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ABSTRACT

In microeconometrics, consumption data is typically zero-inflated due to many individuals
recording, for one reason or another, no consumption. A mixture model can be appropri-
ate for statistical analysis of such data, with the Dependent Double-Hurdle model (DDH
hereafter) one specification that is frequently adopted in econometric practice. Essentially,
the DDH model is designed to explain individual demand through a sequential two-step
process: a market participation decision (first hurdle), followed by a consumption level
decision (second hurdle) - a non-zero correlation/covariance parameter allows for depen-
dency between the hurdles. A significant feature of the majority of empirical DDH studies
has been the lack of support for the existence of dependency. This empirical phenomenon
is studied from a theoretical perspective using examples based on the bivariate normal,
bivariate logistic, and bivariate Poisson distributions. The Fisher Information matrix for
the parameters of the model is considered, especially the component corresponding to the
dependency parameter. The main finding is that the DDH model contains too little sta-
tistical information to support estimation of dependency, even when dependency is truly
present. Consequently, the paper calls for the elimination of attempts to estimate depen-
dency using the DDH framework. The advantage of this strategy is that it permits flexible
modelling; some possibilities are proposed.
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1 Introduction

The Double-Hurdle model (DH hereafter) has been used in economics to analyse a wide range of
individual commodity demand and labour supply behaviour; important contributions include Blundell
and Meghir [3] and Jones [13]. Other fields in which the DH model has been applied include finance
(e.g., Dionne et al. [6] examine credit-scoring) and sociology (e.g., Zorn [20] examines legislative
response to court rulings). In terms of commodity demand, the DH model is designed to explain
the mechanism of individual demand through a sequential two-step process: a market participation
decision (first hurdle), followed by a consumption level decision (second hurdle). The statistical origins
of the model are due to Cragg (5], and its basis in consumer choice theory is due to Pudney [16, pp.160-
162].

The generalisation of the DH model to allow for dependence between the participation and con-
sumption decisions - the Dependent Double-Hurdle model (DDH hereafter) - has recently been the
subject of empirical attention. Importantly, the arguments mounted for this generalisation have not
been based on economic theory. Rather, justification has been based on intuitive behavioural grounds
(e.g., (8, p-491] and [17, p.216]), and on statistical grounds (e.g., in [9] where it improves fit). In sta-
tistical terms, a parameter 8, representing dependency, is incorporated into the DH model. Typically,
a DDH model nests its DH counterpart through the restriction = 0. A summary of a number of
published DDH studies appears in Table I:

Table I: Dependent Double-Hurdle Studies
| Application: Demand for | Sample size | % of 0’s | DDH vs DH

Blaylock and Blisard [2]| | Cigarettes (USA) 2962 60.7 insig
Burton et al. [4] Meat (UK) 2144 6.3 insig
Garcia and Labeaga [8] | Cigarettes (Spain) 23669 41.2 insig
Gould [9] Cheese (USA) 5017 59.0 sig
Jones [13] Cigarettes (UK) 1573 na insig
Jones [14] Cigarettes (UK) 2321 48.5 insig
Yen and Jones [19] Cheese (USA) 4245 18.1 insig

The important feature to note are the entries in the last column - “DDH vs DH” - which indicates
whether the fitted DDH is either insignificant from (insig), or significantly different to (sig), its nested
DH version. The relevant hypothesis test showed that the data in 6 of the 7 studies did not support
the DDH model over the DH model at any conventional level of significance - the exception is Gould’s
study where an estimate of 6 of 0.22 was reported to be significantly different from zero (estimated
standard error 0.06). This persistent finding against the DDH model provides the motivation for this
paper - an explanation is sought for why DDH models appear to be statistically indistinguishable from
their DH counterparts.

The DDH model has as its statistical origin the specification of a bivariate distribution for two latent
utility variables, denoted by Y7** and Y;™. From these variables, the two decision/hurdle variables are
derived: denoted Y}* for the yes-no (1-0) decision of whether or not to participate in the market, and
Y5 for how much to consume. Note that Y7* and Y5 are, in general, latent variables. In a survey, the
variable that is observed is individual consumption Y’; its relation to the hurdle variables is given by
Y =Y x Yy > 0. In this model there is a two-fold source of zero observations: the first occurring if
Y}* = 0 (the individual does not participate - the first hurdle is failed); and should Y;* = 1, the second
occurring if 5" = 0 (the person participates, but elects not to consume - the first hurdle is passed, but
the second is not). Such models lead to zero-inflated data. In this respect, the DDH studies referenced
in Table T provide no exceptions. The entries in the column “% of 0’s” gives the proportion of zero
observations in the data set; Blaylock and Blisard, for example, report 60.7% of their sample of 2962
women as not smoking cigarettes. A detailed statistical construction of the DDH model is given in
Section 2.



Many reasons can be given for the lack of significance of the dependency parameter, including: 6
may truly be zero, the model parameters may not be identified, specification error may be inducing
estimator inefficiency, the power and size properties of the test for 8 = 0 may be poor, 6 is a compo-
nent of the variance-covariance matrix and such parameters are typically harder to estimate precisely
when compared to mean/regression parameters. However, recurring insignificance across a number
of distinct studies is suggestive of a fundamental statistical weakness in the model, namely: that the
generalisation of the DH model to the DDH model adds little to the informational content of the latter
over the former. In such a situation, this would imply that the parameters of a DDH model, even if
formally identified, may only be weakly identified. Section 3 provides an illustration of this for the
bivariate normal DDH model.

Fisher’s Information [7] (per observation) is tied intricately to statistical estimation theory and
inference. In this paper, Fisher’s measure is used for the purpose of assessing the quantity of statistical
information contained on the model parameters (for extensive details on information theory in statistics
see Kullback [15]). The greater the Fisher Information that is present on a parameter, the better the
prospects of obtaining a reliable estimate of it and of performing inference about it. In Section
4, Fisher’s Information on # is examined in the context of the bivariate logistic DDH model. The
findings there show the need for an abundance of zero observations if the DDH model is to contain
statistical information over and above the DH model. Sections 5 and 6 examine Fisher’s Information
matrix in the context of the bivariate Poisson DDH model. The findings there reflect the informational
trade-offs that can occur between the parameters of the DDH model, as well as the relative lack of
statistical information that is present on 8 - irrespective of whether 6 is truly non-zero or not.

Closing remarks are given in Section 7. Chiefly, the suggestion is made that the introduction of
the dependency parameter into DH models (thereby yielding a DDH model) is a statistically spurious
generalisation. This seemingly negative outcome is, however, of considerable benefit to practitioners.
In the absence of dependency, practitioners have the opportunity to explore more flexible distributional
forms, for in DH models it is unnecessary to be concerned with the task of specifying a bivariate
distribution with dependency for the underlying utility variables.

2 The Statistical Construction of the DDH Model

2.1 Distribution and Density

Let (Y7™*,Y5™) denote the two utility variables underlying an individuals decision process, and assume
(for now) that they are continuous and take values throughout IR?, the two-dimensional real plane.
Next, assume a parametric bivariate model for (Y7, Y;™) is specified by assigning a joint cumulative
distribution function (cdf) to the variables; denote the cdf by F(yi*,y3*), for values (yi*,ys*) € IR
The cdf depends upon unknown parameters collected in v € T', one of its components being the
dependency parameter 6. Importantly, variables Y;** and Y5 are not observed. The observed variable
is individual consumption Y > 0. The relationship between (Y7**,Y5™*) and Y is established by defining
two intermediate random variables:

. 1 iy >o0 . [ Y Y >0
Yl_{o if Y+ <0, and YQ_{O if Y5 < 0. (1)

Variables Y7 and Y5 are the hurdle variables: the discrete variable Y7* represents the first hurdle
decision (if Yi* = 0 the hurdle is failed, the individual does not participate; if ¥7* = 1 the hurdle
is passed, the individual is a potential consumer), and the continuous-discrete mixture variable Y5
represents the second hurdle consumption (if Y5 = 0 the hurdle is failed, the individual does not
consume; if Y5* > 0 the hurdle is passed, the individual consumes). In general, Y;* and Y5 are latent.
Finally, to complete the construction of the DDH model, individual consumption

Y =Y x Yy > 0. (2)



Due to the sequential decomposition of the decision, a zero observation on Y can occur in two ways:
(1) if the first hurdle is not passed (Y7* = 0); or, (ii) if the first hurdle is passed and yet the second
hurdle is not (Y7* = 1 and Y5" = 0). Any positive-valued observation occurs only when both hurdles
are passed (Y] =1 and Yy > 0).2

Under the continuity assumption, the probability density function (pdf) of Y is a (univariate)
continuous-discrete mixture, with functional form depending upon the specification assumed for F.

Denote it by
o ={ Y e ®)

where IR denotes the positive part of the real line. When y € IR, the fi(y) component of the pdf of
Y is continuous. Its functional form may be derived by differentiating, with respect to y, the following
probability:

PY < y)=1-PY >y)
= 1-P{Yy" =1} n{Yy >y})
- P({Y7" > 0} n{Y5™ > y})
= I1(0) + Fa(y) — F(0,y), (4)

where F;(-) denotes the marginal cdf of Y;** (¢ = 1,2). Thus,

A = %P(Ry)

0

5 (B) = F0.9)). 5)

When y = 0, the fy component of the pdf is the probability mass at the origin:

fo = PY =0)
— P(Y >0)
= Fi(0) + F2(0) — F(0,0). (6)

2.2 Fisher Information

In the DDH models given in the remaining sections of the paper, interest lies with Fisher’s Information
on the parameters contained in 7 - especially the information on the dependency parameter 6. Given
the general form for the pdf of Y, it is easy to write down, for example, the definition of Fisher’s
bl 2
o) +PY >0)E ((aelogf( ))

Information on 0 :
((%hjgf( ))2 _ P(Y:O)E<<§Qlogf( )>2Y: Y>O>
- 5x (5 10gfo>2 T (Sn ) A
[ o ()

It is because the pdf of Y is a continuous-discrete mixture that there are two components in (7): the
form of the first term arises because the density at the origin represents a probability mass, the second
because the density at a given value in IR, represents a sliver of mass.

?It is useful to view the sample space of Y on the (Y7**,Y5™*) plane - any (yi*,%3") pairs generated in the L-shaped
region {{Y7"™* < 0} U {{Y7"" > 0} n{Y5™ < 0}}} map to the origin, and any (yi*,y>") pairs generated in the upper-right
quadrant map onto the line Y7** = 1 at the value y53*.



3 The Bivariate Normal DDH

In this first example, assume (Y7, Y5™) is distributed according to the following bivariate normal:

LS H1 1 o6
5 (] e 2)

Without loss of generality, Var(Y;*™) is normalised to unity because in the construction of the DDH
model all scale information on Y;** is lost due to the transformation of Y to Y|*. As is well known,
the dependency parameter 6 is equivalent to the correlation coefficient between Y;** and Y5™; thus
€ ©={0:10] <1} When # = 0, the random variables ¥Y7** and Y;* are independent. The

parameters of the model are collected in the list v = (puy, jtg,02,0) €T = IR?> x R, x O.
For the bivariate normal DDH model, the joint cdf of (Y;**,Y5™) is given by:

Yz~ —
Py, y3") =9 (y’f* =, F——= 2) ,
where Q(-) denotes the cdf of a standardised bivariate normal distribution with correlation coefficient

6. Substituting this expression into (4), the continuous component of the cdf of Y is given by:
PY <y) = ®(—p) + ®(2) = Q—pn, 2),
for y € IR, . The function ®(-) denotes the cdf of a standardised univariate normal distribution, and

LY
g

The probability mass at the origin is given by:
P(Y =0) = @(—p1;) + P(—0" 1g) — =1y, =0 o).

In Figure I, distributions of Y are plotted for three points in the parameter space I', namely:
v, =(0,2,1,0), v5 = (0,1.6,1,0.5), and 3 = (0,2.4,1,—0.5). These points can be regarded as distant
from each other in T'.

(Figure I about here)

The significant feature to notice about the plotted distributions is that all three are extremely close
to each other across all values of Y =y > 0. In fact, numerical computation reveals that the greatest
difference between the cdf of Y evaluated at ;, and the cdf evaluated at v,, occurs when y = 2.879 -
the difference being only 0.0107. This is smaller again® if the cdf of Y is compared at v, and vs; the
largest difference now is only 0.0028 at y = 2. Certainly, the fact that the cdf of Y is distinct at each
point in I' is sufficient to identify the parameters of the bivariate normal DDH model; however, what
Figure T reveals is that identification is weak in the selected neighbourhoods of T'. Of course, there
are an infinity of parameter configurations within I' at which the distribution of ¥ may be examined,
many of which may lead to differing conclusions about the strength with which the parameters of the
model are identified. However, it is interesting to observe in Figure I that P(Y = 0) is a little over
50% for each parameter point. This fact, taken alongside similar percentages for the data statistics
reported in Table I, suggests that the distributions depicted in Figure I may be of relevance in practice.
Estimation of demonstrably weakly-identified parameters must be of considerable concern, for it can
lead to computational problems such as lack of convergence - this in fact occurred in the Burton et
al. DDH study, see [4, p.205].

In the examples which follow, attempts to quantify the implications of “weak identification” in the
DDH model are undertaken using Fisher’s Information, the latter serves to measure the amount of
statistical information that is contained on the parameters of the model.

3In fact, for the vertical scale used in Figure I the difference between the distributions is barely discernable to the
eye.



4 The Bivariate Logistic DDH

4.1 Distribution and Density

For this example, assume (Y;*,Y5™) is distributed according to Gumbel’s Type II bivariate logistic
distribution (see [10]) with cdf:

Flyi"y2") = Fulyr ) Fa(y2") (1 +0(1 = Fi(y") (1 - Fa(y2"))), (8)

for (yi*,y4*) € IR?, and where the dependency parameter §# € © = {6 : |#| < 1}. The marginal cdf

Fi(yf) = (L + exp(=(y;" — 1)) !

(i = 1,2), corresponds to the cdf of a logistic random variable with mean p; and variance 72/3. Using
integration by parts, it can be shown that Cov(Y;™,Y;™) = . When 6 = 0, the random variables Y;**
and Y5™ are independent.

For this specification, the continuous component of the pdf of Y, according to (5), can be shown
to equal:

fily) = (1= F1(0))(1 — 011 (0)(1 — 2F2(y))) Fa(y),

for y € R4, and where F)(y) = 0F;(y)/0y = F;(y)(1 — Fi(y)) for i = 1,2. From (6), the probability
mass at the origin is

Jo=F1(0) + F»(0) — F(0,0).
The parameters may be collected in the list v = (11, jt9,0) € I' = IR? x ©.

4.2 Fisher’s Information on the Dependency Parameter

The advantage of examining the bivariate logistic DDH model is that Fisher’s Information on €, denote
it by %, can be derived in closed form, a fact which will prove useful when it comes to analysis and
interpretation, as well as computation. Even so, in the analysis which follows it is convenient to work
with an intermediate form:?

i = SFROF0) (P(-0R0);153) + (1 - 25(0)° TEFRO)1 —2F(0));1;3))
F{(0)F5(0)* o)
Fl(O) + FQ(O) — F(0,0) ’
where - ;
U(x;y;2) = jg() Gy

is known as Lerch’s function - a generalisation of Riemann’s zeta function and the polylogarithm
function (see Spanier and Oldham [18] for further details).

Further simplification of (9) is possible:

i = 63em <_9F1(0)(1 — B (0))(1 — 6F (0)F>(0)) + %log — 9;1:0)95 1_(02)172 (0))>
F{(0)2 B0 "
F1(0) + F»(0) — F(0,0)’
which is valid for all § € © except at § = 0. When 8 =0, ¥(0;1;3) = % and
1 , F{(0)°F3(0)?

Although it is a complicated function of 6, p;, and p,, Fisher’s Information on 6, represented by (10)
and (11), is in closed form.

'See the Appendix for a derivation of (9) and (10).



4.3 Analysis

An interesting analytic result may be deduced in the following scenario: fix 6 and i, and allow s
to increase, implying that should the first hurdle be passed, the second hurdle is increasingly passed.
In the limit, this scenario corresponds to so-called first-hurdle dominance because the source of zeros
on Y is due only to failing the first hurdle; for further details see [13, pp.25-26].> As uy, — o0, finds
F»(0) — 0 and ¢ — ip, where, from (9),

= ;Wmﬂmxmgwwmh@+mwm@g5»

1 3
= SROF©) VIR0 1:) (12)
denotes Fisher’s Information on # under dominance.® Clearly ip, = ip(pq, #) is a function of y; and 6.
Furthermore, ip is invariant to the sign of the dependency parameter 0; i.e., ip(py,0) = ip(py, —0).
Also, given that U(xy;y;2) > U(wg;y;2) if 1 > x9 > 0, then i¢p increases monotonically with the
absolute value of 8. For any given value of v € T, these facts imply that:

’i < iD < Ev
where
E - iD (Mlv 1)
1 3
= SE(OF(0) U(F(0)% 1 5).

In other words, for any given value of p; € IR and 6 € O, Fisher’s Information on # under dominance
(ip) exceeds Fisher’s Information on 8 (7) irrespective of the value of iy € IR. And for the next part of
the inequality, ip represents the upper bound on Fisher’s Information under dominance irrespective
of the value of 8 € B, and therefore, by the previous point, must bound Fisher’s Information on 8 for
all py € IR and 0 € © too.

At this point, it is convenient to rewrite (12) as:”
-~ Losom 3.0 027 (0)2
ZD—29 & B(Q,O,Q Fl(O) ),
for the derivative of this expression with respect to p; can be written

o F1(0)Fi(0)
B = ip —{2(1 — F1(0))} x [2(1 — 92F1(0)2)] -

Now the term within curly braces takes values between 0 and 2, and the term within square braces is
larger than ip; hence, for some p; the derivative may be negative. In particular, this is true at p; =0
for all @ € O, implying that ip is larger for some p; < 0 than it is when p; = 0.

(Figure II about here)
Figure II plots four curves against values of g in the interval [—4,2]. The uppermost curve is ip,

the upper bound on Fisher’s Information for all permissible choices of 1, and 6, as too it is the upper
bound on Fisher’s Information under dominance for all permissible 8. The next curve depicts Fisher’s

°In statistical terms, the first hurdle dominant DDH model arises when there is no probability mass in the quadrant
{Y?™ > 0} n{Ys™ < 0}).

Note that the relation W(z;y; z) + ¥(—z;y; z) = 2 "YU (2?; y; 2/2) has been used.

‘The relation given in the Appendix between the Lerch function and the incomplete beta function has been used.



Information under dominance for = +0.9, it bounds Fisher’s Information ¢ for all p, and 0] < 0.9.
The remaining two curves depict Fisher’s Information ¢ when py, = 1, with § = —0.5 and 0.9.

Significantly, both ¢ curves, “ for 8 = —0.5” and “¢ for & = 0.9”, exhibit the same behaviour as
was deduced algebraically for ip; namely, that ip is maximised for some p; < 0, for all § € ©. Also,
these curves provide evidence for the claim

ot

— <0,
Oy p1=0

implying that ¢ is maximised for some p; < 0, for all # € © and p, € IR. Importantly, when random
sampling from Y, under a bivariate logistic DDH model in which g < 0, it must be the case that
more than half of the sample would be expected to fail the first hurdle - in which case at least half of
the observations in the sample would be recorded as zero. In other words, the situation in which more
than half of the sample data are recorded as zero, is precisely the situation in which that data can yield
greater Fisher Information on the dependency parameter 8. To illustrate the impact of this finding,
consider DDH models for populations indexed by i, with set values py = 1 and # = —0.5 (the Fisher
Information on @ for these populations is the curve labelled “i for 8 = —0.5”). In this setting, Fisher’s
Information on 6 is maximised when p; = —0.764. Now at this value of p,, the probability of failing
the first hurdle is F1(0) = 0.682, and the probability that a zero is recorded is P(Y = 0) = 0.789. Thus,
when random sampling from the particular population in which gy = —0.764, uy, = 1, and 6 = —0.5,
although it is true that Fisher’s Information on 8 is maximised relative to all other populations indexed
by 1 (6 and ps held fixed), there is the harsh reality that approximately 80% of a (representative)
sample will be observed as zero! In practice, a sample of data containing such a large mass of zeros
might in all likelihood simply be set aside and not analysed, and yet it is precisely this type of sample
which might yield enough statistical information on 6 to support estimation and inference on 6.

Jones [14] gives an empirical example of a DDH model in which as many as 48.5% of the sample
data is recorded with zero expenditure on tobacco (see Table I). It is an interesting exercise to derive
the amount of Fisher Information on # that results from a bivariate logistic DDH model with this
proportion of zeros - taking, as before, the example of populations indexed by values of p, and for
which # = —0.5 and p, = 1. To begin, the equation P(Y = 0) = 0.485 needs to solved for p, yielding
pp =~ 1. Examining the relevant curve in Figure I at this value of y;, finds Fisher’s Information on
@ approximately equal to 0.014. Contrasting this with the maximum Fisher Information on 6 that is
possible (approximately 0.038 when gy = —0.764), over 60% of the value of the latter information has
been lost. It is therefore not surprising to see reports of unreliable estimates of dependency parameters
in empirical applications of the DDH as well as insignificance of the DDH over its DH counterpart, for
rarely will reported sample data consist of the large mass of zeros necessary to yield sufficient amounts
of statistical information on the dependency parameter.

In this example, attention focused solely on Fisher’s Information on the dependency parameter. Of
course, DDH models will, in general, contain parameters in addition to the dependency parameter. In
the following examples, consideration is given to the impact of dependency on all parameters in DDH
models. In order to undertake this task, all elements of Fisher’s Information matrix are required.

5 The Bivariate Poisson DDH

5.1 Distribution and Density

For this example, assume (Y7, Y5™) is distributed according to Holgate’s bivariate Poisson distribution

(see [11]) with pdf:

min(yI*,yg*) 1 *kk g *k g
07 (g — 0)%1 7 (py — )%
(Y7 nd{Y; 2" }) ]ZZO gy =0 (yr—g)!




for (yi*,y3*) € IN?, where IN = {0, 1,2, ...} is the set of non-negative integers, and
6 = exp(—py — pg +0).
Holgate’s distribution arises from the decomposition of the random variables into
Y =U+YV,

and

where U, V, and W, are independent Poisson variables with parameters 6, ;; —8, and py,—8, respectively.
Clearly, the marginal pdf are Y™ ~ Po(pu,), Y5 ~ Po(us), with Cov(Y7™,Y5™) = 6 the dependency
parameter. In contrast to the previous examples, the values which 6 may take depend on the values
of the Poisson parameters p; and py. In particular, assuming (g, py) € ]Ri, satisfying p; > 0 and
o > 0, where real > 0, then § € © = {6 : 0 < 0 < min(puy, ity)}. The parameters v = (g, 19, 0) €
I'= Ri x ©. When 6§ = 0, Y7 and Y, are independent.

Here (Y™,Y.") is discrete, so modification to the statistical theory presented in Section 2 is
required. Fortunately, this task is straightforward, with a suitable DDH model constructed according
to the same basic sequence of steps as has already been outlined. Zero observations on Y result from
any pair recorded on either Y** or Y™ axis, otherwise a positive observation, equivalent to the value
of Y5, is recorded on Y. Discreteness of (Y7**,Y5"™) implies that Y is also discrete, with its pdf given
by:

hly) = P =y
= PO =y) - P{YT" =0} n{¥y" = y})

ety §(py — 0)Y
Y v

fory € INy ={1,2,3,...} the set of positive integers, and

fo = PY =0)
— PO =0)+ P(Y;* = 0) — P{Y{™ = 0} N {¥3* = 0})

= exp(—u) +exp(—pig) —

In the following analysis it is convenient to define, for any y € IV, the following functions:
e tepud

9(y) = m

?

and (ha)
6_ Ho— — 0 Y
hly) = =,

Clearly ¢ is the pdf of Y5, a Po(ug) variable, and h is the pdf of W, a Po(u, — 0) variable. With
these definitions (13), for example, may be re-written:

fily) = g(y) — e " h(y).

5.2 Fisher’s Information Matrix

Let ¢ = {5} denote the (3 x 3) Fisher Information matrix, where j,k € {1,2,3}. The j, k element of
1 is given by:

0 19}
i%‘% = b (8_ log f(y) x a_%bgf(y)>

75
.~ 1 9f(y) 0f(y)
B Z_: f) d0v; O



where 7; denotes the jth component of v, and f(y) = P(Y = y), y € IN, denotes the pdf of Y.
The derivatives required to determine the components of Fisher’s Information matrix are relatively
straightforward to derive; e.g., those with respect to 8 are:

fo
i
and
N | —6(uy—0-1) fy=1
90 | —eti(h(y)—hly—1) ifye{2,3,.}.

Thus, for example, the element of Fisher’s Information matrix corresponding to Fisher’s Information
on #, is equal to

, & P (uy—0-1
99 = — +
T A1)

)2 — 1 2
+e Yy (h(y) — h(y — 1))*.

= 1)

Although this expression cannot be analytically closed, it can, for a given value of v, be computed to
convergence according to a suitable degree of numerical tolerance.

5.3 Analysis

Table II gives Fisher’s Information matrices ¢ at selected values of v € I'. In particular, p; is fixed at
unity, py takes values 1, 2, and 8, and @ is varied from 0 to 0.9 in increments of 0.1. Only the upper
diagonal of the matrix is given for Fisher Information matrices are symmetric. The order of the entries
matches the sequence in v = (y, 19, #). Numbers are reported rounded to 4 decimal places.

(Table IT about here)

Consider the bivariate Poisson DDH model for which the population is described by v = (1,1,0.9).
As the true value of @ = 0.9, it would be hoped that inference in a (representative) random sample
drawn from this population would support the dependency hypothesis. This may be plausible, for
the magnitude of Fisher’s Information on ¢ appears to be quite strong, iy 9 = 0.5488.8 Certainly, for
example, ig g for the population described by v = (1,1,0.1) is far lower at 0.1489, and so this is in
accordance with the intuition that there should be more Fisher Information on 8 the further from
zero the value of 8 truly is. The impact of this positive finding does, however, need to be modified
once account is taken of Fisher Information on all parameters. Examining the leading-diagonal entries
of Fisher’s Information matrix (i.e., iy, 4, 9u,,u,, and igg) throughout the first column of the table,
there is clearly a trade-off between Fisher Information on g; and 6. Indeed, at v = (1,1,0.9), there is
almost no information on 1, and so what has been gained in terms of information on 8 at this point,
is countered by a severe loss in information on ;.

In the second column of Table II, (pq,ps) = (1,2). The trade-off in Fisher Information on the
parameters is still in evidence, however, the magnitudes of 4, ,, and i, ,, across the different values
of 0 does not find either disappearing, as almost occurred previously. Nevertheless, the situation in
respect of Fisher Information on 6 has worsened. Across all values of 6 in this column, ip s remains
fairly constant and fairly small. There is little information on 6, irrespective of its true value.

In the third column of Table TI, (i1, 5) = (1,8). In this case P(Y5* = 0) = e~®. Accordingly,
because there is almost no probability mass along the line Y5 = 0, each bivariate Poisson DDH
population is close to first hurdle dominant.!’ This time the trade-off in Fisher Information on the

¥«Strong” is meant in the sense that its numerical value is larger than all other values of ip ¢ given in the table.

%41y,u, tends to move in line with 4g ¢; hence, as statistical information on j, trades-off against statistical information
on 0, so too does p, trade-off against p, in respect of statistical information.

1n fact, P(Y = 0) ~ P(Yy"™* = 0) = e '; the former probability varying from 0.3681 when 0 = 0, to 0.3679 when
6 =0.9.
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parameters is barely detectable, with (at the tabulated points) i, ,, and ipg increasing in 6, while
iy, drops slightly at first, before increasing in €. Scanning down the column, there is little Fisher
Information on gy whatever the value of 8, and barely any Fisher Information on 8 itself, irrespective
of the value of 8. Given the scarcity of Fisher Information on 8, there seems little chance of data
(except perhaps if it is collected in large quantity) being able to reliably estimate ¢, much less it being
able to support the dependency hypothesis even when 8 truly is non-zero.

6 A Non-Identically Distributed Population

Presented so far has been theory and analysis for iid populations. There may be some improvement in
statistical information on the parameters of the DDH model (especially in respect of the dependency
parameter) if these assumptions are weakened. Although there are many differing directions in which
iid-ness may be relaxed, for the purposes of this illustration independence will be maintained and
non-identicality will be introduced through the mean parameters - the context remains that of the

bivariate Poisson distribution.
Let (Y7, Y5) denote the relevant utility random variables of the pth individual in some (large)
population of interest, assume they have joint pdf:

min(yip.ys;) s Yie—j Yot —j

*k *k Hk *k ¢’ ('ulp — 9) w (MQP — 0) o
P({Ylp = ylp} N {YQp = yQp}) = 617 Z 7 <y1<* —j)' (y;* —j)'
j=0 : P : P '

; (14)

for (y’f;,yé}’;) € IN? and p € IN,; note that p1p and o, are indexed by p, whereas the dependency
parameter @ is not. Assume (14) holds across all individuals’ utility variables; moreover, assume that
all pairs are mutually independent.

For purposes of this illustration, a particularly simple parameterisation is adopted, namely: p; €
IR is assumed constant for all p; and, to incorporate non-identicality, py = Bz, where parameter
(3 € IR, and covariate x € {1,2,8} for all p.!! In this case, the dependency parameter § € © = {6 :
0 < 6 < min(y,, 8)}. The list of parameters is therefore v = (p;,3,0) € T = IR3 x ©.

For any given individual, their Fisher Information matrix depends on their particular value of x,
and as there are only three levels of x in this example, let these matrices be 11, ia, and ig, in an
obvious notation.'? To avoid further unnecessary complications, assume that a representative random
sample!? is drawn from the population, with sample proportions corresponding to true proportions t1,
to, and tg (t1,12,ts > 0, t1 +to+1tg = 1) of each level of z in the population; collect the list of weights
in the list t = (¢1,t2,tg). With every assumption in place, Fisher’s Information matrix is given by

1 = t191 + t2i2 + tgis.

The difference between the iid and non-iid settings is now apparent: iid examples are generated only
by combinations of ¢ of (1,0,0), (0,1,0), or (0,0,1), whereas non-iid examples arise from weighting
combinations with at least two positive components. Therefore, the problems observed under iid-ness
may, in non-iid settings, be alleviated due to averaging - for ¢ is a weighted average across individual
Fisher Information matrices.

'More appropriate in practice would be the parameterisations exp(a’w) and exp(8'z), for u, and u.,, respectively.
Covariate vectors w and z may have common components, while parameters « and (3 are finite-dimensional real vectors.
2For example, if v = (1,1,0.5) then is may be obtained from the (1,8,0.5) cell in Table II as per

78 0.5990 —0.0357 x 8 —0.0228
B 0.0783 x 64 0.0453 x 8 |,
0 0.0307

where the multiplicative factors in the second row and column are due to the reparameterisation of u, to 3.
13 An alternative device that achieves the same end is to assume n is large, as then sample proportions tend towards
true proportions.

11



To keep matters simple, set ¢y = 1 and 8 = 1, and allow € to vary. Table III gives Fisher

Information ¢ on v = (uy,3,0) for just two weighting combinations, namely, t = (%, %, %) and t =

(%, %, %) : the entries are computed by taking the weighted average across the appropriate row in

Table 11, not forgetting to account for the effect of the reparameterisation from p, to j3.

(Table III about here)

In the first column the weighting scheme is t = (%, %, %) Evident once again is a trade-off in

information between parameters ;; and 3, but unlike the iid case, the trade-off is of lesser consequence;
i.e., as information on f; increases, the information on [ is not wiped out (and wice versa). The
statistical information on 6, while at first decreasing, improves as the true value of 8 becomes larger,
especially in the last jump from 6 = 0.7 to § = 0.9. Although relaxing iid-ness has improved the
situation, there nevertheless persists a relative lack of statistical information on # irrespective of its
true value.

In the first column of Table II1, only one-third of the population is (close to) first-hurdle dominant;
i.e., one-third of the population have a covariate value of x = 8. This is reversed in the second column
of Table III, with the first-hurdle dominant proportion now two-thirds - reflected in the weighting
scheme t = (%, %, %) that is chosen. As this weighting scheme emphasizes the ig component of i, and
as that component adds little to the information on 8, irrespective of its true value, the consequent lack
of support by data for the dependency hypothesis will again be manifest. Interestingly, for a fixed 8,
the magnitude of information on the mean parameter y; and on the regression parameter 3 are greater
in the second column than in the first. This was certainly not the case under iid-ness when information
on p tended to disappear the closer to first-hurdle dominant the population became (see the third
column of Table IT). So while the dependency parameter 6 appears of little statistical consequence in
double-hurdle models (for iid and non-iid populations), the situation in regard to the mean/regression
parameters in non-iid populations appears to be the opposite - they remain important for statistical
information is always present upon them - which is vital when it comes to applying these models in
practice.

7 Remarks

Taken as a whole, the results of this paper demonstrate that the DDH model represents a spurious
statistical generalisation of the DH model. The economic underpinnings of the model are not affected
by this conclusion; nor does it invalidate the behavioural arguments mounted to justify the DDH
model over the DH model. It is the statistical nature of the DDH model which is deficient. This has
manifested itself in the empirical literature, with most studies being unable to support the existence of
the dependency parameter, and it has been studied in this paper under ideal theoretical circumstances
through means of Fisher’s Information, a measure of the amount of statistical information that is
contained on model parameters - the larger the information, the better.

Beginning with iid populations, a four-parameter bivariate normal DDH was shown to be weakly
identified. With the bivariate logistic DDH model it was shown that populations which generate an
excessive proportion of zero observations were those which produce the greatest Fisher Information
on the dependency parameter. Finally, in a bivariate Poisson DDH it was shown that there exist
trade-offs in Fisher Information across all parameters in the model; for a population in which Fisher
Information on the dependency parameter is relatively large, the cost incurred may be relatively little
provision of Fisher Information on other parameters. Also, it was shown that Fisher’s Information on
the dependency parameter can remain relatively constant irrespective of its true value. Under non-iid
bivariate Poisson DDH populations, the extremes seen in the iid setting were alleviated slightly, but
not enough to warrant confidence in the DDH model.

In practice, knowing the true DDH model is no longer the luxury it has been here. The indicator
- an excessive proportion of zeros in the data - may provide favourable evidence to justify fitting
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a DDH model, but taken in the broader perspective of all parameters in the model, it may be a
costly strategy. To the extent that mean/regression parameters are usually of greater importance in
estimation, it would appear safer to ignore dependency altogether and specify a DH model, the data
can then reveal as much about the these parameters as is possible.

This seemingly negative conclusion to the paper is, however, a boon to practitioners for it allows
far more flexible distributional structures to be employed for the models’ random variables. To see
this, suppose (against statistical advice) that a practitioner wishes to allow for dependency, and
attempts to specify a DDH model. In this event, they are obliged to determine a suitable bivariate
distribution F, for as has been shown in (5) and (6), its functional form enters the pdf of Y. The
options available are few, the bivariate normal being the typical choice. Reduced too, is the ability
to employ flexible distributional forms.!* Now suppose the practitioner desires to fit a DH model
instead. By construction the underlying utility variables are independent, in which case F(yi*,y5*) =
Fy(y7*) Fa(ys*), and the pdf of Y becomes:

Ay = 01— R o) 2L,

for y € IRy, and at the origin

fo= Fl(O) +F2(0) — Fl(O)FQ(O)
Now only univariate distributions F] and Fb are required, consequently there are many more options
available. The normal-normal combination (a normal distribution for F} and a normal distribution
for Fy) is standard; however, it is conceivable that another mixture may be more suitable in some
situations, a logistic-Laplace mixture, for example.

Attention in this paper has focused mainly on the relationship between (Y;**,Y;*) and Y, through
the specification of a suitable distribution for the former. However, once dependency is eliminated
from consideration and efforts are devoted to specifying a DH model, the independency that also exists
between Y7* and Y5 suggests a second approach to modelling - one that emphasizes specification of
distributions for the hurdle variables Y;* and Y5*.15 Of course, specifying a distribution for Y7 is easy,
it must be Bernoulli distributed:

P(Yy = y7) = (1 —r) 7¥irti,

where y7 € {0,1}, and real r is such that 0 < r < 1. The success probability » may depend on
parameters and covariates, and can be parameterised with any function whose range is (0, 1); e.g., the
cdf of the normal distribution yields the familiar probit, but possibly more flexible would be the pdf of
a beta distribution. For the second hurdle variable Y5', assume, for the moment, that it is observable.
Those observations would give Y5 the appearance of being zero-inflated, hence it would be natural to
specify a distribution for it from amongst this class. There are a number of possibilities; e.g., Aalen’s
[1] distribution is a flexible compound Poisson-gamma mixture, while simpler perhaps is Castoldi’s
(see [12, p.289]) continuous analogue of the Poisson distribution with a mass at the origin. To derive
the pdf of Y, suppose that the pdf of Y5' is given by:

o _ ) ooi(ys)  ifys € Ry
9(2) {90 i 5 = 0,

for suitable functions g; and gg, both of which may depend on parameters and covariates. Substituting
into the second line of (4) and exploiting independence, yields the distribution of Y as:

P(Y < y)=1-P(¥7 = )P(Yy >y)

o0
=1ﬂj'MW@;
Yy

4The distinction between flexibility in distributional choice and flexibility in parameterisation may be highlighted
with Yen and Jones’ [19] DDH study. There a parametric transformation of ¥ was employed to induce a more flexible
functional form to the model, and yet bivariate normality of the underlying utility variables was maintained.

“Dionne et al. [6] is one such study which took this route. In their case Y € IV was discrete, and the hurdle variables,
Y7 and Y5, were modelled respectively by logit and negative binomial distributions.
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where y € IR. As per (5), the derivative of the cdf yields the pdf of Y when y € IR} :

f1ly) =rg1(y).

And from (6), at the origin

fo = P =0)+PY " =1)PYy =0)
= 1—7r-+rgo.

It is a subject of future research to contrast the performance of DH models based on these two
approaches to modelling.
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8 Appendix

For the continuous component of the pdf, the contribution to Fisher’s Information on @ is given by
the second term on the right-hand-side of (7). Substitution into this expression yields

e By - 2FR(y))
ROFO [ 5 IR0 = 2F)

Now the denominator of the integrand may be expanded binomially; that is,

(1 —0F(0)(1 — 2Fy(y))) ' = iejFl(o)j(l — 2P (y))’.
j=0

This infinite series representation is uniformly convergent because |6F;(0)(1 —2F5(y))| < 1 for all
(y,7v) € IR+ x T, therefore it is permissible to integrate term-by-term. The contribution is solved as:

oo

FLOF0) Y ORO) [ Fiu)(1 - 2R)7 dy
=0
/N j_ 1 j j
= Fl(O)Fl(O)jZO(GFl(O)) G (=178 = (1= 2F(0)) ")
= %Fl (0)FL(0) (\y(—eFl(o); 1;3) + (1 — 2F(0))® T(OFL(0)(1 — 2F5(0)); 1; 3)) ,

where W(-) denotes Lerch’s function.

When y = 0, substituting into the first term on the right-hand-side of (7) yields the contribution
to Fisher’s Information on @ as:
F{(0)*F5(0)?
F1(0) + F3(0) — F(0,0)
Combining the contributions yields Fisher’s Information on § in the bivariate logistic DDH model
given in (9).

The derivation of (10) is achieved by replacing the Lerch functions in (9) according to the relation
(see [18, eq.64:12:13])
U(x;1;2) = *B(z;0; x),

where B(a;b;x) = [ t* (1 — t)* Ldt denotes the incomplete beta function. The particular result
1
B(3;0;x) = — <m + 51’2 + log(1 — x)) ,

valid for all real = such that |z| < 1, is then applied. Finally, observe that £7(0)™2F/(0) = exp(u, ).
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TABLE II: Fisher’s Information Matrix (bivariate Poisson)
0 pr =1, py =1 py =1, pg =2 pp =1, pp =38
py | 0.2254 02254 0.1312 0.4083 0.1098 0.0639 0.5814 0.0003 0.0002
0 i 0.4896 0.2850 0.2467 0.1435 0.0788 0.0459
9 0.1658 i 0.0835 | 0.0267
[ 0.1981 0.1755 0.1249 | [ 0.3974 0.0827 0.0593 | [ 0.5821 —0.0069 —0.0040 |
0.1 0.4657 0.2560 0.2426 0.1343 0.0783  0.0456
I 0.1489 | i 0.0760 | i 0.0267 |
[ 0.1724 0.1305 0.1239 ] [ 0.3883 0.0567 0.0572 ] [ 0.5841 —0.0141 —0.0083 ]
0.2 0.4557 0.2288 0.2421 0.1256 0.0781  0.0454
i 0.1452 | i 0.0713 | i 0.0270 |
[ 0.1470 0.0896 0.1255 ] [ 0.3804 0.0314 0.0572 ] [ 0.5874 —0.0212 —0.0127 |
0.3 0.4592 0.1995 0.2450 0.1169 0.0780  0.0453
i 0.1521 | i 0.0684 | i 0.0278 |
[ 0.1211 0.0526 0.1277 | [ 0.3729 0.0065 0.0590 | [ 0.5923 —0.0284 —0.0175 |
0.4 0.4763 0.1652 0.2513 0.1078 0.0780  0.0452
i 0.1702 | i 0.0669 | i 0.0290 |
[ 0.0948 0.0203 0.1286 | [ 0.3656 —0.0184 0.0627 | [ 0.5990 —0.0357 —0.0228 |
0.5 0.5086 0.1229 0.2613 0.0978 0.0783  0.0453
I 0.2013 i 0.0666 | | 0.0307 |
0.0687 —0.0059 0.1256 [ 0.3578 —0.0434 0.0685 | [ 0.6078 —0.0431 —0.0290 |
0.6 0.5578  0.0690 0.2753  0.0865 0.0787  0.0455
0.2489 i 0.0674 | | 0.0330 |
[ 0.0439 —0.0241  0.1158 | [ 0.3480 —0.0686 0.0765 | [ 0.6192 —0.0507 —0.0363 |
0.7 0.6267 —0.0006 0.2936 0.0734 0.0794  0.0458
I 0.3178 | i 0.0694 | | 0.0363 |
[ 0.0222 —0.0317  0.0953 | [0.3383 —0.0940 0.0869 | [ 0.6344 —0.0586 —0.0456 |
0.8 0.7190 —0.0910 0.3168 0.0576 0.0802  0.0462
I 0.4145 | i 0.0732 | | 0.0410 |
[ 0.0064 —0.0253  0.0590 | [ 0.3251 —0.1194 0.1001 | [ 0.6551 —0.0669 —0.0580 |
0.9 0.8402 —0.2095 0.3458 0.0381 0.0812  0.0468
i 0.5488 | i 0.0794 | | 0.0480 |
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TABLE III:  Fisher’s Information Matrix (non-iid bivariate Poisson)

e =&5D =&5Y
| 0.3925 0.0952 0.0601 0.4873 0.0200 0.0280
01 23 2.1498 0.2964 3.5816 0.3305
0 0.0838 0.0553
[ 0.3716 —0.0058 0.0567 | [ 0.4795 —0.0878 0.0220 |
0.3 2.1426 0.2651 3.5658 0.3136
I 0.0828 | i 0.0553 |
[ 0.3531 —0.1007 0.0562 | [ 0.4761 —0.1931 0.0167 |
0.5 2.1882 0.2270 3.59094 0.2947
I 0.0995 | i 0.0651
[0.3373 —0.1890 0.0520 | [ 0.4783 —0.2973 0.0078 |
0.7 2.2935 0.1708 3.6865 0.2684
i 0.1412 i 0.0887 |
[ 0.3289 —0.2663 0.0337 | 0.4920 —0.4007 —0.0122
0.9 2.4743  0.0805 3.8368  0.2276
I 0.2254 0.1367
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