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Abstract

This paper is a supplement paper to Knorr�Held and Ra�er ������	 
Bayesian Detec�

tion of Clusters and Discontinuities in Disease Maps�	 which describes a novel approach

to disease mapping with particular emphasis on the detection of clusters and disconti�

nuities in disease maps� First we investigate several features of the prior by simulations

from the clustering model both for the 
�� regions of Germany and for the �� coun�

ties of Ohio state� Furthermore the method is applied to various arti�cial datasets for

Ohio with and without spatial patterns� Sensitivity with respect to prior parameters

is studied�

� Simulations from the prior

Here are various simulations from the prior distribution for clustering� both for Germany

and for Ohio� The number of neighbors of the regions varies between � and �� in Germany

and between � and � in Ohio� All results were calculated using ������� samples� in each

one drawing the number of clusters k from the prior distribution �uniform or geometric��

the cluster centers uniformly from the the set of regions� and 	nally assigning each of the

remaining regions to a cluster center as described in Knorr
Held and Ra�er ������� From all

samples we have calculated

� the empirical distribution of the number of clusters k� which of course is very similar

to the theoretical distribution�

� the probability for each region to be selected as a cluster center� which should be �and

actually is� uniformly distributed on the total number of regions�

� the probability for each region to be alone in a cluster of size one�






� the average probability for each region to be together with one of its 	rst� second or

third order neighbors and

� for each region the average size of the cluster it is assigned to�

To handle the large number of regions ���� in Germany� for the visual presentation of the

results we have grouped the regions depending on the number of neighbors�

��� Results for Germany

Here are the results of the simulation using a geometric distribution with parameter c � ���
�

which is the prior distribution for k we used in the application presented in Knorr
Held and

Ra�er ������� The expected number of clusters in this case is nearly ��� With ��� regions the

probability for one region to be selected as a cluster center should therefore be approximately

��� for all regions� Figure � shows a plot of the probabilities for all regions� Not surprisingly

we really get an uniform distribution� A plot of the empirical distribution of the number

of clusters is also included� For the next results we have grouped the regions depending on

the number of neighbors� so the distribution of the number of neighbors might be helpful�

From Figure 
 it is obvious that for the extreme cases of �� or �� neighbors there are only

� and 
 observations� respectively� so the results for these cases may be less reliable than for

the other regions with a higher number of neighbors� The probability for being alone in a

cluster is near to zero for all regions since the average number of clusters is quite small� Yet

Figure � shows that with growing number of neighbors the probability is getting smaller�

This seems intuitive since for a selected region to form a cluster of its own it is necessary

that one or more of the regions with small distance to the selected one �mostly neighbors�

are cluster centers themselves and therefore regions with a small number of neighbors will

more often be alone than regions with a higher number of neighbors�
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We also have calculated the probability that a region is in the same cluster as one of

its 	rst order neighbors �� neighbors�� averaging over all neighbors and all samples� The

same has been done for the second order neighbors �� neighbors of neighbors� and the third

order neighbors� The results are also plotted in Figure �� Since the probability of being

alone is nearly zero� the probability of being together with one of the neighbors is extremely

high� And of course for the extreme case of only one neighbor both probabilities add to ��

All probabilities are getting lower with growing number of neighbors� Only for �� and ��

neighbors the probabilities are rising again� This may be pure incidence since the number

of regions in these groups is very small as mentioned before� A more detailed view on the

probabilities for being alone in a cluster is given in Figure �� The width of the boxplots is

proportional to the number of regions in each group� The boxplot on the right shows that�

considering all regions� the probabilities are not varying too much� Only the regions with

just one neighbor have an unusual high probability� There are also included boxplots for the

average size of the cluster the region is assigned to� Obviously� the in�uence of the number

of neighbors is small here�

We have done another simulation using an uniform distribution instead of the geometric

prior for k� Altogether the results were quite similar� The probability for one region to be

selected as a cluster center should now be exactly ���� which can be observed in Figure ��

The empirical distribution of k seems to be noisier� so please note the changed range of the

y
axis� The expected number of clusters is now 
�
��� so the probabilities of being alone in

a cluster will be higher� while the probabilities for being together with the 	rst� second or

third order neighbors will be smaller� which becomes obvious from Figure �� Finally Figure

� shows that the average size of the clusters are also much smaller than before�
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average size of the cluster the region is in �below��
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Figure �� Boxplots of the probability for being alone in one cluster �above� and boxplots for the

average size of the cluster the region is in �below��
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��� Results for Ohio

In Ohio there are only �� regions and the structure is more regularly than in Germany� The

minimum number of neighbors here is �� while the maximum number is �� but this time there

is only one region with the maximum number of neighbors� Figure � shows this distribution�

where just like for Germany� we have a modus of � neighbors� Again we have applied an

uniform and a geometric prior for k� The parameter for the latter one were chosen as c � ���

and c � ���� so the expected number of clusters are around �� and 
� respectively� while

it is now ���� for the uniform distribution� We have included here the same Figures as for

Germany� again using ������� samples for each simulation� starting with the results from

the geometric prior with parameter c � ���� which seems to be the best choice according

to the simulated datasets presented later� The second simulation indicates that a geometric

distribution with parameter c � ��� is very strong� and should therefore only be used if one

has knowledge about the existence of a spatial structure in the risk factors� although this is

not re�ected by the data� Surprisingly the results from the third simulation with an uniform

prior are much the same as for the 	rst simulation�

Generally the results are quite the same as for Germany� though this time the typical

features are not so obvious� But since the total number of regions is now much lower the

number of regions in the single groups may be too small to draw general conclusions�
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Figure ��� Boxplots of the probability for being alone in one cluster �above� and boxplots for the

average size of the cluster the region is in �below�� Same prior as in Figure ��
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Figure ��� Boxplots of the probability for being alone in one cluster �above� and boxplots for the

average size of the cluster the region is in �below�� Same prior as in Figure ���
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Figure ��� Boxplots of the probability for being alone in one cluster �above� and boxplots for the

average size of the cluster the region is in �below�� Same prior as in Figure �
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� Simulated datasets

To investigate the performance of the algorithm in reconstructing the true relative risks� we

de	ned four di�erent risk patterns and simulated datasets based on these patterns� For this

purpose we used a dataset from Ohio instead of Germany in order to simplify the presentation

of the results�

We constructed four di�erent risk patterns�

�P�� constant risk over the whole state�

�P
� two di�erent risk levels in areas of di�erent shapes and sizes�

�P�� slowly rising risk from the west to the east�

�P�� heterogeneity in all regions�

A detailed description of each is given together with the results later� Based on these

given risk patterns the observed number of cases for each region was drawn from a Poisson

distribution with parameter eihi� where ei denotes the expected number of cases �based on

lung cancer rates for white males in ����� and hi the relative risk in region i according to the

given pattern� For each pattern these simulations have been done three times� so we get a

total of �
 di�erent datasets� We also used three di�erent prior distribution for the number

of clusters k�

�C�� a uniform distribution on f�� � � � � ��g�

�C
� a geometric distribution with parameter c � ����

�C�� a geometric distribution with parameter c � ����

For the inverse gamma distribution �the prior distribution for the dispersion parameter ��

of the log
normal prior for the heights� we also needed to specify the parameters� using
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�S�� IG���
�������
���

�S
� IG���������

�S�� IG������
���

This means we get � possible combinations of prior distributions and therefore ��� runs of

the algorithm� applying each prior combination to each dataset� In the following sections

results will be given� showing plots of the

�a� true underlying risk pattern�

�b� simulated dataset�

�c� posterior median estimates of the relative risks�

�d� prior and posterior distribution for k�

�e� scatter plot of SMR�s versus true risks

�f� scatter plot of median estimates versus true risks

�g� scatter plot of SMR�s versus log expected values

�h� scatter plot of median estimates versus log expected values

�i� values of k for all iterations�

�k� values of �� for all iterations�

�l� deviance of the model for all iterations�

�m� values of the �unnormalized� posterior for all iterations�

�n� autocorrelation
function of k�
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�o� autocorrelation
function of ���

�p� autocorrelation
function of the deviance�

�q� autocorrelation
function of the posterior�

�r� variance �� versus k�

�s� deviance versus k�

�t� posterior versus k�

�u� acceptance
rates for the six moves�

Note that in Figure �u� the six moves are represented by numbers in the order ��� hyper�

�
� height� ��� shift� ��� birth� ��� death and ��� switch� The acceptance probability for the

hyper move of course is always �� Since the output of one single run is very rich� we present

only results from some selected runs� For each pattern �P�� 
 �P�� we present one run in

full length and the estimates from the other two priors from �C�� 
 �C�� with the same prior

�S��� �S
� or �S���

All results were gained by runs of the algorithm using a burn
in length of ���������

iterations� Form the total of ���������� iterations after burn
in we used just each ������th

step� so we get a sample size of ���� iterations for each run�
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Pattern �

Here we assume the same relative risk ��� in all regions� We give three results for one dataset

using the three di�erent prior distributions for the number of clusters k along with a gamma

prior distribution for �� with parameters a � � and b � ���
�� i�e� �S��� In Figure �� and on

the following pages� full results are given for the analysis with a geometric prior distribution

with parameter c � ��� for k� This prior distribution for k has an expected number of

clusters of nearly ��� but for the posterior distribution the values are much lower� mostly ��

This means the algorithm was able to detect the pure randomness of the data variation and

therefore we get a perfect reconstruction of the true risks� Since in this run there is mostly

just one cluster� a death move is rarely proposed� so we get a high acceptance rate for this

move� while a birth move has a very low acceptance rate� indicating that it is improbable to

increase the number of clusters� For all other datasets with higher values of k� the acceptance

rates for the birth and the death move were nearly the same�

Yet in this case the algorithm appeared quite insensitive to the choice of the prior for

k� Figure �� shows the data and the estimates from the analysis with an uniform prior for

k� The posterior distribution for k here is bimodal with local modes at k � � and k � n�

Nonetheless� the reconstruction of the true relative risks is very good� Finally� Figure 
�

shows the results using a geometric prior distribution with parameter c � ����
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Pattern �

To examine whether the algorithm really can 	nd discontinuities in the spatial pattern or

not� we have given low relative risk of ��� in most parts of Ohio and a high relative risk

of 
�� in some clusters of di�erent sizes� So there appear sharp edges in the true relative

risk pattern� Included here is an analysis of a dataset based on these relative risks using

an uniform prior distribution for k and setting the values of the parameters for the gamma

distribution to a � � and b � ����� In this case other prior distributions showed nearly

the same results� Neither a geometric prior for k� nor di�erent values for a and b had any

in�uence on the posterior distribution for k or on the estimated relative risks�

This time the reconstruction is also very good� The posterior distribution for k has a

very small variance� which results in quite small acceptance rates for the birth and death

move�

Figure 

 and Figure 
� show the estimates using the two di�erent geometric distribu


tions�
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Pattern �

Here we de	ned a true relative risk pattern showing slowly rising values from the west to the

east� Starting with ��� in the west and rising to ���� ���� ���� ���� ��
� ���� ��� to a maximum

of 
�� in the east� so we have � di�erent risk levels over the whole state� This time we used

a geometric prior distribution with parameter c � ��� for k� But also in this case the other

prior distributions led to very similar results for the posterior distribution for k as well as

for the estimated relative risks� As a prior for �� we applied a gamma distribution with

parameters a � � and b � ���
��

Since the changes between the areas of di�erent risk levels are quite small� these areas

are often connected in one cluster� So the values of the posterior distribution for k are also

small� Yet the rising risk level from the West to the East is still clearly recognizable in Figure


� in the estimated risk pattern�

Again the results using an uniform prior given in Figure 
� are nearly the same� The

strong geometric prior with parameter c � ��� in Figure 
� leads to slightly lower values for

k� yet the estimates of the relative risks are not di�ering to much form the other results�

��



true relative risk

0.45
0.62
0.84
1.16
1.59
2.17

sample data

0.45
0.62
0.84
1.16
1.59
2.17

posterior median

0.45
0.62
0.84
1.16
1.59
2.17

0 20 40 60 80

0.
0

0.
04

0.
08

0.
12

prior and posterior of k

�a� �b�

�c� �d�

Figure 
�� Analysis with �C�� and �S���

�




true risk

S
M

R

0.6 1.0 1.4 1.8

0.
5

1.
0

1.
5

2.
0

2.
5

true risk

es
tim

at
e

0.6 1.0 1.4 1.8

0.
5

1.
0

1.
5

2.
0

2.
5

log expected

S
M

R

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

log expected

es
tim

at
e

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

�e� �f�

�g� �h�

��



Index

k

0 200 600 1000

5
10

15
20

k

Index

va
ria

nc
e

0 200 600 1000

0.
05

0.
15

0.
25

Variance

Index

de
vi

an
ce

0 200 600 1000

80
90

10
0

11
0

12
0

Deviance

Index

lo
g 

po
st

er
io

ri

0 200 600 1000

-3
00

-2
00

-1
00

Log Posteriori

�i� �k�

�l� �m�

��



Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : kw

Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : var

Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : dev

Lag

A
C

F

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : post

�n� �o�

�p� �q�

��



k

va
ria

nc
e

5 10 15 20

0.
05

0.
15

0.
25

k

de
vi

an
ce

5 10 15 20

80
90

10
0

11
0

12
0

k

lo
g 

po
st

er
io

ri

5 10 15 20

-3
00

-2
00

-1
00

• •

•
• •

•

move

ac
ce

pt
an

ce
 r

at
e

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rates

�r� �s�

�t� �u�

��



true relative risk

0.45
0.62
0.84
1.16
1.59
2.17

sample data

0.45
0.62
0.84
1.16
1.59
2.17

posterior median

0.45
0.62
0.84
1.16
1.59
2.17

0 20 40 60 80

0.
0

0.
04

0.
08

0.
12

prior and posterior of k

�a� �b�

�c� �d�

Figure 
�� Analysis with �C�� and �S���

��



true risk

S
M

R

0.6 1.0 1.4 1.8

0.
5

1.
0

1.
5

2.
0

2.
5

true risk

es
tim

at
e

0.6 1.0 1.4 1.8

0.
5

1.
0

1.
5

2.
0

2.
5

log expected

S
M

R

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

log expected

es
tim

at
e

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

�e� �f�

�g� �h�

��



true relative risk

0.45
0.62
0.84
1.16
1.59
2.17

sample data

0.45
0.62
0.84
1.16
1.59
2.17

posterior median

0.45
0.62
0.84
1.16
1.59
2.17

0 20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

prior and posterior of k

�a� �b�

�c� �d�

Figure 
�� Analysis with �C�� and �S���

��



true risk

S
M

R

0.6 1.0 1.4 1.8

0.
5

1.
0

1.
5

2.
0

2.
5

true risk

es
tim

at
e

0.6 1.0 1.4 1.8

0.
5

1.
0

1.
5

2.
0

2.
5

log expected

S
M

R

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

log expected

es
tim

at
e

1 2 3 4 5 6

0.
5

1.
0

1.
5

2.
0

2.
5

�e� �f�

�g� �h�

��



Pattern �

Finally� we want to investigate whether the algorithm is able to detect the nonexistence of a

spatial pattern� So in this case we assume total heterogeneity of the relative risks� Therefore�

the log relative risks have been independently generated from a normal distribution with

mean zero and standard deviation ��
�� Of course the algorithm will smooth the risks and

therefore one can not expect to restore the original pattern completely�

Here the output of the algorithm really depends on the choice of the prior distribution for

k� And so the mode of the posterior distribution for k is getting lower when using a stronger

prior� decreasing from around �� with an uniform prior to around �� with a geometric prior

with parameter c � ��� to under 
� using a geometric distribution with parameter c � ����

And with decreasing k� the estimated relative risks are getting smoother� of course� But

since this strong in�uence of the prior distribution only appears if there is no spatial pattern

recognizable� the conclusion seems appropriate that if the choice of the prior distribution

has only minimal e�ect on the estimates there really seems to be a spatial structure� which

is reconstructed quite closely by the algorithm�

Given in Figure 
� is the analysis with a geometric prior with parameter c � ���� a very

strong prior for k� The parameters for the gamma distribution were set to a � ��
� and

b � �����
�� So these are the most extreme results we reached for this pattern�

The in�uence of the choice of the prior distribution becomes obvious from Figure 
� and

Figure 
�� showing the results from the uniform and the geometric prior with parameter

c � ���� respectively� The patterns of the estimates are noisier in both cases�
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� Conclusions

The prior simulations seem to indicate that the degree of smoothing is approximately the

same for all regions with only slight di�erences depending on the number of neighbors�

The prior probabilities for forming a region on its own and the probability that two adjacent

regions are within the same cluster depend more strongly on the number of neighbors and we

therefore recommend to report both posterior and prior probabilities in any given application�

The analyses of the various simulated datasets suggest that our method seems to re


construct a given risk surface quite well� Of course� the prior model assumes some sort of

spatial structure� and therefore the performance of the method is not as good for pattern ��

where each latent relative risk is generated independently from the location of the region�

However� it is a more philosophical question if the corresponding sample data could have

been generated by a di�erent risk surface with spatial structure�

Regarding sensitivity� it seems that the prior for k has only weak in�uence on the es


timates of the relative risks as long as c is not too large� We therefore recommend to use

rather small but positive values for c� in order to avoid problems with mulitmodality of the

posterior for k �see the results for pattern ��� We did not 	nd much evidence for sensitivity

with respect to p����� However� this might be di�erent for other datasets�
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