ≤ α̂

(l−1)
i+1 + â

(l)
i+1,

i = 1, ..., mh− 1, must be fulfilled . Each update step is restricted on the follow-
ing space

A =
{
a(l) : a

(l)
2 − a(l)1 ≥ α̂

(l−1)
1 − α̂(l−1)

2 , ..., a
(l)
k − a

(l)
k−1 ≥ α̂

(l−1)
k−1 − α̂

(l−1)
k

}
. (20)

A can be rewritten as a system of inequations. In the same way as for restricted
updates of the predictor functions we use the corresponding quadratic optimiza-
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tion problem with linear constraints A

â = νh argmin
{
aT
(
ΦTD̂

(l−1)
(Σ̂

(l−1)
)−1D̂

(l−1)
Φ + λhKh

)
a

−2aTΦTD̂
(l−1)

(Σ̂
(l−1)

)−1(y − µ̂(l−1)), s.t. a ∈ A
}
.

(21)

by using the R-package quadprog (see Turlach, 2009).

2.2 Algorithm

The basic algorithm is given below and shows the interplay of the two steps. In
each iteration step an update of the predictor function as well as an update of the
response functions are computed. In the last step of each iteration it is evaluated
which update is to be preferred and is actually performed. In the final step only
the maximizer of the log-likelihood function is used. Thus in each iteration step
either one predictor function or the response function is updated.

Algorithm: FLGAM

Step 1 (Initialization)

Set β̂
(0)

= 0 and η̂ηη(0) = 0. Determine α(0) so that φ(t)Tα(0) = g(ȳ) +
0.0001t is a line with small gradient and intercept g(ȳ), where ȳ =

∑n
i=1 yi.

Compute D̂
(0)

, D̂
(0)

η and Σ̂
(0)

.

Step 2 (Iteration)

For l = 1, 2, . . . , M

1. Predictor update

• Compute for each j ∈ {1, . . . , p} the update b̂
(l)

j as described in

(18) and set b
(l)
j = (0T , . . . , (b̂

(l)

j )T , . . . , 0T )T and determine the
update candidate

β
(l)
j = β̂

(l−1)
+ b

(l)
j .

• Compute β̂
(l)

j = β
(l)
j /||β(l)

j || and the corresponding log-likelihood

function l(α(l−1), β̂
(l)

j ).

• Choose the parameter vector β̂
(l)

opt =

argmax
β̂
(l)
j ,j=1, ..., p

l(α(l−1), β̂
(l)

j ) which minimizes the log-

likelihood function and set β̂
(l)

= β̂
(l)

opt
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2. Response function update

• Compute â(l) as described in (21) and set α̂(l) = α̂(l−1) + â(l)

• Compute ĥ(l)(η(l−1)) = Φ(l−1)α̂(l) and the corresponding log-

likelihood function l(α̂(l), β̂
(l−1)

).

3. Update choice

• If l(α̂(l), β̂
(l−1)

) > l(α̂(l−1), β̂
(l)

) then α(l) is updated and β̂ re-

mains unchanged, β̂
(l)

= β̂
(l−1)

.

• If l(α̂(l), β̂
(l−1)

) ≤ l(α̂(l−1), β̂
(l)

) then β̂
(l)

is updated and α̂ re-
mains unchanged, α̂(l) = α(l−1).

Note that we transform the domain of each function by x̃j = xj/(max{xj} −
min{xj}), and the range of each domain is normed to 1. By this transformation
the update of each function becomes more similar.

2.2.1 Choice of Tuning Parameter

The FLGAM procedure uses three tuning parameter: λf for the smoothing of the
predictor function, λh for the smoothing of the response function and mstop for
the number of boosting iterations. We use 5-fold cross-validation for determining
these parameters. While λf and λh serve only to obtain a weak learner the
number of iterations is the crucial tuning parameter. Therefore the former two
are chosen from a coarse grid of parameter values with λh ∈ {0.5, 1, 0.5} and
λf ∈ {0.5, 1, 0.5} as candidates. The maximal number of boosting iteration was
set to M = 5000. All in all, we have to cross-validate the model for nine tuning
parameter constellations over 5000 boosting iterations.

2.2.2 Cut Version

An unsatisfying property of the presented boosting procedure is that some pre-
dictors are updated only once or twice. To enforce variable selection we also
present a cut version of the algorithm in which estimated functions that are close
to zero are excluded. If in the (l)th iteration the Euclidean length of the coeffi-

cient vector of the jth predictor function is smaller than 1/p, ‖β(l)
j ‖ < 1/p, we

set the corresponding subvector to 0, that is, β
(l)
j = 0. The new cut parameter

vector is restandardized to Euclidean norm 1. The optimal tuning parameter for
the cut version λ̃h, λ̃f and m̃stop are also determined by cross-validation. In the
simulation study the threshold 1/p worked quite well. Of course the threshold
limits could be optimized.
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3 Simulation Study

To evaluate the performance of the FLGAM procedure we compare it with three
established procedures:

GAMBoost , which is a likelihood based boosting procedure which performs
variable selection by early stopping (Tutz and Binder, 2006).

mboost , which is a boosting procedure proposed by Hothorn et al. (2010) that
also enforces variable selection by early stopping. The corresponding R-
package is mboost (Hothorn et al., 2009).

mgcv , which fits a GAM with variable selection based on penalization. For
details see Wood (2006) and Wood (2011).

We use two model assessment measurements for the comparison of models. Af-
ter determining the optimal model by 5-fold crossvalidation we predict µ̂test =

h0(Φ(Ψtestβ̂)α̂) based on an independently chosen data set (ytest, X test) and
evaluate the predictive deviance

Dev(test) = −2(l(ytest, µ̂test)− l(ytest, ytest)).
The accuracy of the estimated predictor functions is evaluated by

MSEf =

p∑

j=1

∫
(f̃j(t)− ˆ̃fj(t))

2dt,

which compares two scaled versions of the functions. f̃j(t) = fj(t) · F is the

true function fj(t) scaled by F = (
∑p

j=1

∫
fj(t)

2dt)−1 and ̂̃f j(t) = f̂j(t) · F̂ is

the corresponding estimate, where F̂ = (
∑p

j=1

∫
f̂j(t)

2dt)−1. The transformation
makes the results comparable. Note that MSEf measures only the similarity of
shape between the estimate and the true function.

We investigate three cases of distribution: normal, Poisson, and binomial with
non-canonical response function. For the normal case we use a sigmoid response
function

hNorm(η) =
20

1 + exp(−5 · η)

and so the response is generated by yi = N(hNorm(ηi), 1). In the Poisson case we
use a sigmoid response function similar to the normal case

hPois(η) =
10

1 + exp(−5 · η)

but the response is generated by yi = Pois(hPois(ηi)). For the binomial case we
choose an increasing smooth step function

hBin(η) =
0.25

1 + exp(−10 · η − 15)
+

0.75

1 + exp(−10 · η + 15)
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with three levels 0, 0.25, and 1. The transitions between these levels are quite
smooth. The response is generated by yi = Bin(h(ηi)).

In each setting the predictor has the same form. The predictor η is gen-
erated by p covariate characteristic functions fj(.). Beyond the distribution
and the response function each setting is given by the number of covariates,
p = 5, 10, 25. Only the first five covariates have influence on the response. The
predictor function are f1(x1) = sin(4 · x1), f2(x2) = cos(4 · x2), f3(x3) = 0.5 · x23,
f4(x4) = −0.5 · x24, f5(x5) = x35/9, fj(xj) = 0, j = 6 . . . , p. Predictors are drawn
from a truncated Normal distribution to avoid problems with outliers. We use
the R-package tmvtnorm (see Genz et al., 2011) with the range for each covariate
being restricted to [−π, π]. The mean of the generating distribution is fixed to
µ = 0p and the covariance matrix is Σ2 = {σ2

jk}j, k=1, ..., p where σ2
jk = 1 for j = k

and σ2
jk = 0.5 otherwise. For the normal and the Poisson case the number of

observations of the training dataset is ntrain = 250 and the test datasets have
ntest = 1000 observations. In the binomial case the 0-1 information of the re-
sponse is quite weak. Thus in contrast to the both other cases we increase the
number of observations to ntrain = 1000 and ntest = 4000. In all cases the maxi-
mal number of boosting iterations is set to M = 5000 which is never exhausted
over all settings. Each predictor function f1(.), f2(.), ..., f5(.) is expanded by cu-
bic B-splines basis with 20 (inner) knots. The response function is expanded in
the same way with 50 (inner) knots.

The results are summarized in Table 1. For illustration we show the boxplots
of MSEf and Dev(test) for the Poisson case in Figure 2. It is seen that the
fitting of a flexible link function provided by FLGAM and FLGAM(cut) strongly
outperforms the procedures with fixed canonical response function in terms of
prediction. The only exception is the binomial case with 25 predictors in which
mboost performs slightly better than the FLGAM procedures. In particular in
the Poisson case the FLGAM and the FLGAM(cut) procedures show superior
performance. In terms of MSEf , which measures the accuracy of the function
fits, mboost is a strong competitor, which in some cases even slightly outperforms
the FLGAM procedures. In general the mboost performs quite well for MSEf .
The procedure uses a carefully designed update step, which is controlled by the
degrees of freedom (cf. Hothorn et al., 2010; Hofner et al., 2009, 2011). This
strategy seems to be very successful even if the response function is misspecified.

The cut version of the FLGAM procedure performs quite similar to the simple
FLGAM procedure in terms of MSEf and predictive deviance (Dev(test)). But
the false positive rates of FLAP (cut) are the best across all settings. Surprisingly
mgcv includes all covariates in each setting although the option variable selection
was chosen. It should be noted that in some cases the procedure did not converge.
In the binomial case we leave out the GAMBoost because the high number of
observations increases the computational costs immensely.
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FLAP FLAP mgcv∗ GAMBoost∗∗ mboost

(cut)

Normal distribution

p = 5

MSEf 0.0132 0.0132 0.0153 0.0238 0.0106
Dev(test) 10884.34 10954.11 26810.77 25874.14 42457.43
hits 1.000 0.988 1.000 1.000 1.000
false pos. — — — — —

p = 10

MSEf 0.0172 0.0166 0.0174 0.0235 0.0130
Dev(test) 15589.11 14254.97 28275.76 27325.15 40147.39
hits 1.000 1.000 1.000 1.000 1.000
false pos. 1.000 0.608 1.000 0.972 0.952

p = 25

MSEf 0.0209 0.0208 0.0299 0.0235 0.0188
Dev(test) 25375.87 25112.45 38757.15 27150.12 45861.43
hits 1.000 1.000 1.000 1.000 1.000
false pos. 0.906 0.539 1.000 0.753 0.834

Poisson distribution

p = 5

MSEf 0.0103 0.0103 0.0295 0.0408 0.0176
Dev(test) 1610.23 1610.23 3921.14 4593.06 4226.54
hits 1.000 1.000 1.000 1.000 1.000
false pos. — — — — —

p = 10

MSEf 0.0143 0.0138 0.0322 0.0530 0.0205
Dev(test) 2017.60 2033.99 5432.79 8127.55 4570.11
hits 1.000 1.000 1.000 1.000 1.000
false pos. 0.996 0.304 1.000 0.912 0.884

p = 25

MSEf 0.0253 0.0258 0.0489 0.0482 0.0262
Dev(test) 2877.95 2872.24 1025052 5382.05 4637.24
hits 1.000 1.000 1.000 1.000 1.000
false pos. 0.789 0.413 1.000 0.803 0.643

Binomial distribution

p = 5

MSEf 0.0132 0.0139 0.0183 — 0.0135
Dev(test) 4226.13 4264.90 4280.19 — 4235.23
hits 1.000 0.952 1.000 — 1.000
false pos. — — — — —

p = 10

MSEf 0.0182 0.0184 0.0232 — 0.0171
Dev(test) 4335.16 4324.11 4356.42 — 4325.13
hits 1.000 0.996 1.000 — 1.000
false pos. 0.912 0.232 1.000 — 0.984

p = 25

MSEf 0.0216 0.0221 0.0295 — 0.0228
Dev(test) 4455.67 4461.87 4627.87 — 4439.88
hits 0.992 0.988 1.000 — 1.000
false pos. 0.529 0.237 1.000 — 0.745

Table 1: Medians of the Dev(test) and MSEf for each setting of the simulation

study and the hits false positive rates across the replications. ∗ Convergence only

in part of the replications. ∗∗ No results in the binomial case because of high

computational costs.
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Table 2: Boxplots of Dev(test) and MSEf for the three Poisson setting.
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4 Data Example

The method is illustrated by modeling the death rate in the metropolitan
area of Sao Paulo. The data were recorded from January 1994 to Decem-
ber 1997 n = 1351 days and are available at http://www.ime.usp.br/~

jmsinger/Polatm9497.zip. We use a sub data set which was also used by Leit-
enstorfer and Tutz (2007) for the modelling of monotone functions. The response
is the number of daily deaths caused by respiratory reasons of people which are
65 years or older RES65. The covariates are given in Table 3.

Label Explanation
TEMPO Time in days
SO2ME.2 The 24-hours mean of SO2 concentration (in µ/m3)

over all monitoring measurement stations.
TMIN.2 The daily minimum temperature.
UMID The daily relative humidity.
DIASEM Day of the week.

(1 =Tuesday, 2 =Wednesday, ..., 7 =Monday)
CAR65 Cardialogical caused deaths per day.
OTH65 Other (non respiratory or cardiological) caused deaths per day.

Table 3: Table of covariates and their labels of the Sao Paulo air pollution data

set.

For SO2ME.2 and TMIN.2 we consider the measurements taken 2 days before as
influential. This lag was proposed by Conceicao et al. (2001). All predictors are
modelled nonparametrically. We used 20 knots for all covariates in FLGAM. For
mgcv, the default values were used, but for the covariate DIASEM we had to reduce
the number of knots to 7. We determined the optimal tuning parameter by a
5-fold cross-validation, where λh, λf ∈ {100, 10, 1, 0.1, 0.01}. For both versions
of the FLGAM we got λh = 1 and λf = 0.01. For all boosting procedures the
maximal number of boosting iterations was fixed to 1000. In Figures 2 we show
the results for FLGAM and in 3 the results for mgcv. We do not show results for
GAMBoost because the procedure did not work well on this dataset. As in mgcv
for mboost (not shown) no predictor was selectd and estimates were similar to
the results for mgcv.

For TEMPO the periodic character is identified by all procedures. The SO2

concentration (SO2ME.2) has an clearly increasing trend. If we neglect the high
valued outliers this covariate seems to have only a very weak influence. Increasing
temperature TMIN.2 has a decreasing influence on the response RES65. This
characteristic was detected by all procedures. With the FLGAM this trend seems
to be stronger. Beyond the outliers, the covariates UMID and DIASEM have only a
small influence on the response. The cut version of FLGAM (FLGAM (cut)) does
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not include these covariates. Increasing number of non respiratory caused deaths
(CAR65 and OTH65) tends to increase the number respiratory caused deaths.

In contrast to the established methods with canonical link the models with
estimated link function have only two main influential covariates, TEMPO and
TMIN.2. The models with canonical link functions are more complex. In them
also the covariates SO2ME.2, CAR65, and OTH65 seem to be influential.

Figure 2 also shows the estimated response functions of both FLGAM proce-
dures, which differ from the canonical response functions shown in Figure 3.

In addition we evaluated the prediction across 50 random splits. The training
data set contains 1000 observations and the remaining observations are used as
test data. For reducing the computational costs we determined the tuning pa-
rameter λF and λh on the complete data set (n = 1351) by 5fold cross-validation,
and fixed the resulting λh = 1 and λf = 0.01 for the following investigation of
prediction. Since we only had to determine the number of optimal boosting it-
erations by a 5fold cross-validation on the training data set the computational
costs were strongly reduced. We used the training data for fitting the model
for given tuning parameters and measured the prediction on the test data. We
give the medians of the predictive deviances across the random splits and the
deviance for complete data set in Table 4. The predictive deviance across the
random splits underlines the results of the simulations study, prediction tends to
be better when allowing for flexible link functions.

FLGAM FLGAM (cut) mgcv mboost

complete data set 1383.06 1412.30 1547.58 1407.42
random splits 411.26 414.13 437.63 430.52

Table 4: Prediction measurements of the Sao Paulo data set for the different

procedures. First row: The deviance on the complete data set. Second row:

Median across 50 random splits.

5 Conclusion and Perspectives

A competitive method for estimating GAMs with an unspecified response func-
tion is presented. The method is based on componentwise boosting, by early
stopping variable selection is obtained. Especially in terms of the predictive per-
formance the method dominates in nearly all simulation settings. In all cases
the variable selection of the FLGAM and FLGAM(cut) procedures works quite
well which is seen from the hits and false positive rates. Especially the variable
selection of the cut version works very well.

By small modifications the FLGAM procedures can be generalized to semi-
parametric models, where smooth, linear, and categorial predictors are included.
Since then predictors have quite different complexity, in particular the use of the
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Figure 2: Top: Estimated predictor functions and response function for Sao

Paulo data set estimated by FLGAM. Bottom: Estimated predictor functions

and response function for Sao Paulo data estimated by the cut version of the

FLGAM algorithm.
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Figure 3: Estimated predictor functions and (fixed) response function for Sao

Paulo data set estimated by mgcv.

degree of freedom based update criterion proposed by Hofner et al. (2009, 2011)
should be useful.
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